Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model

Size: px
Start display at page:

Download "Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model"

Transcription

1 Flly Dsrt Analyss of a Dsontnos Fnt lmnt Mtod for t Kllr-Sgl Cmotaxs Modl Ykatrna pstyn and Amt Izmrlogl Abstrat Ts papr formlats and analyzs flly dsrt sms for t two-dmnsonal Kllr-Sgl motaxs modl. T spatal dsrtzaton of t modl s basd on t dsontnos Galrkn mtods and t tmporal dsrtzaton s basd tr on Forward lr or t sond ordr xplt total varaton dmnsng (TVD Rng-Ktta mtods. W onsdr Cartsan grds and prov optmal flly dsrt rror stmats for t proposd mtods. Or proof s vald for pr-blow-p tms sn w assm bonddnss of t xat solton. AMS sbjt lassfaton: 65M60, 65M1, 65M15, 9C17, 35K57 Ky words: Kllr-Sgl motaxs modl, onvton-dffson-raton systms, dsontnos Galrkn mtods, Forward lr, Rng-Ktta, NIPG, IIPG, and SIPG mtods, Cartsan mss. 1 Introdton T goal of ts work s to formlat and analyz flly dsrt dsontnos Galrkn (DG mtods for t solton of t two-dmnsonal (-D Kllr-Sgl motaxs modl, [11, 6, 7, 8, 33, 34]. T ndrlyng spatal dsrtzaton of t modl s basd on t mtods proposd rntly n [18] and t tmporal dsrtzaton s basd tr on Forward lr or t sond ordr xplt total varaton dmnsng (TVD Rng-Ktta mtods. In ts papr, w onsdr t lassal formlaton of t Kllr-Sgl systm [11], w an b wrttn n t dmnsonlss form as { t (χ =, (x, y, t > 0, (1.1 t =, sbjt to t Nmann bondary ondtons: n = n = 0, (x, y. Hr, (x, y, t s t ll dnsty, (x, y, t s t moattratant onntraton, χ s a motat snstvty onstant, s a bondd doman n R, s ts bondary, and n s a nt normal Dpartmnt of Matmatal Sns, Carng Mllon Unvrsty, Pttsbrg, PA, 1513, rna10@andrw.m.d Dpartmnt of Matmats, Unvrsty of Pttsbrg, Pttsbrg, PA 1560; ast1@ptt.d

2 Y. pstyn and A. Izmrlogl vtor. T systm (1.1 s t bas stp n t modlng of many bologal prosss. T Kllr-Sgl modl (1.1 an b gnralzd to bttr dsrb t ralty by takng nto aont som otr fators s as growt and dat of lls, prsn of t food and otr mals n t systm, t. It s wll-known tat soltons of t lassal Kllr-Sgl systm may blow p n fnt tm, s,.g., [4, 5] and rfrns trn. Ts blow-p rprsnts a matmatal dsrpton of a ll onntraton pnomnon tat ors n ral bologal systms, s,.g., [1, 6, 8, 9, 15, 35]. Captrng blowng p soltons nmrally s a allngng problm. A fnt-volm, [1], and a fnt-lmnt, [3], mtods av bn proposd for a smplr vrson of t Kllr-Sgl modl, { t (χ =, = 0, n w t qaton for onntraton as bn rplad by an llpt qaton sng an assmpton tat t moattratant onntraton angs ovr m smallr tm sals tan t dnsty. A fratonal stp nmral mtod for a flly tm-dpndnt motaxs systm from [39] as bn proposd n [40]. Howvr, t oprator splttng approa may not b applabl wn a onvtv part of t motaxs systm s not yprbol, w s a gnr staton for t orgnal Kllr-Sgl modl as t was sown n [10], wr t fntvolm Godnov-typ ntral-pwnd sm was drvd for (1.1 and xtndd to som otr motaxs and aptotaxs modls. T g-ordr dsontnos Galrkn mtod tat s nvstgatd r s basd on t mtod proposd n [18]. T DG mtods av rntly bom nrasngly poplar tanks to tr flxblty for adaptv smlatons, stablty for paralll omptatons, applablty to problms wt dsontnos offnts and/or soltons, and ompatblty wt otr nmral mtods. Ts mtods av bn sssflly appld to a wd varty of problms, rangng from t sold mans to t fld mans (s,.g., [13, 14, 1, 19, 0,, 38] and rfrns trn. Frtrmor, t DG mtods ar among t mtods tat an b sd for ral bomdal problms, w ar oftn onsdrd n omplx domans, av dsontnty n t offnts, and norporat PDs of dffrnt matmatal natr. In ordr to dvlop g-ordr DG mtods for (1.1 n [18], t Kllr-Sgl systm s rwrttn as a systm of t nonlnar onvton-dffson-raton qatons by ntrodng nw varabls (, v := : kq t F(Q x G(Q y = k Q R(Q, (1. wr Q := (,,, v T, t flxs ar F(Q := (χ, 0,, 0 T and G(Q := (χv, 0, 0, T, t raton trm s R(Q := (0,,, v, t onstant k = 1 n t frst two qatons n (1., and k = 0 n t trd and t fort qatons tr. T mtods proposd n [18] ar basd on tr prmal DG mtods: t Nonsymmtr Intror Pnalty Galrkn (NIPG, t Symmtr Intror Pnalty Galrkn (SIPG, and t Inomplt Intror Pnalty Galrkn (IIPG mtods, [3, 16, 36]. T nmral flxs n t proposd DG mtods ar t flxs dvlopd for t smdsrt fnt-volm ntral-pwnd sms n [30] (s also [9, 31]. Ts sms blong to t famly of non-osllatory ntral sms, w ar gly arat and ffnt mtods applabl to gnral mltdmnsonal systms of onsrvaton laws and rlatd problms. Lk otr ntral flxs, t ntral-pwnd ons ar obtand wtot sng (approxmat Rmann problm solvr, w s navalabl for t systm ndr onsdraton. At t sam tm, a rtan pwndng nformaton on-sdd

3 Analyss of a DG Mtod for t Cmotaxs Modl 3 spds of propagaton s norporatd nto t ntral-pwnd flxs. In [18], Cartsan grds ar onsdrd and t ontnos n tm rror stmats ar provd for t proposd g-ordr DG mtods ndr t assmpton of bonddnss of t xat solton. Som nmral tsts tat valdat t mtods ar onsdrd n [18] and [17]. In t followng ston, w ntrod or notatons, assmptons, and stat som standard rslts. In 3-4 w rall som rslts for t ontnos n tm sm. In 5-7 w formlat t xplt sms and drv t rror stmats ndr assmpton of bonddnss of t xat solton (som proof dtals ar postpond to Appndx 9. T proof of t rror stmats s basd on t ndton argmnt w smplfs t analyss sgnfantly sn w onsdr t opld systm of t nonlnar qatons. Assmptons, Notatons, and Standard Rslts W dnot by a nondgnrat qas-nform rtanglar sbdvson of t doman (t qas-nformty rqrmnt wll only b sd for stablsng t rat of onvrgn wt rspt to t polynomals dgr. T maxmm damtr ovr all ms lmnts s dnotd by and t st of t ntror dgs s dnotd by Γ. To a dg n Γ, w assoat a nt normal vtor n = (n x, n y. W assm tat n s drtd from t lmnt 1 to, wr 1 dnots a rtan lmnt and dnots an lmnt tat as a ommon dg wt t lmnt 1 and a largr ndx (ts smplfd lmnt notaton wll b sd trogot t papr. For a bondary dg, n s osn so tat t onds wt t otward normal. T dsrt spa of dsontnos pws polynomals of dgr r s dnotd by W r, ( = { w L ( :, w P r ( }, wr P r ( s a spa of polynomals of dgr r ovr t lmnt. For any fnton w W r,, w dnot t jmp and avrag oprators ovr a gvn dg by [w] and {w}, rsptvly: for an ntror dg = 1, for a bondary dg = 1, [w] := w 1 [w] := w 1, w, {w} := 0.5w1 0.5w, {w} := w 1, wr w 1 and w ar t orrspondng polynomal approxmatons from t lmnts 1 and. W also rall tat t followng dntty btwn t jmp and t avrag oprators s satsfd: [w 1 w ] = {w 1 }[w ] {w }[w 1 ]. (.1 For t fnt-lmnt sbdvson, w dfn t brokn Sobolv spa H s ( = { w L ( : w j H s ( j, j = 1,...,N } wt t norms w 0, = ( w 0, 1 and w s, = ( w s, 1, s > 0, wr s, dnots t Sobolv s-norm ovr t lmnt. W now rall som wll-known fats tat wll b sd n t rror analyss n 6-9. Frst, lt s stat som approxmatons proprts and nqalts for t fnt-lmnt spa.

4 4 Y. pstyn and A. Izmrlogl Lmma.1 (p Approxmaton, [4, 5] Lt and ψ H s (. Tn tr xst a postv onstant C ndpndnt of ψ, r, and, and a sqn ψ r P r(, r = 1,,..., s tat for any q [0, s] wr µ := mn(r 1, s and s t dg on. ψ ψ r C µ q q, r ψ s q s,, s 0, (. ψ ψ r C µ 1 ψ s,, s > 1 0,, (.3 r s 1 Lmma. (Tra Inqalts, [] Lt. Tn for t tra oprators γ 0 : H 1 ( H (, 1 γ 0 v = v and γ 1 : H ( H 1 (, γ 1 v = v n, tr xsts a onstant C t ndpndnt of s tat w H s (, s 1, γ 0 w 0, C t 1 ( w 0, w 0,, (.4 w H s (, s, γ 1 w 0, C t 1 ( w 0, w 0,, (.5 wr s t dg on. Lmma.3 ([36] Lt b a ms lmnt wt an dg. Tn tr s a onstant C t ndpndnt of and r s tat w 0, C t 1 r w 0,, (.6 w n 0, C t 1 r w 0,,, w P r ( (.7 Lmma.4 ([3, 7] Tr xsts a onstant C ndpndnt of and r s tat ( w W r, (, w 0, C w 0, 1 1 [w] 0,, Γ wr dnots t masr of. Lmma.5 (Invrs Inqalts, [37] Lt and w P r (. Tn tr xsts a onstant C ndpndnt of and r s tat w L ( C 1 r w 0,, (.8 w 1, C 1 r w 0,. (.9 W also rall t followng form of t dsrt Gronwall s lmma: Lmma.6 (dsrt Gronwall Lt t, H, and a n, b n, n, d n (for ntgrs n 0 b nonngatv nmbrs s tat a l t l n=0 b n t l n=0 d na n t l n=0 n H for l 0. Sppos tat td n < 1, n. Tn a l t ( ln=0 b n xp t ( l d n n=0 1 td n t ln=0 n H for l 0.

5 Analyss of a DG Mtod for t Cmotaxs Modl 5 In t analyss blow w also mak t followng assmptons: s a rtanglar doman wt t bondary = vr or, wr vr and or dnot t vrtal and orzontal ps of t bondary, rsptvly. W also splt t st of ntror dgs, Γ, nto two sts of vrtal, Γ vr, and orzontal, Γor, dgs, rsptvly; T dgr of bass polynomals s r and t maxmm damtr of t lmnts s < 1 (t lattr assmpton s only ndd for smplfaton of t rror analyss. 3 Dsrpton of t Contnos n Tm Nmral Sm for t Kllr-Sgl Modl W onsdr t Kllr-Sgl systm (1.. Frst, not tat t Jaobans of F and G ar χ 0 χ 0 χv 0 0 χ F Q = and G Q = , and tr gnvals ar λ F 1 = χ, λ F = λ F 3 = λ F 4 = 0 and λ G 1 = χv, λ G = λ G 3 = λ G 4 = 0, (3.1 rsptvly. Hn, t onvtv part of (1. s yprbol. W now dsgn smdsrt ntror pnalty Galrkn mtods for ts systm. W assm tat at any tm lvl t [0, T] t solton, (,,, v T s approxmatd by (dsontnos pws polynomals of t orrspondng dgrs r, r, r, and r v, w satsfy t followng rlaton: r max r mn a, r max := max{r, r, r, r v }, r mn := mn{r, r, r, r v }, (3. wr a s a onstant ndpndnt of r, r, r, and r v. DG mtods ar formlatd as follows. Fnd a ontnos n tm solton ( DG (, t, DG (, t, DG (, t, v DG (, t W r, W r, W r, W v r v,, w satsfs t followng wak formlaton for t motaxs systm (1.: DG t w DG w { DG n }[w ] ε { w n }[ DG ] Γ σ r [ DG ][w ] χ DG v DG (w y Γ or χ DG DG (w x Γ vr (χ DG DG n x [w ] (χ DG v DG n y [w ] = 0, (3.3

6 6 Y. pstyn and A. Izmrlogl DG t w σ r DG w vr v DG w v or DG w Γ [ DG ][w ] DG (w x DG n x w σ DG n y w v σ v DG w Γ vr DG (w v y and t ntal ondtons: DG (, 0w = DG (, 0w = { DG n }[w ] ε Γ r Γ vr Γ or r v Γ or (, 0w, (, 0w, { w n }[ DG ] DG w = 0, (3.4 ( DG n x[w ] [ DG ][w ] = 0, (3.5 ( DG v n y[w v ] [v DG ][w v ] = 0, (3.6 DG (, 0w = v DG (, 0w v = (, 0w, v(, 0w v. (3.7 Hr, (w, w, w, w v W r, W r, W r, Wv r v, ar t tst fntons, σ, σ, σ and σ v ar ral postv pnalty paramtrs. T paramtr ε s qal to tr 1, 0, or 1: ts vals of ε orrspondng to t SIPG, IIPG, or NIPG mtod, rsptvly. To approxmat t onvtv trms n (3.3 and (3.5 (3.6, w s t ntral-pwnd flxs from [30]: (χ DG DG = aot (χ DG DG 1 a n (χ DG DG aot a n ], a ot a n a ot a n[dg (χ DG v DG = bot (χ DG v DG 1 b n (χ DG v DG bot b n ], b ot b n b ot b n[dg ( DG = ( DG 1 aot a n ( DG aot a n ], a ot a n a ot a n[dg ( DG v = ( DG 1 bot b n ( DG bot b n ]. b ot b n b ot b n[vdg Hr, a ot, a n, b ot, and b n ar t on-sdd loal spds n t x- and y- drtons. Sn t onvtv part of t systm (1. s yprbol, ts spds an b stmatd sng t largst and t smallst gnvals of t Jaoban F G and (s (3.1: Q Q ( ( a ot = max (χ DG 1, (χdg, 0, a n = mn (χ DG 1, (χdg, 0, ( ( b ot = max (χv DG 1, (χvdg, 0, b n = mn (χv DG 1, (χvdg, 0 (3.9. (3.8

7 Analyss of a DG Mtod for t Cmotaxs Modl 7 Rmark. If a ot a n = 0 at a rtan lmnt dg, w st (χ DG DG = (χdg DG 1 ( DG = 1 (DG (χ DG DG ( DG, ( DG v = 1 (DG tr. Not tat n any as, t followng nqalts,, (χ DG v DG = (χdg v DG 1 ( DG, (χ DG v DG, a ot a 1, a ot an n b 1, a ot an ot b ot b 1, and b n 1, (3.10 n b ot bn ar satsfd. From now on w wll assm tat a ot a n > 0 and b ot b n > 0 trogot t omptatonal doman. 4 Rslts for t Contnos n Tm Sm Lt s rall r t rslts tat wr obtand n [18] for t ontnos n tm sm (3.3- (3.6. Lmma 4.1 (Consstny Lmma If t solton of t systm (1. blongs to H (, tn t satsfs t formlaton (3.3 (3.6. Torm 4. (L (H 1 and L (L rror stmats. Lt t solton,, and v of t Kllr-Sgl systm (1. b sffntly rglar. Frtrmor, w assm tat pnalty paramtrs σ, σ, σ, σ v ar sffntly larg. Tn tr xsts at last on DG solton to (3.3-(3.6 and tr xsts onstants C and C, ndpndnt of and r, s tat DG ( T L ([0,T];L ( (DG L ([0,T];L ( 0 r Γ [ DG ] 1 0, C ( mn(r1,s 1 r s mn(r1,s 1 r s mn(r1,s 1 r s mn(rv1,sv 1 rv sv DG ( T L ([0,T];L ( (DG L ([0,T];L ( 0 r Γ [ DG ] 1 0, C ( mn(r1,s 1 r s mn(r1,s 1 r s mn(r1,s 1 r s mn(rv1,sv 1, rv sv wr (r, r, r, r v.

8 8 Y. pstyn and A. Izmrlogl 5 Flly Dsrt Sms and Analyss In t followng stons, w formlat two xplt sms and stabls t onvrgn of t nmral soltons sng an ndton ypotss. xstn of t dsrt solton s trval sn t sm s xplt n tm. In t analyss blow, w wll assm tat t xat solton of t systm (1. s sffntly rglar for t T, wr T s a pr-blow-p tm. In partlar, w wll assm tat (,,, v H s 1 ([0, T] H s (, s 1 > 3/, s 3, (5.1 w s ndd for t -analyss (onvrgn rat wt rspt to t ms sz, or (,,, v H s 1 ([0, T] H s (, s 1 > 3/, s 5.5, (5. w s ndd for t r-analyss (onvrgn rat wt rspt to t polynomal dgr. Not tat ts assmptons ar rasonabl sn lassal soltons of t Kllr-Sgl systm (1.1 ar rglar (bfor t blow-p tm provdd t ntal data ar sffntly smoot, s [4] and rfrns trn. Lt t b a postv tm stp and lt t = t dnot t tm stp at t t stp. W dnot by v t fnton v valatd at tm t. 6 Forward lr Tm Dsrtzaton Fnd a dsrt n tm solton ( 1 DG, 1 DG, 1 DG, v1 DG W r, W r, W r, W v r v,, w satsfs t followng wak formlaton for t motaxs systm (1.: 1 DG DG t σ r 1 DG DG t σ w DG w Γ [ DG ][w ] χ DGv DG(w y w r 1 DG w [ DG ][w ] Γ or DG w Γ 1 DG (w x { DG n }[w ] ε Γ χ DG DG (w x DG w Γ vr Γ vr { w n }[ DG ] (χ DG DG n x [w ] (χ DGv DG n y [w ] = 0, (6.3 { DG n }[w ] ε Γ { w n }[ DG ] DG w = 0, (6.4 ( 1 DG n x[w ]

9 Analyss of a DG Mtod for t Cmotaxs Modl 9 vr v 1 DG wv or 1 DG n xw σ 1 DG n yw v σ v 1 DG (wv y r Γ vr Γ or r v Γ or [ 1 DG ][w ] = 0, (6.5 ( 1 DG vn y [w v ] [v 1 DG ][wv ] = 0. (6.6 To approxmat t onvtv trms n (6.3, (6.5-(6.6 w s t sam ntral-pwnd flxs (3.8 as for t ontnos n tm sm, wt t on-sdd loal spds gvn by: a ot b ot ( := max := max ( (χ DG 1, (χ DG, 0, a n := mn ( (χvdg 1, (χv DG, 0, b n := mn Not tat t nqalts smlar to (3.10, (χ DG 1, (χ DG, 0, ( (χvdg 1, (χv DG, 0. (6.7 a ot a ot a n 1, a ot a n a n 1, b ot b ot b n 1, and b ot b n b n 1, (6.8 w ar ndd n or onvrgn proof, ar satsfd for t loal spds dfnd n (6.7 as wll (for smplty, w assm tat a ot a n 0 and b ot b n 0 trogot t omptatonal doman, s Rmark n Ston 3. Also, t ntal ondtons ar: 0 DGw = 0 w, 0 DGw = 0 w, 0 DG w = 0 w, vdg 0 wv = v 0 w v. (6.9 W dnot by,, ũ, and ṽ t pws polynomal ntrpolants of t xat solton omponnts,,, and v of t Kllr-Sgl systm (1. and assm tat ts ntrpolants satsfy t approxmaton proprty (.. W tn mak t followng ndton ypotss: assm tat : 0 n, w av { S = ( DG, v DG W r, Wv r : v, n t DG ũ 0, =0 ( mn(r 1,s C r s 3 C t t, n mn(r1,s r s 3 mn(r1,s r s 3 mn(rv1,sv rv sv 3 (6.10 t v DG ṽ 0, =0

10 10 Y. pstyn and A. Izmrlogl ( mn(r 1,s C v r s 3 Cv t t, sp 0 n DG ũ 0, C mn(r1,s r s 3 r mn mn(r1,s r s 3, sp vdg ṽ 0, Cv 0 n mn(rv1,sv rv sv 3 (6.11 }, (6.1 wr C, C v,, C t, C t v, C, and C v ar postv onstants (w wll b dfnd latr ndpndnt of, t polynomal dgrs (r, r, r, r v, and n. T paramtrs s, s, s, and s v dnot t rglarty of t orrspondng omponnts of t xat solton. Clarly, t ndton ypotss abov olds tr for = 0. W nd now to sow tat assmng tat S olds tr : 0 n, t wll follow tat t wll b tr for 1 = n 1. Lt s frst sow tat from t ndton ypotss S, t follows tat fntons DG, and v DG, 1 n ar bondd. Lmma 6.1 For ( DG, v DG S, tr xst postv onstants M, and M v ndpndnt of, r, and r v, s tat sp DG, M, sp vdg, M v. ( n 0 n Proof: T rslt s drvd from t dfnton of t sbst S and t nvrs nqalty. Torm 6. (l (H 1 and l (L Forward lr rror stmats. Lt t solton,, and v of t Kllr-Sgl systm (1. b sffntly rglar. Frtrmor, w assm tat pnalty paramtrs σ, σ, σ, σ v ar sffntly larg. Tn t ndton ypotss olds tr for n1. Frtrmor, tr xsts onstants C and C, ndpndnt of and r, s tat ( DG l ([0,T];L ( N t1 (DG l ([0,T];L ( t r [ DG ] 1 0, Γ =0 r mn C ( mn(r1,s 1 r s 3 mn(r1,s 1 r s 3 mn(r1,s 1 r s 3 mn(rv1,sv 1 r sv 3 v t ( DG l ([0,T];L ( N t1 (DG l ([0,T];L ( t r [ DG ] 1 0, Γ =0 C ( mn(r1,s 1 r s 3 mn(r1,s 1 r s 3 mn(r1,s 1 r s 3 mn(rv1,sv 1 r sv 3 v t, wr (r, r, r, r v. Proof: W ntrod t followng notaton: τ := DG, ξ :=, τ := DG, ξ :=, τ := DG ũ, ξ = ũ, τv := vdg ṽ, ξv := v ṽ. (6.14

11 Analyss of a DG Mtod for t Cmotaxs Modl 11 It follows from t onsstny Lmma 4.1(s [18] for t dtals tat t xat solton of (1. satsfs t followng wak formlaton: t w w { n }[w ] ε { w n }[] σ r [][w ] χ(w x (χ n x [w ] χv(w y (χv n y [w ] = 0,(6.15 wr Γ vr (χ := aot (χv := bot (χ 1 a ot (χv 1 b ot a n (χ a n b n (χv b n and t loal spds a ot, a n, bot, and b n ar gvn by (6.7. Usng (6.14, qaton (6.15 an b rwrttn as: t (t w w { n }[w ] ε { w n }[ ] σ r [ ][w ] χ DG (w x χ τ (w x χ ξ (w x (χ n x [w ] = χ v DG(w y ξ t (t w χ τ v(w x ξ w Γ Γ or aot a ot bot b ot a n a n b n b n [], [], Γ vr χ ξ v(w x { ξ n }[w ] ε Γ Γ or (χ v n y [w ] { w n }[ξ ] σ r [ξ ][w ] χξ (w x χξ v (w y. (6.16 In ordr to obtan t stmat on t tm stp t = O( w wll prod as follows, sbtrat r 4 qaton (6.16 from (6.3 and oos w = τ, to obtan τ 1 0, τ 0, t τ 0, tσ r [τ ] = 0, τ 1 τ 0, Γ (1 ε t { τ n }[τ] t χτ DG(τ x t χ τ(τ x t Γ t Γ vr ((χ DG DG (χ n x [τ ] t t χ ξ v (τ y t Γ or χτ v DG (τ y t ((χ DG vdg (χ v n y [τ ] χ τ v (τ y χ ξ (τ x

12 1 Y. pstyn and A. Izmrlogl t ξ t (t τ t ε t Γ { τ n }[ξ ] tσ Lt s rmark tat trm τ 1 ( t (t 1 τ t τ t t r τ 1 τ τ t [ξ ][τ ] t =: T 1 T... T 18. ξ τ t Γ χξ (τ x t on t LHS of (6.17 was rwrttn as: τ 1 τ 0, τ 0, τ 1 τ 0, = t t t { ξ n }[τ ] χξ v (τ y (6.17 (6.18 Nxt, w bond a trm on t RHS of (6.17 startng from trm T sng standard DG tnqs, t trm T 1 wll b bondd last. T qantts ε n t stmats blow ar postv ral nmbrs, w wll b dfnd latr. Consdr now, sond trm on t RHS T : T 4 t Γ { τ } 0, [τ ] 0,. As bfor, w dnot by 1 and t two lmnts sarng t dg. Tn, sng t nqalty (.6, w obtan t { τ } 0, [τ ] 4 t ( 1 ( τ 0, 1 ( τ [τ ] 0, 0, 0, Γ tc tr ( τ τ [τ 0,1 0, ], 0, Γ vr Γor and n, sng t fat tat and sng Cay-Swarz nqalty, w nd p wt t followng bond on T : T ε t τ 0, R t r [τ ] 0, Γ (6.19 T trm T 3 s bondd sng Lmma 6.1 for DG and sng Cay-Swarz and Yong s nqalty: T 3 ε 3 t τ 0, R 3 t τ (6.0 T trm T 4 s bondd sng Cay-Swarz and Yong s nqalts and assmpton (3.: T 4 t K τ 0, τ 0, ε 4 t τ 0, R 4 t τ (6.1 0, T trm T 5 s bondd sng Cay-Swarz, Yong s nqalty and approxmaton rslts (.: T 5 ε 5 t τ mn(r1,s 0, R 5 t (6. r s 0,

13 Analyss of a DG Mtod for t Cmotaxs Modl 13 Nxt, w bond T 6 on t RHS of (6.17 as T 6 t ( a ot Γ vr a ot a ot a n a n a n a n a ot a ot a n ( (χ DG DG 1 ( (χ DG DG (χ 1 n x [τ ] (χ n x [τ ] [ DG ]n x [τ ] =: I II III. (6.3 Usng (6.8 and (6.14, t frst trm on t RHS of (6.3 an b stmatd by I tχ ( (χ DG DG 1 (χ 1 n x [τ ] Γ vr tχ Γ vr ( (τ DG 1 n x[τ ] ( τ 1 n x[τ ] (ξ DG 1 n x[τ ] (ξ 1 n x[τ ] =: Ĩ. W now s t Cay-Swarz nqalty, t tra nqalty (.4, t nqalty (.6, t assmpton (3., t assmpton tat < 1, r > 1, t < 1, t approxmaton nqalty (., t bond on DG from Lmma 6.1: Ĩ ε 1 t τ (K 0, 1K t r [τ ] ( K 0, 3 t τ mn(r 1,s 0, K 4 t Γ r s mn(r1,s. r s A smlar bond an b drvd for t sond trm II on t RHS of (6.3. To stmat t last trm on t RHS of (6.3, w frst s (6.14 and t dfnton of t on-sdd loal spds (6.7 to obtan III C t ( [τ ] [ξ 0, ][τ ] := ĨII. Γ vr Tn, sng t Cay-Swarz nqalty, t assmpton tat < 1 (and oosng small nog, r > 1, t < 1, t approxmaton nqalty (., and nqalty (.4, w bond ĨII as follows: ĨII Γ vr tr [τ ] 0, Combnng t abov bonds on I, II, and III, w arrv at mn(r1,s 1 t. r s T 6 ε 6 t τ R 0, 6 t r [τ ] ( R 0, 7 t τ mn(r 1,s 1 0, R 8 t Γ r s mn(r1,s r s. (6.4

14 14 Y. pstyn and A. Izmrlogl T trms T 7 - T 10 ar bondd n t sam way as t trms T 3 - T 6, rsptvly, and t bonds ar: T 7 ε 7 t τ 0, R 9 t τ (6.5 T 8 ε 8 t τ 0, R 10 t τ v 0, (6.6 T mn(rv1,sv 9 ε 9 t τ 0, R 11 t rv sv T10 ε 10 t τ R 0, 1 t r [τ ] R 0, 13 t τv 0, Γ ( mn(r 1,s R 14 t r s For t trm T 11 w obtan t followng bond: 0, (6.7 mn(rv1,sv. (6.8 rv sv T 11 ε 11 t τ 0, R 15 t mn(r1,s r s (6.9 Nxt, w bond trm T 1. Frst sng a Taylor xpanson wt ntgral rmandr w an wrt Hn, 1 = t t (t 1 t 1 t (s t tt (sds, and w an bond 1 t 1 (s t tt (sds 1 ( t 1 1 ( t 1 1 (s t ( tt (s ds t t t 4 t t(t 1 t 1 0, t t 1 t (s t t 1 Hn, sng t abov stmats w obtan t followng bond for T 1: t tt (s 0, ds, T1 ε 1 t τ t1 R 0, 16 t tt (s 0, ds. (6.30 t Nxt, w bond T 13 sng Cay-Swarz and t approxmaton nqalty (.: T 13 t τ 0, ξ 0, ε mn(r1,s 13 t τ 0, R 17 t r s (6.31 Consdr now trm T 14 : T 14 t Γ { ξ n }[τ ] t { ξ n } 0, [τ ] 0, = t 1 { ξ r n r } 0, [τ Γ 1 ] 0,

15 Analyss of a DG Mtod for t Cmotaxs Modl 15 Nxt, sng Cay-Swarz and tra nqalty (.5 w obtan: ε 14 t r [τ ] C t 0, r Γ Fnally, sng t approxmaton rslt (. w drv: ( 1 ξ 0, ξ 0, T14 ε 14 t r [τ ] R 0, 18 t mn(r1,s Γ r s (6.3 Nxt w bond trm T 15 : T15 ε t { τ n }[ξ ] Γ Now sng Lmma.3 and approxmaton rslt (.3 w obtan: ε t τ 0, C 1 r mn(r1,s 1 r s 1 Nxt, applyng Cay-Swarz nqalty w gt t fnal stmat: T 15 ε 15 t τ 0, R 19 t mn(r1,s r s 3 (6.33 Now, w bond trm T16: T 16 tσ [ξ ][τ ] r tσ [τ 1 ] 0, [ξ ] r 0, 1 Γ r Hn, w obtan t followng bond for T 16 by sng approxmaton rslt (.3: Γ T16 ε 16 t r [τ ] R 0, 0 t mn(r1,s Γ r s 3 (6.34 Trms T 17 and T 18 ar bondd rsptvly sng t approxmaton nqalty (. : T17 ε 17 t τ mn(r1,s 0, R 1 t r s (6.35 T 18 ε 18 t τ 0, R t mn(r1,s r s (6.36 T last trm tat nds to b bond s t trm T 1. To bond ts trm w agan sbtrat (6.16 from (6.3 and oos w = τ 1 τ. Usng smlar tnqs as for t stmaton of

16 16 Y. pstyn and A. Izmrlogl (6.17, xpt now s nvrs nqalty to stmat (τ 1 τ] 0,, w obtan t followng stmat: [τ 1 τ 1 τ t r 0, Ck 4 1 τ 0, Ck τ and nqalty (.6 to stmat t r 4 r Γ [τ ] 0, t r 4 C3 k τ t r 0, Ck 4 4 τ t r 0, Ck 4 5 τ v 0, t r 4 ( C6 k mn(r 1,s mn(r1,s mn(rv1,sv t 1 r s 3 C k7 r s r t3 tt (s v sv 0, ds t (6.37 Som dtals of t drvaton of t stmat (6.37 an b fond n Appndx 9. Nxt, w ombn stmats (6.19-(6.36 togtr wt (6.37, plg t n (6.17, and sng agan t assmptons < 1 and r > 1 to obtan: τ 1 0, τ t( C 0, 1 tr 4 τ 0, t(σ tr 4 C r [τ ] 0, Γ C 6 t r 4 t r 4 C 3 τ ( mn(r 1,s r s 3 Now sm (6.38 for = 0,..., n: C t r 4 0, 4 mn(r1,s r s =0 τ 0, C 5 mn(rv1,sv r sv v t r 4 τ v 0, τ n1 0, τ 0 ( C tr 4 n 0, 1 tr 4 n t τ 0, (σ C C 6 tr 4 C 3 tr 4 n =0 n =0 ( mn(r 1,s t r s 3 t τ C tr 4 0, 4 n =0 mn(r1,s r s t τ C tr 4 0, 5 mn(rv1,sv r sv v t1 C 7 t tt (s 0, ds t =0 n =0 n C 7 t Now sng ndton ypotss S for n =0 t τ 0, and n =0 t τ v 0, obtan: τ n1 ( C 0, 1 tr 4 n t τ 0, (σ tr 4 n C =0 =0 (6.38 t r [τ ] 0, Γ t τ v 0, =0 t1 t tt (s 0, ds (6.39, (6.10-(6.11, w t r [τ ] 0, Γ C 3 tr 4 n =0 t τ 0, τ 0 0,

17 Analyss of a DG Mtod for t Cmotaxs Modl 17 ( (C 4 C C 5 C v C6 tr4 mn(r1,s r s 3 mn(r1,s r s 3 n (C 4 C t C 5 C t v tr4 t C 7 t =0 mn(r1,s r s 3 t1 mn(rv1,sv rv sv 3 tt (s 0, ds (6.40 t Lt s now dfn C max := max(c 3, C 4 C C 5 C v C6, C 4 C t C 5 Cv t, wr onstant C max dpnds on t proprts of t xat soltons,, v, T and doman (t follows from t standard DG tnqs and ndton ypotss for = n. Hn, w obtan: τ n1 ( C 0, 1 tr 4 n t τ 0, (σ tr 4 n C =0 C max tr 4 ( mn(r1,s r s 3 Nxt oosng t mn C max tr 4 n =0 mn(r1,s r s 3 n tr 4 C max t C 7 t ( C maxr 4, C 1, r 4 C r 4 ( 1, C 1 tr 4, t τ 0, τ 0 0, =0 =0 mn(r1,s r s 3 t1 t r [τ ] 0, Γ mn(rv1,sv rv sv 3 tt (s 0, ds (6.41 t, sttng pnalty paramtr σ to b larg tr nog, dfnng C mn := mn σ C 4 = 1, w an b don by oosng pnalty paramtr σ larg nog, and sttng C mm := max ( R 1 1C T 7 0 C mn, tt(s 0, ds C mn = 1 C 7 T 0 tt (s 0, ds. Not tat, now, t onstant C mm s ndpndnt of t ndton ypotss. Hn, w drv: C mm n =0 t τ 0, C mm n τ n1 t( τ 0, 0, r [τ ] 0, Γ =0 ( mn(r 1,s r s 3 mn(r1,s r s 3 mn(r1,s r s 3 mn(rv1,sv rv sv 3 C mm τ 0 0, C mm t, (6.4 wr C mm dpnds only on t proprts of t xat soltons, T and doman. Now, applyng dsrt Gronwall s lmma to (6.4, w obtan t fnal stmat for τ n1 : n τ n1 t( τ 0, 0, r Γ =0 [τ ] 0, C ( mn(r 1,s r s 3 mn(r1,s r s 3 mn(r1,s r s 3 mn(rv1,sv C r t t, (6.43 v sv 3

18 18 Y. pstyn and A. Izmrlogl wr onstants C, C t dpnd only on t proprts of t xat soltons, doman, T and ndpndnt of n. W now prod n a smlar way to t drvaton of (6.43 for τ 1 = τ n1 and w obtan: n τ n1 t( τ 0, 0, =0 Γ mn(r1,s r s 3 r [τ ] 0, C ( mn(r 1,s r s 3 mn(r1,s r s 3 mn(rv1,sv C t rv sv 3 t (6.44 For t som dtals of t drvaton of t abov stmat (6.44 s Appndx 9. Nxt, w prod by provng tat t ndton ypotss S for n1 DG. On agan, by t onsstny Lmma (4.1, t xat solton satsfs t followng qaton (ompar t wt (3.5: ũ(t 1 w 1 (w x ( 1 n x [w ] 1 n x w wr σ r Γ vr vr Γ vr [ũ 1 ][w ] = ξ 1 n x w σ ( 1 := aot r Γ vr 1 1 a ot ξ 1 w a n 1 a n vr ξ 1 (w x [ξ 1 ][w ], (6.45 aot a ot a n a n [ 1 ]. Sbtratng qaton (6.45 from (6.5 and oosng w = τ 1, w obtan τ 1 0, σ = r [τ1 ] 0, Γ vr τ 1 (τ 1 x Γ vr ξ 1 (τ 1 x vr (( 1 DG ( 1 n x[τ 1 ] ξ 1 n x [τ 1 ] σ r Γ vr vr τ 1 n x [τ 1 ] ξ 1 τ 1 [ξ 1 ][τ 1 ] =: T 1... T 7, (6.46 and bond a trm on t RHS of (6.46. Lt s now bond trm by trm on t rgt-and sd of (6.46. Consdr t trm T1. Usng ntgraton by parts, w gt: τ 1 (τ 1 x = ( τ 1 (τ 1 x τ 1 τ 1 n x, wr n x dnots t x omponnt of t otward normal vtor to lmnt.

19 Analyss of a DG Mtod for t Cmotaxs Modl 19 Smmng ovr all t lmnts w av: ( (τ 1 x τ 1 = (τ 1 x τ 1 Γ vr τ 1 τ 1 n x [τ 1 τ 1 Rallng t formla for t jmp and avrag (.1 w gt: = (τ 1 x τ 1 [τ 1 ]{τ 1 }n x [τ 1 ]{τ 1 }n x Γ vr Γ vr ]n x vr τ 1 [τ 1 Hn, sng t nqalty (.6, Cay-Swarz s and Yong s nqalts, sng lmma.4 for τ 1 and applyng assmpton (3., w av t followng bond for T 1 T1 ε 1 τ 1 U 0, 1 r Γ vr [τ 1 ] U 0, ( τ 1 0, r Γ A bond for T an b obtand n a way smlar to t bond on T 8 : T ( a ot ( ( 1 a ot Γ a n DG 1 ( 1 1 n x [τ 1 ] a n a ot a n a n aot a ot a n [ 1 DG 1 ]n x [τ 1 ] ]n x [τ 1 ] 0, (6.47 ( ( 1 DG ( 1 n x [τ 1 ] := I II III. (6.48 From (6.8 and (6.14, t frst trm on t RHS of (6.48 an b stmatd by I ( (τ 1 1 n x[τ 1 ] (ξ 1 1 n x[τ 1 ] := Ĩ. Γ Usng tn t Cay-Swarz nqalty, t tra nqalty (.4, t nqalty (.6, and t assmpton (3., w stmat Ĩ as follows: Ĩ KK 1 τ 1 0, KK r [τ1 Γ ] 0, KK 3 mn(r1,s A smlar bond an b drvd for t sond trm on t RHS of (6.48. T trd trm on t RHS of (6.48 s smlar to t trd trm on t RHS of (6.3, n t an b bondd by ( KK4 III 1 [τ1 ] mn(r1,s 1 0, KK 6. By oosng small nog, w obtan: r III Γ r Γ r [τ1 ] 0, mn(r1,s 1. r s r s r s.

20 0 Y. pstyn and A. Izmrlogl Combnng t abov bonds on I, II, and III, and sng lmma.4 w arrv at T U 3 ( τ 1 0, r [τ 1 ] U 0, 4 Γ U 5 ( mn(r 1,s 1 r s r [τ1 ] 0, Γ vr mn(r1,s. (6.49 r s To bond t trm T3, w s t Cay-Swarz nqalty, Yong s nqalty, t nqalty (.6, and lmma.4 w yld T3 U 6 ( τ 1 0, r [τ 1 ] U 0, 7 Γ r [τ1 vr ] 0,. (6.50 T trm T4 s bondd wt t lp of Cay-Swarz nqalty, Yong s nqalty, and t approxmaton nqalty (.: T 4 ε τ1 0, U 8 mn(r1,s r s. (6.51 Usng smlar da as for t trm T1, w an rwrt T 5 n t form T5 = (ξ 1 x τ 1 [ξ 1 ]{τ 1 }n x [τ 1 ]{ξ 1 }n x Γ vr Γ vr ξ 1 [τ 1 ]n x := T 5. (6.5 vr W tn s Lmma.1 and Lmma.3 to obtan T 5 ε 3 τ 1 0, Ũ9 r Γ vr [τ1 ] mn(r1,s 0, U 9. (6.53 r s 3 T trm T6 s bondd sng t Cay-Swarz nqalty, t tra nqalty (.4, and t approxmaton nqalty (.: T 6 U 10 r [τ1 vr ] 0, U 11 mn(r1,s T last trm T 7 s bondd sng t approxmaton rslt (.3. Hn, T 7 U 1 r [τ1 Γ vr ] 0, U 13 r s mn(r1,s r s 3. (6.54. (6.55 Aftr obtanng t stmats (6.47 (6.55, w plg tm nto (6.46 and s t assmpton < 1, r > 1, assmpton (3., oos t pnalty paramtrs larg nog and an approprat salng to obtan

21 Analyss of a DG Mtod for t Cmotaxs Modl 1 τ 1 0, r [τ1 ] 0, Γ vr C 1 ( τ1 0, r [τ 1 ] ( mn(r 1,s 0, C Γ r s 3 mn(r1,s. (6.56 r s 3 Nxt mltply bot sds of (6.56 by t and sm for = 1,..., n to gt n =0 n = 1 n t τ 1 0, t = 1 r [τ1 ] 0, Γ vr C 3 ( t τn1 0, t r [τ n1 ] 0, Γ C 4 t( τ 0, r n [τ ] 0, Γ = 1 ( C 5 mn(r 1,s t r s 3 Nxt, sng t nvrs nqalty, nqalty (.6 w obtan: n =0 n = 1 n t τ 1 0, t = 1 r [τ1 ] 0, Γ vr C 6 ( tr4 τ n1 tr4 τ n1 0, 0, C t( τ 7 0, r [τ ] n C 0, t 8 Γ = 1 ( mn(r 1,s r s 3 mn(r1,s r s 3 mn(r1,s r s 3. (6.57. (6.58 Fnal stmat s obtand by oosng t C r 4 and by sng t stmat (6.44: C ( mn(r 1,s r s 3 n = 1 n t τ 1 0, t = 1 mn(r1,s r s 3 r [τ1 ] 0, Γ vr mn(r1,s r s 3 T stmat (6.59 provs t ndton ypotss (6.10 for = n 1: mn(rv1,sv C r t t. (6.59 v sv 3 n1 ( t τ mn(r 1,s 0, C =0 r s 3 mn(r1,s r s 3 mn(r1,s r s 3 mn(rv1,sv C r t t v sv 3

22 Y. pstyn and A. Izmrlogl Indton ypotss S, (6.1 an b sown sng smlar tnqs as n (6.10, s dtals n Appndx 9. In t sam way, w prov t ndton ypotss S for τ v and sow tat: n1 t τv n1 0, t =0 =0 r v Γ or [τ v] 0, C v ( mn(r 1,s r s 3 mn(r1,s r s 3 mn(r1,s r s 3 mn(rv1,sv C r v t t. (6.60 v sv 3 7 Rng-Ktta Sond Ordr Tm Dsrtzaton Fnd a dsrt n tm solton ( 1 DG, 1 DG, 1 DG, v1 DG W r, W r, W r, W v r v,, w satsfs t followng wak formlaton for t motaxs systm (1.: zdg, w = σ ( DG w t r zdg, w = σ [ DG ][w ] χ DG v DG (w y r z DG,w σ Γ or ( DG w t [ DG][w ] r Γ vr z DG, n xw, DG w Γ χ DG DG (w x { DG n }[w ] ε Γ Γ vr (χ DG DG n x [w ] { w n }[ DG ] (χ DG v DG n y [w ], (7.1 DG w Γ DGw ( [zdg,][w ] = { DG n }[w ] ε Γ { w n }[ DG ] DGw, (7. z DG,(w x Γ or ( z DG, n x [w ] (7.3 vr z DG,v wv σ v or 1 DG w = 1 r v Γ or z DG,n y w v, DG w 1 ( [zdg,v ][wv ] = ( zdg, w 0.5 t z DG, (wv y Γ or ( z DG, v n y[w v ] zdg, w { zdg, n }[w ] Γ (7.4

23 ε Γ Γ vr 1 DG w = 1 ε Γ Analyss of a DG Mtod for t Cmotaxs Modl 3 { w n }[z DG, ] σ r (χz DG,z DG, n x [w ] 1 DG w σ DG w 1 { w n }[z DG, ] vr v 1 DG wv σ v or r Γ vr 1 DG n xw, r v Γ or 1 DG n yw v, [z DG, ][w ] χz DG,z DG,v(w y ( zdg, w 0.5 σ r [ 1 DG ][w ] = χz DG, z DG, (w x Γ or z DG, w Γ [zdg, ][w ] ( ( [v 1 DG ][wv ] = (χzdg,z DG,v n y [w ], (7.5 zdg, w 1 DG (w x Γ vr 1 DG (wv y Γ or { z DG, n }[w ] z DG, w, (7.6 ( 1 DG n x [w ] ( 1 DG v n y[w v ] Agan, w s (3.8 to approxmat t onvtv trms n t sm abov, wt t on-sdd loal spds gvn by: ( ( a ot, := max (χ DG 1, (χ DG, 0, a n, := mn (χ DG 1, (χ DG, 0, ( ( b ot,v := max (χvdg 1, (χvdg, 0, b n,v := mn (χvdg 1, (χvdg, 0, ( ( a ot,z := max (χzdg, 1, (χz DG,, 0, a n,z := mn (χzdg, 1, (χz DG,, 0 (7.9, ( ( b ot,z v := max (χzdg,v 1, (χz DG,v, 0, b n,z v := mn (χzdg,v 1, (χz DG,v, 0, Dnot by m 1 :=, z, m := v, z v and not tat w mak t sam sttngs r as n t Rmark n ston 3. Also not tat t nqalts smlar to (3.10, a ot,m 1 a ot,m 1 a n,m 1 1, a n,m 1 a ot,m 1 a n,m 1 1, b ot,m b ot,m b n,m 1, and b n,m b ot,m b n,m 1, (7.10 w ar ndd n or onvrgn proof, ar satsfd for t loal spds dfnd n (7.9 as wll (for smplty, w assm tat a ot,m 1 a n,m 1 0 and b ot,m b n,m 0 trogot t omptatonal doman and t ntal ondtons: 0 DGw = 0 w, 0 DGw = 0 w, 0 DG w = 0 w, vdg 0 wv = v 0 w v. (7.11 (7.7 (7.8

24 4 Y. pstyn and A. Izmrlogl Now, lt s s a smlar da to [41] and dfn nw varabls z, z, z, z v : z (x, y, t = (x, y, t t (x, y, t t (7.1 z (x, y, t = (x, y, t t (x, y, t t (7.13 z (x, y, t = (x, y, t t (x, y, t t (7.14 z v (x, y, t = v(x, y, t v t (x, y, t t (7.15 Nxt, sng t rglarty of t dnsty, t onntraton, and Taylor xpanson, w obtan for and : (x, y, t t (x, y, t t (x, y, t t t(x, y, t t t = O( t3 (x, y, t t (x, y, t t (x, y, t t t(x, y, t t t = O( t3 Hn, w obtan: t (x, y, t t = (χ(x, y, t t(x, y, t t x (χ(x, y, t tv(x, y, t t y (x, y, t t = ( χ((x, y, t t (x, y, t t O( t ((x, y, t t (x, y, t t O( t x ( χ((x, y, t t (x, y, t t O( t (v(x, y, t v t (x, y, t t O( t y ((x, y, t t (x, y, t t O( t = (χz z x (χz z v y z O( t In t sam way, t an b sown tat t (x, y, t t = z z z O( t From (7.1 and t Taylor xpanson abov for, t follows tat: Smlarly, for w gt: Not tat for and v w wll av: z = ((χ x (χ v y t 1 = 1 1 z ((χz z x (χz z v y z t O( t3, (7.16 z = ( t 1 = 1 1 z ( z z z t O( t3, (7.17 z = t t = x ( x t t = ( t t x = (z x Hn, t follows tat: z v = (z y z = (z x 1 = ( 1 x, (7.18

25 Analyss of a DG Mtod for t Cmotaxs Modl 5 z v = (z y v 1 = ( 1 y, (7.19 Dnotng by rr(x, y, = O( t 3 and mltplyng t abov qaton (7.16- (7.19 by t tst fntons w, w, w and w v, ntgratng by parts, and sng onsstny of t DG sm w obtan t sm for z, 1, z, 1, z, 1 and zv, v 1 : z w = w A (,, v, w t, 1 w = 1 w 1 z w A (z, z, z v, w t z w = w A (,, w t, 1 w = 1 w 1 z w A (z, z, w t z w σ 1 w σ z v wv σ v v 1 w v σ v r Γ vr r Γ vr r v Γ or r v Γ or [z ][w ] = A (z, w, rr(x, y, w (7.0 rr(x, y, w (7.1 [ 1 ][w ] = A ( 1, w (7. [zv ][wv ] = A v (z, wv, [v 1 ][w v ] = A v ( 1, w v, (7.3 wr w dnotd by ( A (x 1, x, x 3, w := x 1 w Γ { x 1 n }[w ] ε Γ { w n }[x 1 ] σ r [x 1 ][w ] χx 1 x 3 (w y ( A (x 1, x, w := Γ or χx 1 x (w x Γ vr (χx 1 x n x [w ] (χx 1 x 3 n y [w ], (7.4 x 1 w Γ { x 1 n }[w ] ε Γ { w n }[x 1 ] σ r [x 1 ][w ] x 1 w x w, (7.5

26 6 Y. pstyn and A. Izmrlogl ( A (x 1, w := ( A v (x 1, w v := x 1 (w x Γ vr x 1 (w v y Γ vr ( x 1 n x[w ] ( x 1 v n y[w v ] vr vr x 1 n x w, (7.6 x 1 n y w v, (7.7 and Lt s agan ntrod smlar notatons to (6.14 τ := DG, ξ :=, τ := DG, ξ :=, τ := DG ũ, ξ = ũ, τv := v DG ṽ, ξv := v ṽ, τz := zdg, z, ξ z := z z, τ z := zdg, z, ξ z := z z, τz := zdg, z, ξz = z z, τz v := zdg,v z v, ξz v := zv z v. (7.8 (7.9 and sbtrat (7.0 from (7.1 and (7.5 rsptvly. W obtan t followng rror qatons: τz w = τw M(w, (7.30 τ 1 w = ( 1 τ 1 τ z w 1 N (w = τ w 1 M (w 1 N (w (7.31 wr M (w = N (w = (ξ z ξ w (A ( DG, DG, v DG, w A (,, v, w t, (7.3 (ξ 1 ξ ξ z (x, y, w (A (z DG,, z DG,, z DG,v, w A (z, z, z v, w t, (7.33 In t sam way w obtan t rror qatons for onntraton, w obtan t followng rror qatons: τz w = τw M(w, (7.34 τ 1 w = ( 1 τ 1 τ z w 1 N (w = τ w 1 M (w 1 N (w (7.35 wr M (w = N(w = (ξ z ξ w (A ( DG, DG, w A (,, w t, (7.36 (ξ 1 ξ ξz (x, y, w (A (zdg,, zdg,, w A (z, z, w t, (7.37

27 Analyss of a DG Mtod for t Cmotaxs Modl 7 T rror qatons for and v ar : τz w σ r Γ vr r Γ vr τ 1 w σ [τz ][w ] = M (w, (7.38 [τ 1 ][w ] = N (w (7.39 wr M (w = N (w = ξ z w σ r Γ vr r Γ vr ξ 1 w σ [ξz ][w ] (A (zdg,, w A (z, w, (7.40 [ξ 1 ][w ] (A ( 1 DG, w A ( 1, w (7.41 τ z v w v σ v r v Γ or r v Γ or τv 1 w v σ v [τz v ][w v ] = Mv(w v, (7.4 [τ 1 v ][w v ] = N v (wv (7.43 wr Mv (wv = N(w = ξ z v w v σ v r v Γ or r v Γ or ξv 1 w v σ v [ξz v ][w v ] (A v (zdg,, wv A v (z, wv, (7.44 [ξ 1 v ][w v ] (A v ( 1 DG, wv A v ( 1, w v (7.45 Nxt, st w = τ n t qaton of (7.30 and w = τ z n (7.31, add t two qatons and aftr asy allatons, obtan t mportant qalty tat wll b sd to drv t rror stmat for t dnsty : τ 1 0, τ τ = 1 0, τz 0, M (τ N (τ z (7.46 Smlarly, w obtan for t onntraton : τ 1 0, τ = 0, τ 1 τz 0, M (τ N(τ z (7.47 As for Forward lr Sm, lt s mak t followng ndton ypotss: { SR = ( DG, v DG W r, Wv r : v, n t DG ũ 0, =0

28 8 Y. pstyn and A. Izmrlogl ( mn(r 1,s C r r s 3 Cr t t 4, n mn(r1,s r s 3 mn(r1,s r s 3 mn(rv1,sv rv sv 3 (7.48 =0 t v DG ṽ 0, C rv ( mn(r 1,s C t rv t4, sp 0 n sp 0 n r s 3 DG ũ 0, C r DG 0, C r mn(r1,s r s 3 rmn rmn 4, sp 0 n, sp 0 n T ndton ypotss SR mpls t followng lmma. mn(r1,s r s 3 v DG ṽ 0, C rv DG 0, C r rmn rmn 4 mn(rv1,sv rv sv 3 (7.49, (7.50 }, (7.51 Lmma 7.1 For ( DG, DG, DG, v DG SR, tr xst postv onstants M, M, M,, M v, N, N, N, and N v ndpndnt of, r, r, r, and r v, s tat sp DG, M, 0 n sp zdg, N,, 0 n sp DG, M, 0 n sp zdg, N,, 0 n sp DG, M, 0 n sp zdg, N,, 0 n sp vdg, M v, 0 n (7.5 sp 0 n z DG,v, N v. (7.53 Proof: For t dtals of t proof s Appndx 9. Torm 7. (l (H 1 and l (L Rng-Ktta rror stmats. Lt t solton,, and v of t Kllr-Sgl systm (1. b sffntly rglar. Frtrmor, w assm tat pnalty paramtrs σ, σ, σ, σ v ar sffntly larg. Tn t ndton ypotss olds tr for n1. Frtrmor, tr xsts onstants C r and C r, ndpndnt of and r, s tat ( DG l ([0,T];L ( N t1 (DG l ([0,T];L ( t r [ DG ] 1 0, Γ C r ( mn(r1,s 1 r s 3 mn(r1,s 1 r s 3 mn(r1,s 1 r s 3 =0 mn(rv1,sv 1 r sv 3 v =0 t ( DG l ([0,T];L ( N t1 (DG l ([0,T];L ( t r [ DG ] 1 0, Γ C r ( mn(r1,s 1 r s 3 wr (r, r, r, r v. mn(r1,s 1 r s 3 mn(r1,s 1 r s 3 mn(rv1,sv 1 r sv 3 v t,

29 Analyss of a DG Mtod for t Cmotaxs Modl 9 T proof of t abov torm s postpond to Appndx 9. Rmark. T rror stmats obtand n ts papr ar -optmal and r-sboptmal (by 1/, and t nmral tsts rportd n [18] onfrm t tortal rror stmats. 8 Nmral xampl In ts ston, w onsdr t ntal-bondary val problm for t Kllr-Sgl systm and ompar t solton obtand by t proposd Forward lr DG mtod and by t Rng- Ktta DG mtod. W tak t motat snstvty χ = 1 and t bll-sapd ntal data (x, y, 0 = (x y, (x, y, 0 = (x y. W onsdr t abov problm n t sqar doman [ 1, 1] [ 1, 1 ]. Aordng to t rslts n [3], bot omponnts and of t solton ar xptd to blow p at t orgn n fnt tm. In Fgrs , w plot t ontors of t dnsty along t ln L = [ 1, 1] 0, omptd at dffrnt tms bfor blow-p on nform grd wt = 1/101 sng qadrat polynomal approxmaton (Fgrs 8.1 and 8. and b polynomal approxmaton (Fgrs 8.3 and 8.4. T dasd ln rprsnts t solton obtand by t Forward lr DG mtod and t sold ln rprsnts t solton obtand by t Rng-Ktta DG mtod. As on an s, t gr ordr tm sms ar mportant for s typ of problms wt rapdly angng solton n tm. 9 Appndx: Proof of Svral stmats W ollt n t Appndx dtals of t proofs of t svral stmats. 9.1 Drvaton of t stmat (6.37 To obtan t stmat (6.37, w agan sbtrat (6.16 from (6.3 and oos w = τ 1 τ. τ 1 τ = t τ 0, (τ1 τ t Γ r Γ { τ n }[τ 1 τ] ε t { (τ 1 τ n }[τ] tσ Γ t τ x t t t χ ξ (τ 1 χτ v DG (τ1 χτ DG (τ1 τ x t Γ vr τ y t χ τ (τ1 τ x ((χ DG DG (χ n x [τ 1 τ ] χ τ v (τ1 τ y t χ ξ v (τ1 [τ ][τ 1 τ ] τ y

30 30 Y. pstyn and A. Izmrlogl t Γ or ((χ DG vdg (χ v n y [τ 1 τ ] t ξ t (t (τ 1 τ t ε t Γ t t ξ (τ1 { (τ 1 χξ (τ 1 ( t (t 1 t τ t Γ (τ 1 τ τ n }[ξ ] tσ τ x t =: TT 1 TT... TT 0. { ξ n }[τ 1 τ ] r χξ v (τ 1 [ξ ][τ 1 τ ] (9.1 τ y Now lt s bond a trm on t RHS of (9.1. Usng smlar tnqs as for t stmaton of (6.17, xpt now w wll s nvrs nqalty for t stmaton of t (τ 1 τ, and nqalty (.6 to stmat [τ 1 τ ]. Hn w obtan t followng stmats: 0, TT 1 1 τ 1 1 τ 0, R1 t r 4 τ 0, (9. TT 1 τ 1 τ 1 r 4 0, R t τ 0, (9.3 TT 3 1 τ 1 τ 1 r 4 0, R3 t [τ ] 0, (9.4 TT TT 4 1 τ 1 1 TT TT τ τ 1 τ 1 TT 7 1 τ 1 1 τ 1 R 11 t r 4 0, R4 t r 4 Γ r r Γ [τ ] 0, (9.5 τ r 4 0, R5 t τ 0, (9.6 τ r 4 0, R6 t τ 0, (9.7 τ 0, R7 t r 4 mn(r1,s r s τ r 4 0, R9 t τ r 4 0, R10 t τ ( mn(r 1,s mn(r1,s TT 9 1 τ 1 1 r s r s τ r 4 0, R1 t τ 0, (9.8. (9.9 0, (9.10

31 Analyss of a DG Mtod for t Cmotaxs Modl 31 TT TT TT τ 1 R 18 t r 4 TT TT TT TT TT TT TT TT τ 1 τ 1 τ r 4 0, R13 t v τ v 0, (9.11 τ r 4 0, R14 t mn(rv1,sv (9.1 r s r sv v τ r 4 0, R16 t τ r 4 0, R17 t τ v ( mn(r 1,s mn(rv1,sv rv sv τ 1 τ 1 τ 1 τ 1 τ 1 τ 1 τ 0, R19 t mn(r1,s r s 0,. (9.13 (9.14 t 1 τ 0, R0 t 3 tt (s 0, ds. (9.15 t τ r 4 0, R1 t mn(r1,s (9.16 τ 1 τ 1 τ τ τ τ τ 0, R t r 4 0, R3 t r 4 0, R4 t r 4 0, R5 t r 4 0, R6 t r 4 r s mn(r1,s r s mn(r1,s r s 3 mn(r1,s r s 3 mn(r1,s r s mn(r1,s r s (9.17 (9.18 (9.19 (9.0 (9.1 Now, ombnng all t bonds (9.-(9.1 and sng t assmpton tat < 1, r > 1, t stmat (6.37 follows. 9. Drvaton of t stmat for t Conntraton (6.44 Frst, from t onsstny Lmma 4.1 w obtan tat t xat solton of (1. satsfyng t wak formlaton of t form of t qaton (3.4, w may b rwrttn as t (t w w { n }[w ] ε { w n }[ ] σ r [ ][w ] w w = ξ t (t w ξ w { ξ n }[w ] Γ ε Γ { w n }[ξ ] σ r [ξ ][w ] ξ w ξ w. (9.

32 3 Y. pstyn and A. Izmrlogl W tn sbtrat qaton (9. from qaton (6.4 and st w = τ to obtan τ 1 0, τ 0, t τ 0, tσ r Γ t ξ τ t ξ τ t t(1 ε Γ { τ n }[τ] t [τ ] 0, = τ 1 τ τ t τ 0, t ξ t (t τ t τ 0, ( t (t 1 t τ ξ τ t Γ { ξ n }[τ ] tε Γ { τ n }[ξ ] tσ r [ξ ][τ ] = T 1 T... T 1. (9.3 Lt s not agan tat t trm on t LHS of (9.3 s rwrttn smlar to t trm on t LHS of (6.17: τ 1 τ t τ = τ1 0, τ 0, t t τ1 τ 0, t (9.4 T trms on t RHS of (9.3 ar bondd sng t sam tnqs as n (6.17. As bfor, w start wt trm T: T ε t τ tmn(r1,s 0, C (9.5 r s T 3 ε 3 t τ 0, C 3 t mn(r1,s r s T 4 ε 4 t τ 0, C 4 t τ 0, (9.6 (9.7 T 5 = t τ 0, (9.8 T6 ε 6 t t 1 τ 0, C 6 t tt (s 0, ds. (9.9 t T 7 ε 7 t τ 0, C 7 t r Γ [τ ] 0, (9.30 T 8 ε 8 t τ 0, C 8 t mn(r1,s r s T9 ε 9 t τ 0, C 9 tmn(r1,s r s T10 ε 10 t r [τ ] mn(r1,s 0, C 10 t r Γ s T11 ε 11 t τ 0, C11 t mn(r1,s r s 3 (9.31 (9.3 (9.33 (9.34

33 Analyss of a DG Mtod for t Cmotaxs Modl 33 T1 ε 1 t r [τ ] mn(r1,s 0, C 1 t r Γ s 3 (9.35 Nxt, w nd to bond t trm T1 as t was don for t T 1. W sbtrat (9. from qaton (6.4 and st w = τ 1 τ to obtan: τ 1 τ = t ξ 0, (τ 1 τ t ξ(τ 1 τ t τ(τ 1 τ t τ(τ 1 τ t ε t Γ t ( t (t 1 tσ r { (τ 1 t ξ (τ 1 [ξ ][τ1 (τ 1 τ t τ (τ1 τ t τ ] t τ n }[τ ] tσ τ t Γ τ ] = TT 1 TT r Γ { ξ n }[τ 1 [τ ][τ1 τ ] tε Γ Usng smlar tnqs as n (9.1, w obtan t followng stmats: TT TT 1 15 TT τ 1 τ 1 TT TT τ 1 τ 1 τ 1 TT6 1 τ 1 15 TT7 1 TT τ 1 15 τ 1 TT9 1 τ 1 15 TT10 1 τ 1 15 { τ n }[τ 1 τ ] ξ t(t (τ 1 τ { (τ 1 τ n }[ξ ]... TT14. (9.36 τ 0, t KC τ 0, t KC 1 mn(r1,s r s mn(r1,s r s τ 0, t KC 3 τ 0, (9.37 (9.38 (9.39 τ 0, t KC 4 τ (9.40 0, t 1 τ 0, KC5 t 3 tt (s 0, ds. (9.41 t τ r 4 0, KC6 t τ 0, (9.4 τ r 4 0, KC7 t τ 0, (9.43 τ r 4 0, KC8 t [τ ] (9.44 0, τ 0, KC9 t r 4 τ 0, t KC Γ r r Γ 10 mn(r1,s r s [τ ] 0, (9.45 (9.46

34 34 Y. pstyn and A. Izmrlogl TT11 1 τ 1 15 TT1 1 τ 1 15 TT13 1 τ 1 15 TT14 1 τ 1 15 τ τ τ τ 0, KC11 t r 4 0, KC1 t r 4 0, KC13 t r 4 0, KC14 t r 4 mn(r1,s r s mn(r1,s r s mn(r1,s r s 3 mn(r1,s r s 3 (9.47 (9.48 (9.49 (9.50 W ombn all t bonds (9.5-(9.35 and s bonds (9.37-(9.50 to stmat τ 1 τ 0, (smlar to (6.37. Tn w plg t stmats n (9.3. Coosng t C, smmng r 4 for = 0,.., n, applyng Lmma.4 for τ, sng stmat (6.43 and applyng dsrt 0, Gronwall s lmma w obtan t fnal stmat for t τ 1 : n τ n1 0, =0 t( τ 0, r Γ mn(r1,s r s 3 [τ ] 0, C ( mn(r 1,s r s 3 mn(r1,s r s 3 mn(rv1,sv r C t v sv 3 t ( Proof of t Indton Hypotss (6.1 for n1 DG Lt s onsdr (6.46 and bond a trm on t RHS of (6.46. Consdr t trm T1. Usng nvrs nqalty, Cay-Swarz, assmpton (3. and Yong s nqalty, w obtan: T1 ε 1 τ 1 UU r 4 0, 1 τ 1 (9.5 0, A bond for T an b obtand n a smlar way to t bond on T 8 : T Γ vr ( a ot a n aot a ot a n a ot a n ( ( 1 DG 1 [ 1 DG 1 ]n x [τ 1 ] ( 1 1 n x [τ 1 ] a ot a n a n ( ( 1 DG ( 1 n x [τ 1 ] := I II III. (9.53 From (6.8 and (6.14, t frst trm on t RHS of (6.46 an b stmatd by I ( (τ 1 1 n x[τ 1 ] (ξ 1 1 n x[τ 1 ] := Ĩ. Γ Tn, sng t Cay-Swarz nqalty, t tra nqalty (.4, t nqalty (.6, and t assmpton (3., w stmat Ĩ as follows: Ĩ KU 1 τ 1 0, KU r [τ1 Γ ] 0, KU 3 mn(r1,s r s.

35 Analyss of a DG Mtod for t Cmotaxs Modl 35 A smlar bond an b drvd for t sond trm on t RHS of (6.46. T trd trm on t RHS of (6.46 s smlar to t trd trm on t RHS of (6.3, n t an b bondd by ( KU1 III 1 [τ1 ] 0, KU 3 mn(r1,s 1. r s By oosng small nog, w obtan: r III Γ r Γ r [τ1 ] 0, mn(r1,s 1. r s Combnng t abov bonds on I, II, and III, and sng lmma.4 w arrv at T UU τ 1 UU ( 0, 3 ] mn(r 1,s 1 0, UU 4 r [τ1 Γ vr r s mn(r1,s r s (9.54 To bond t trm T3, w s t Cay-Swarz nqalty, Yong s nqalty and t nqalty (.6 w yld T3 UU 5 τ 1 UU 0, 6 r [τ1 vr. ] 0,. (9.55 T trm T4 s bondd wt t lp of Cay-Swarz nqalty, Yong s nqalty, and t approxmaton nqalty (.: T 4 ε τ1 0, UU 7 Usng smlar tnqs as for (6.5 to obtan T 5 ε 3 τ 1 0, ŨU 8 r Γ vr mn(r1,s r s. (9.56 [τ1 ] mn(r1,s 0, UU 8. (9.57 r s 3 T trm T 6 s bondd sng t Cay-Swarz nqalty, t tra nqalty (.4, and t approxmaton nqalty (.: T last trm T 7 T 6 UU 9 r [τ1 vr ] 0, UU 10 mn(r1,s r s s bondd sng t approxmaton rslt (.3. Hn, T 7 UU 11 r [τ1 Γ vr ] 0, UU 1 mn(r1,s r s 3. (9.58. (9.59 Aftr obtanng t stmats (9.5 (9.59, w plg tm nto (6.46 and s t assmpton < 1, r > 1, assmpton (3., oos t pnalty paramtrs larg nog, oos an approprat salng and s t stmat (6.44 for t τ n1 to obtan τ n1 C ( mn(r 1,s 4 0, mn(r1,s 4 mn(r1,s 4 mn(rv1,sv 4 r C r s 7 r s 7 r t 4 v sv 7. t r s 7 (9.60

36 36 Y. pstyn and A. Izmrlogl T stmat (9.60 provs t ndton ypotss on DG (6.1 for n 1 by makng t approprat o of t = O( : r Proof of Lmma 7.1 τ n1 0, C r mn (9.61 Frstly, t proof of t statmnt (7.5 of Lmma 7.1 s t drt onsqn of t ndton ypotss SR, and s t sam as for t Lmma 6.1. Sondly, to prov t nxt statmnt (7.53 of Lmma 7.1, lt s frst onsdr (7.30, and st w = τz, to obtan: τz = τ τ z M (τ z, (9.6 wr M (w = ε Γ Γ vr 0, ( (ξz ξ w t { w n }[τ ] σ χτ DG(w x r τ w Γ [τ ][w ] χ τ (w x ((χ DG DG (χ n x [w ] χ ξ v(w y Γ or ξ w Γ { τ n }[w ] χ ξ (w x χτ v DG (w y ((χ DGv DG (χ v n y [w ] { ξ n }[w ] ε Γ { w n }[ξ ] χ τ v (w y σ r = T 1 T... T 19. [ξ ][w ] χξ (w x χξ v (w y (9.63 Rallng t dfntons (7.8, (7.9 of ξ and ξ z, w an tn asly obtan t followng bond, w wll b sd svral tms trogot t rror analyss: ξ 1 ξ ξ 0, z ξ 0, mn(r1,s C ξ t (9.64 wr postv onstant C dpnds on t and s ndpndnt of, and r (smlar bond s vald for t onntraton w wll b sd n t drvaton of t rror stmat for. Usng tnqs smlar to t stmaton of t trms TT 1 TT 0, (9.-(9.1 and applyng t alrady vrfd rslt (7.5, w obtan: r s

37 Analyss of a DG Mtod for t Cmotaxs Modl 37 T 1 ε 1 w 0, t R 1 mn(r1,s r s T ε w 0, R t r 8 τ 4 0, T 3 ε 3 w 0, R t r 8 3 τ 4 0, T 4 ε 4 w 0, R t r 8 4 τ 4 0, T 5 ε 5 w 0, R t r 8 5 τ 4 0, (9.65 (9.66 (9.67 (9.68 (9.69 T 6 ε 6 w 0, R t r 4 6 τ 0, (9.70 T 7 ε 7 w 0, R t r 8 7 τ 4 r 4 0, (9.71 T 8 ε 8 w 0, R t r 4 mn(r1,s 8 r s T 9 ε 9 w 0, R t r 4 9 τ R t r 8 0, 10 τ 4 r 4 0, ( mn(r 1,s R 11 t r 4 r s mn(r1,s r s (9.7. (9.73 T10 ε 10 w 0, R t r 4 1 τ 0, (9.74 T11 ε 11 w 0, R t r 8 13 τ 4 rv 4 v 0, (9.75 T1 ε 1 w 0, R t r 4 mn(rv1,sv 14 rv sv T 13 ε 13 w 0, R t r 4 15 R 17 t r 4 ( mn(r 1,s r s τ R 0, 16 t r 8 4 mn(rv1,sv r sv v r 4 v τ v 0, (9.76. (9.77 T14 ε 14 w 0, R t r 4 mn(r1,s 18 r s T 15 ε 15 w 0, R t r 4 mn(r1,s 19 r s (9.78 (9.79

38 38 Y. pstyn and A. Izmrlogl T 16 ε 16 w 0, R t r 5 mn(r1,s 19 r s T 17 ε 17 w 0, R t r 5 mn(r1,s 0 r s T18 ε 18 w 0, R 1 t r mn(r1,s r s (9.80 (9.81 (9.8 T19 ε 19 w 0, R t r mn(r1,s r s (9.83 Now ombnng t stmats (9.65-(9.83, sng t assmpton tat < 1, r > 1, t < 1, and plggng tm nto (9.63, w obtan t followng stmat for M(w : M (w ε w 0, M t r 8 1 τ M t r 8 4 0, 4 r 4 t r 5 ( mn(r 1,s M 4 r s τ M t r 8 0, 3 τ 4 rv 4 v 0, mn(r1,s r s mn(rv1,sv r sv v (9.84 Nxt, oosng w = τz n (9.84, makng ε small nog, takng t C, and sng t r 4 ndton ypotss SR (7.50 and (7.51, w onld tat w obtan from (9.6 τ z 0, As wt stmat (9.85, t an b sown tat C 4 r 8 mn τ z 0, C 4 r 8 mn (9.85 (9.86 Now, lt s onsdr t qaton of (7.38, t an b sown sng t sam tnqs as n t drvaton of (9.84 and (9.60: M (w ε τ z r 0, M1 4 τ z 0, M ( mn(r 1,s M 3 r s 3 r Γ vr [τ z ] 0, mn(r1,s r s 3 (9.87 Consdrng w = τ z, makng ε small nog, takng pnalty paramtr σ larg nog, and sng rslt (9.86, w obtan from (7.38 tat: In t sam way, t an b sown tat: τ z 0, C r 4 mn τ zv 0, C v r 4 mn (9.88 (9.89 Applyng ts stmats (9.88 and (9.89, t nvrs nqalty, and t s of Lmma.1, onlds t proof of Lmma 7.1.

39 Analyss of a DG Mtod for t Cmotaxs Modl Proof of Torm 7. Frst lt s onsdr, (7.46, w an b rwrttn n t followng way: τ 1 0, τ 0, t( τ 0, σ r Γ = τ 1 τz wr M (τ = Ñ (τ z = 0, [τ ] 0, t( τ z 0, σ z r Γ [τz ] 0, M (τ Ñ (τ z, (9.90 (ξ z ξ τ (A ( DG, DG, v DG, τ A (,, v, τ ( τ 0, σ (ξ 1 ( τ z 0, σ z r Γ ξ ξ z (x, y, τ z (A (z DG,, z DG,, z DG,v, τ z A (z, z, z v, τ z r Γ [τz ] 0, t, Lt s stmat, t trms on t RHS of (9.90, startng wt trms M and Ñ. To stmat ts trms, nstad of tnqs sd to obtan stmats n (9.84, w wll s tnqs smlar to t ons sd n stmatng t trms T T 10 and T 13 T 18 n (6.17 (nldng Lmma 6.1. Ts, w wll obtan t followng bonds for t M (τ : r Γ M (τ M 1 t τ 0, ε M t( τ 0, C M ( mn(r 1,s M 4 t r s 3 mn(r1,s r s mn(rv1,sv Smlarly, w an drv t followng stmat Ñ (τ z (applyng now Lmma 7.1: Ñ (τ z Ñ1 t τz 0, ( mn(r 1,s Ñ5 t r s 3 r sv v ε N t( τ z 0, C N mn(r1,s r s r Γ mn(rv1,sv r sv v [τ ] 0, ( [τ ] 0, M t τ 0, M 3 t τ v 0, [τz ] 0, (9.93 Ñ3 t τ z 0, Ñ4 t τ zv 0, O( t 5 (9.94 Nxt, w nd to bond t frst trm of t RHS (9.90. Frst, lt s not tat by sbtratng t qaton (7.30 from t qaton (7.31, and sttng w = τ 1 τz, w obtan tat t frst trm on t RHS of (9.84 w an b xprssd as : τ 1 τ z Hn, n ordr to stmat 0, = 1 (N (τ 1 τ z M (τ 1 τ z (9.95 τ 1 τ z 0, w nd to stmat t RHS of (9.95. It an b sown, sng das smlar to t das sd n t stmaton of t trms TT 1 TT 1 (9.-(9.13, (

40 40 Y. pstyn and A. Izmrlogl and TT 15 TT 0 (9.16-(9.1, tat t followng stmat olds: τ 1 τ z 0, C MN 1 t r 4 ( τ 0, r [τ ] 0, Γ C MN 3 C MN C MN 6 t r 4 t r 4 C MN 5 τ t r 0, CMN 4 3 t r 4 τ z 0, ( mn(r 1,s r s 3 t r 4 ( τ z 0, r Γ C MN 7 τ t r 0, CMN 4 4 [τz ] 0, τv 0, t r 4 τ t r z 0, CMN 4 τ 8 zv 0, mn(r1,s r s mn(rv1,sv r sv v O( t 5 (9.96 At ts pont, w nd to gt stmats for τ z and τ z v. Consdr qaton n (7.38. To obtan an stmat for τ z n trms of τ z, w apply smlar tnqs as n (6.46 to t trms T 1 T 7 (6.47-(6.55. Ts, w obtan t followng stmat: τ z 0, r Γ vr [τ z ] 0, Cz 1 ( τz 0, r Γ Smlarly, for τ z v w av: Cz 1 v ( τz 0, r Γ [τ z ] 0, C z ( mn(r 1,s τ z v 0, r v Γ or r s 3 [τ z v ] 0, [τ z ] 0, C z v ( mn(r 1,s r s 3 mn(r1,s r s 3 mn(rv1,sv r sv 3 v. (9.97. (9.98 Nxt, lt s plg t stmat (9.97 and (9.98 nto (9.96, and aftr smpl modfatons w obtan: τ 1 τz t MN C r 4 1 ( τ 0, 0, r [τ ] 0, Γ t MN C r 4 τ t MN C r 4 0, 3 τ t MN C r 4 0, 4 τ v 0, MN C 6 C MN 5 t r 4 ( τ z 0, r Γ [τz ] 0, t r 4 (( τ z 0, r [τ z ] t C r 4 MN τ 0, 7 z 0, Γ

41 Analyss of a DG Mtod for t Cmotaxs Modl 41 t MN C r 4 ( mn(r 1,s 3 r s 3 mn(r1,s r s 3 mn(r1,s r s 3 mn(rv1,sv r sv 3 v O( t 5 (9.99 Nxt, w ombn stmat (9.94, (9.93 and (9.99, plg tm nto (9.90 and s t assmpton tat t 1, < 1, r > 1 to obtan (aftr som smplfatons t followng: τ 1 0, τ 0, t( τ 0, σ C r 1 r Γ [τ ] 0, t( τ z 0, σ z t r 4 ( τ 0, r [τ ] t r 0, Cr 4 τ t r 0, Cr 4 3 τ 0, Γ t r 4 C4 r τ v 0, Cr 5 C r 6 t r 4 ( τ z 0, r Γ ( mn(r 1,s t r 4 C8 r t r 4 ( τ z 0, r Γ [τz ] 0, [τ z ] 0, Cr 7 t r 4 τ z 0, mn(r1,s mn(rv1,sv rv sv 3 r Γ [τz ] r s 3 mn(r1,s r s 3 r s 3 O( t 5 (9.100 Nxt, onsdr t rror qatons (7.47. Usng smlar tnqs as for t stmats n t qaton (7.46, w obtan t followng stmat for τ : τ 1 0, τ 0, t( τ 0, σ [τ ] 0, t( τ z 0, σ z Γ r C1 t r 4 ( τ 0, r [τ ] 0, C t τ 0, Γ C 3 t τ 0, C 4 t r 4 ( τ z 0, r Γ C 6 t τ t r 4 ( z 0, C mn(r 1,s 7 r s Now, oos t C, apply lmma.4 to stmat r 4 dsrt Gronwall s lmma to (9.101 to obtan: n τ n1 0, K 1 K 3 =0 t( τ 0, r Γ [τ z ] 0, C 5 t τ z mn(r1,s r s 3 τ z [τ ] 0, n n t n τ 0, K t( τz 0, r [τ z ] =0 =0 Γ n ( mn(r 1,s t mn(r1,s r s 3 =0 r s =0 0, 0, r Γ 0, [τ z ] 0, O( t 5 (9.101, sm for = 0,..., n, and apply t( τz 0, r [τ z ] 0, Γ 0,

42 4 Y. pstyn and A. Izmrlogl O( t 4 (9.10 Nxt, smmng t qaton (9.100 for = 0,...n, sng t abov stmat (9.10, onsdrng t C, oosng t pnalty paramtrs larg nog, and sng t assmpton r 4 t < 1, < 1, r > 1, w obtan: n τ n1 t( τ 0, 0, r [τ ] n t( τ 0, z 0, r [τ z ] 0, =0 Γ =0 Γ n R 1 t n τ R 0, t n τ R 0, 3 t τ v 0, =0 =0 n ( mn(r 1,s R 4 t =0 r s 3 mn(r1,s r s 3 =0 mn(r1,s r s 3 mn(rv1,sv r sv 3 v O( t 4 (9.103 Now, applyng ndton ypotss SR (7.48, (7.49 and sng dsrt Gronwall s lmma w obtan: n τ n1 t( τ 0, 0, r [τ ] n t( τ 0, z 0, r [τ z ] 0, =0 Γ =0 Γ ( mn(r 1,s C r s 3 mn(r1,s mn(r1,s mn(rv1,sv r s 3 r s 3 rv sv 3 O( t 4 (9.104 T stmat (9.104 also onfrms t ndton ypotss (7.51 for for 1 = n 1. Usng t fnal stmat for τ n1 (9.104 w drv t followng bond for τ n1 : n τ n1 0, =0 ( mn(r 1,s C t( τ 0, r Γ [τ ] n t( τ 0, z 0, r =0 Γ mn(rv1,sv [τ z ] 0, r s 3 mn(r1,s mn(r1,s r s 3 r s 3 rv sv 3 O( t 4 (9.105 Agan, t abov stmat (9.105 onfrms t ndton ypotss (7.51 for, for 1 = n. Nxt, to obtan t stmat for τ n1 w onsdr sond rror qaton n (7.39. mployng smlar tnqs as n t as of t rror qaton (6.46 and mltplyng by t, t an b sown tat : n n t τ 1 0, C 1 t C 3 n =0 = 1 t( τ 0, Γ r = 1 r [τ1 ] 0, Γ vr C ( tr4 τ n1 tr4 τ n1 0, 0, [τ ] n ( mn(r 1,s 0, C 4 t =0 r s 3 mn(r1,s r s 3. (9.106

43 Analyss of a DG Mtod for t Cmotaxs Modl 43 Fnal stmat s obtand by oosng t C r 4 and by sng t stmat for τ n1 (9.105: ( mn(r 1,s U r s 3 n = 1 n t τ 1 0, t = 1 mn(r1,s r s 3 r [τ1 ] 0, Γ vr mn(r1,s r s 3 mn(rv1,sv U rv sv 3 t t 4. (9.107 T stmat (9.107 provs t ndton ypotss (7.48 for 1 = n 1: n1 ( t τ mn(r 1,s 0, U =0 mn(r1,s r s 3 r s 3 mn(r1,s r s 3 mn(rv1,sv U rv sv 3 t t 4 Indton ypotss SR (7.50 an b sown sng smlar tnqs as n t proof of t ndton ypotss S (6.1. Smlarly, w prov t ndton ypotss SR for τ v and sow tat: ( mn(r 1,s V r s 3 n =0 t τ 1 v mn(r1,s r s 3 n 0, t =0 r v [τ1 v ] 0, Γ or mn(r1,s r s 3 mn(rv1,sv V rv sv 3 t t 4. (9.108 Aknowldgmnt: T rsar of Y.pstyn s basd pon work spportd by t Cntr for Nonlnar Analyss (CNA ndr t Natonal Sn Fondaton Grant # DMS Rfrns [1] J. Adlr, Cmotaxs n batra, Ann. Rv. Bom., 44 (1975, pp [] S. Agmon, Ltrs on llpt Bondary Val Problms, Van Nostrand, Prnton, NJ, [3] D.N. Arnold, An ntror pnalty fnt lmnt mtod wt dsontnos lmnts, SIAM J. Nmr. Anal., 19 (198, pp [4] I. Babška and M. Sr, T -p vrson of t fnt lmnt mtod wt qasnform mss, RAIRO Modél. Mat. Anal. Nmér., 1 (1987, pp [5] I. Babška and M. Sr, T optmal onvrgn rats of t p-vrson of t fnt lmnt mtod, SIAM J. Nmr. Anal., 4 (1987, pp [6] J.T. Bonnr, T lllar slm molds, Prnton Unvrsty Prss, Prnton, Nw Jrsy, nd d., 1967.

Math 656 March 10, 2011 Midterm Examination Solutions

Math 656 March 10, 2011 Midterm Examination Solutions Math 656 March 0, 0 Mdtrm Eamnaton Soltons (4pts Dr th prsson for snh (arcsnh sng th dfnton of snh w n trms of ponntals, and s t to fnd all als of snh (. Plot ths als as ponts n th compl plan. Mak sr or

More information

First looking at the scalar potential term, suppose that the displacement is given by u = φ. If one can find a scalar φ such that u = φ. u x.

First looking at the scalar potential term, suppose that the displacement is given by u = φ. If one can find a scalar φ such that u = φ. u x. 7.4 Eastodynams 7.4. Propagaton of Wavs n East Sods Whn a strss wav travs throgh a matra, t ass matra parts to dspa by. It an b shown that any vtor an b wrttn n th form φ + ra (7.4. whr φ s a saar potnta

More information

Multiple Choice Questions

Multiple Choice Questions B S. M. CHINCHOLE Multpl Co Qustons L. V. H. ARTS, SCIENCE AND COMMERCE COLLEGE, PANCHAVATI, NSAHIK - Pag B S. M. CHINCHOLE L. V. H. ARTS, SCIENCE AND COMMERCE COLLEGE, PANCHAVATI, NSAHIK - Pag B S. M.

More information

Multiple-Choice Test Runge-Kutta 4 th Order Method Ordinary Differential Equations COMPLETE SOLUTION SET

Multiple-Choice Test Runge-Kutta 4 th Order Method Ordinary Differential Equations COMPLETE SOLUTION SET Multpl-Co Tst Rung-Kutta t Ordr Mtod Ordnar Drntal Equatons COMPLETE SOLUTION SET. To solv t ordnar drntal quaton sn ( Rung-Kutta t ordr mtod ou nd to rwrt t quaton as (A sn ( (B ( sn ( (C os ( (D sn (

More information

Numerical solutions of fuzzy partial differential equations and its applications in computational mechanics. Andrzej Pownuk1

Numerical solutions of fuzzy partial differential equations and its applications in computational mechanics. Andrzej Pownuk1 mrcal soltons of fzzy partal dffrntal qatons and ts applcatons n comptatonal mcancs Abstract Andrz Pownk Car of Tortcal Mcancs Dpartmnt of Cvl Engnrng Slsan Unvrsty of Tcnology Calclaton of t solton of

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

FINITE ELEMENT ANALYSIS OF

FINITE ELEMENT ANALYSIS OF FINIT LMNT NLYSIS OF D MODL PROBLM WITH SINGL VRIBL Fnt lmnt modl dvlopmnt of lnr D modl dffrntl qton nvolvng sngl dpndnt nknown govrnng qtons F modl dvlopmnt wk form. JN Rddy Modlqn D - GOVRNING TION

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

1) They represent a continuum of energies (there is no energy quantization). where all values of p are allowed so there is a continuum of energies.

1) They represent a continuum of energies (there is no energy quantization). where all values of p are allowed so there is a continuum of energies. Unbound Stats OK, u untl now, w a dalt solly wt stats tat ar bound nsd a otntal wll. [Wll, ct for our tratnt of t fr artcl and w want to tat n nd r.] W want to now consdr wat ans f t artcl s unbound. Rbr

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

ANALYTICITY THEOREM FOR FRACTIONAL LAPLACE TRANSFORM

ANALYTICITY THEOREM FOR FRACTIONAL LAPLACE TRANSFORM Sc. Rs. hm. ommn.: (3, 0, 77-8 ISSN 77-669 ANALYTIITY THEOREM FOR FRATIONAL LAPLAE TRANSFORM P. R. DESHMUH * and A. S. GUDADHE a Prof. Ram Mgh Insttt of Tchnology & Rsarch, Badnra, AMRAVATI (M.S. INDIA

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

The Penalty Cost Functional for the Two-Dimensional Energized Wave Equation

The Penalty Cost Functional for the Two-Dimensional Energized Wave Equation Lonardo Jornal of Scncs ISSN 583-033 Iss 9, Jly-Dcmbr 006 p. 45-5 Th Pnalty Cost Fnctonal for th Two-Dmnsonal Enrgd Wav Eqaton Vctor Onoma WAZIRI, Snday Agsts REJU Mathmatcs/Comptr Scnc dpartmnt, Fdral

More information

Lecture 08 Multiple View Geometry 2. Prof. Dr. Davide Scaramuzza

Lecture 08 Multiple View Geometry 2. Prof. Dr. Davide Scaramuzza Lctr 8 Mltpl V Gomtry Prof. Dr. Dad Scaramzza sdad@f.zh.ch Cors opcs Prncpls of mag formaton Imag fltrng Fatr dtcton Mlt- gomtry 3D Rconstrcton Rcognton Mltpl V Gomtry San Marco sqar, Vnc 4,79 mags, 4,55,57

More information

A FINITE ELEMENT MODEL FOR COMPOSITE BEAMS WITH PIEZOELECTRIC LAYERS USING A SINUS MODEL

A FINITE ELEMENT MODEL FOR COMPOSITE BEAMS WITH PIEZOELECTRIC LAYERS USING A SINUS MODEL A FINIE ELEMEN MODEL FOR COMPOSIE BEAMS WIH PIEZOELECRIC LAYERS USING A SINUS MODEL S.B. Bhsht-Aval * M. Lzgy-Nazargah ** Dpartmnt of Cvl Engnrng Khajh Nasr oos Unvrsty of hnology (KNU) hran, Iran ABSRAC

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Maximum Matching Width: new characterizations and a fast algorithm for dominating set Maxmum Matcn Wdt: nw caractrzatons and a ast alortm or domnatn st 정지수 (KAIST) jont work wt Sv Hortmo Sætr and Jan Arn Tll (Unvrsty o Brn) 1st Koran Worksop on Grap Tory 2015.8.27. KAIST Grap wdt paramtrs

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

6 Finite element methods for the Euler Bernoulli beam problem

6 Finite element methods for the Euler Bernoulli beam problem 6 Fnt lmnt mtods for t Eulr Brnoull bam problm Rak-54.3 Numrcal Mtods n Structural Engnrng Contnts. Modllng prncpls and boundary valu problms n ngnrng scncs. Enrgy mtods and basc D fnt lmnt mtods - bars/rods

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

Variational Approach in FEM Part II

Variational Approach in FEM Part II COIUUM & FIIE ELEME MEHOD aratonal Approach n FEM Part II Prof. Song Jn Par Mchancal Engnrng, POSECH Fnt Elmnt Mthod vs. Ralgh-Rtz Mthod On wants to obtan an appromat solton to mnmz a fnctonal. On of th

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

The gravitational field energy density for symmetrical and asymmetrical systems

The gravitational field energy density for symmetrical and asymmetrical systems Th ravtatonal ld nry dnsty or symmtral and asymmtral systms Roald Sosnovsy Thnal Unvrsty 1941 St. Ptrsbur Russa E-mal:rosov@yandx Abstrat. Th rlatvst thory o ravtaton has th onsdrabl dults by dsrpton o

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

9.5 Complex variables

9.5 Complex variables 9.5 Cmpl varabls. Cnsdr th funtn u v f( ) whr ( ) ( ), f( ), fr ths funtn tw statmnts ar as fllws: Statmnt : f( ) satsf Cauh mann quatn at th rgn. Statmnt : f ( ) ds nt st Th rrt statmnt ar (A) nl (B)

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06 Cas Study Qustion. A 3 yar old, 5 kg patint was brougt in for surgry and was givn a /kg iv bolus injction of a muscl rlaxant. T plasma concntrations wr masurd post injction and notd in t tabl blow: Tim

More information

Math 656 Midterm Examination March 27, 2015 Prof. Victor Matveev

Math 656 Midterm Examination March 27, 2015 Prof. Victor Matveev Math 656 Mdtrm Examnatn March 7, 05 Prf. Vctr Matvv ) (4pts) Fnd all vals f n plar r artsan frm, and plt thm as pnts n th cmplx plan: (a) Snc n-th rt has xactly n vals, thr wll b xactly =6 vals, lyng n

More information

Advances in the study of intrinsic rotation with flux tube gyrokinetics

Advances in the study of intrinsic rotation with flux tube gyrokinetics Adans n th study o ntrns rotaton wth lux tub gyroknts F.I. Parra and M. arns Unrsty o Oxord Wolgang Paul Insttut, Vnna, Aprl 0 Introduton In th absn o obous momntum nput (apart rom th dg), tokamak plasmas

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

a 1and x is any real number.

a 1and x is any real number. Calcls Nots Eponnts an Logarithms Eponntial Fnction: Has th form y a, whr a 0, a an is any ral nmbr. Graph y, Graph y ln y y Th Natral Bas (Elr s nmbr): An irrational nmbr, symboliz by th lttr, appars

More information

arxiv: v1 [math.ap] 22 Jun 2017

arxiv: v1 [math.ap] 22 Jun 2017 THE QKP LIMIT OF THE QUANTUM EULER-POISSON EQUATION arxv:706.0733v [math.ap] Jun 07 HUIMIN LIU AND XUEKE PU Abstract. In ths papr, w consdr th drvaton of th Kadomtsv-Ptvashvl KP quaton for cold on-acoustc

More information

Advanced Queueing Theory. M/G/1 Queueing Systems

Advanced Queueing Theory. M/G/1 Queueing Systems Advand Quung Thory Ths slds ar rad by Dr. Yh Huang of Gorg Mason Unvrsy. Sudns rgsrd n Dr. Huang's ourss a GMU an ma a sngl mahn-radabl opy and prn a sngl opy of ah sld for hr own rfrn, so long as ah sld

More information

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2 166 ppnd Valnc Forc Flds.1 Introducton Valnc forc lds ar usd to dscrb ntra-molcular ntractons n trms of 2-body, 3-body, and 4-body (and gr) ntractons. W mplmntd many popular functonal forms n our program..2

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

Competitive Experimentation and Private Information

Competitive Experimentation and Private Information Compettve Expermentaton an Prvate Informaton Guseppe Moscarn an Francesco Squntan Omtte Analyss not Submtte for Publcaton Dervatons for te Gamma-Exponental Moel Dervaton of expecte azar rates. By Bayes

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept. AE/ME 339 Comptatonal Fld Dynamcs (CFD) Comptatonal Fld Dynamcs (AE/ME 339) Implct form of dfference eqaton In the prevos explct method, the solton at tme level n,,n, depended only on the known vales of,

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

Finite Element Method for Turbomachinery Flows

Finite Element Method for Turbomachinery Flows SOCRATES Tachng Staff Moblty Program 2000-200 DMA-URLS Fnt Elmnt Mthod for Trbomachnry Flos Alssandro Corsn Dpartmnto d Mccanca Aronatca, Unvrsty of Rom "La Sapnza" BUDAPEST Unvrsty of Tchnology and Economcs

More information

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University Statc/Dynamc Dormaton wth Fnt Elmnt Mthod Graphcs & Mda Lab Sol Natonal Unvrsty Statc/Dynamc Dormaton Statc dormaton Dynamc dormaton ndormd shap ntrnal + = nrta = trnal dormd shap statc qlbrm dynamc qlbrm

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS ACOUSTIC WAE EQUATION Contnts INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS INTRODUCTION As w try to vsualz th arth ssmcally w mak crtan physcal smplfcatons that mak t asr to mak and xplan our obsrvatons.

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

Electrochemical reaction mechanisms

Electrochemical reaction mechanisms Eltrohmal raton mhansms Exampl: oppr rduton (): Cu + + Cu + slow (): Cu + + Cu fast Coppr also undrgos a dsproportonaton raton: Cu + Cu + + Cu Its qulbrum onstant s K. 6. As th frst stp s slow ompard to

More information

7 Finite element methods for the Euler Bernoulli beam problem

7 Finite element methods for the Euler Bernoulli beam problem 7 Fnt lmnt mtods for t Eulr Brnoull bam problm CIV-E6 Engnrng Computaton and Smulaton Contnts. Modllng prncpls and boundary alu problms n ngnrng scncs. Bascs of numrcal ntgraton and dffrntaton 3. Basc

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

An Overview of Markov Random Field and Application to Texture Segmentation

An Overview of Markov Random Field and Application to Texture Segmentation An Ovrvw o Markov Random Fld and Applcaton to Txtur Sgmntaton Song-Wook Joo Octobr 003. What s MRF? MRF s an xtnson o Markov Procss MP (D squnc o r.v. s unlatral (causal: p(x t x,

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

(heat loss divided by total enthalpy flux) is of the order of 8-16 times

(heat loss divided by total enthalpy flux) is of the order of 8-16 times 16.51, Rok Prolson Prof. Manl Marnz-Sanhz r 8: Convv Ha ransfr: Ohr Effs Ovrall Ha oss and Prforman Effs of Ha oss (1) Ovrall Ha oss h loal ha loss r n ara s q = ρ ( ) ngrad ha loss s a S, and sng m =

More information

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12 EEC 686/785 Modlng & Prformanc Evaluaton of Computr Systms Lctur Dpartmnt of Elctrcal and Computr Engnrng Clvland Stat Unvrsty wnbng@.org (basd on Dr. Ra Jan s lctur nots) Outln Rvw of lctur k r Factoral

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

GPC From PeakSimple Data Acquisition

GPC From PeakSimple Data Acquisition GPC From PakSmpl Data Acquston Introducton Th follong s an outln of ho PakSmpl data acquston softar/hardar can b usd to acqur and analyz (n conjuncton th an approprat spradsht) gl prmaton chromatography

More information

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS Anuj Bshno and Sudsh K. Khanduja Dpartmnt of Mathmatcs, Panjab Unvrsty, Chandgarh-160014, Inda. E-mal: anuj.bshn@gmal.com, skhand@pu.ac.n ABSTRACT.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

Vertical Sound Waves

Vertical Sound Waves Vral Sond Wavs On an drv h formla for hs avs by onsdrn drly h vral omonn of momnm qaon hrmodynam qaon and h onny qaon from 5 and hn follon h rrbaon mhod and assmn h snsodal solons. Effvly h frs ro and

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Study of Dynamic Aperture for PETRA III Ring K. Balewski, W. Brefeld, W. Decking, Y. Li DESY

Study of Dynamic Aperture for PETRA III Ring K. Balewski, W. Brefeld, W. Decking, Y. Li DESY Stud of Dnamc Aprtur for PETRA III Rng K. Balws, W. Brfld, W. Dcng, Y. L DESY FLS6 Hamburg PETRA III Yong-Jun L t al. Ovrvw Introducton Dnamcs of dampng wgglrs hoc of machn tuns, and optmzaton of stupol

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions 9 Strss-Basd Fnt Elmnt Mthods for Dynamcs Analyss of Eulr-Brnoull Bams wth Varous Boundary Condtons Abstract In ths rsarch, two strss-basd fnt lmnt mthods ncludng th curvatur-basd fnt lmnt mthod (CFE)

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

FEFF and Related Codes

FEFF and Related Codes FEFF and Rlatd Cods Anatoly Frnl Profssor Physcs Dpartmnt, Yshva Unvrsty, w Yor, USA Synchrotron Catalyss Consortum, Broohavn atonal Laboratory, USA www.yu.du/faculty/afrnl Anatoly.Frnl@yu.du FEFF: John

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

EE750 Advanced Engineering Electromagnetics Lecture 17

EE750 Advanced Engineering Electromagnetics Lecture 17 EE75 Avan Engnrng Eltromagnt Ltur 7 D EM W onr a D ffrntal quaton of th form α α β f ut to p on Γ α α. n γ q on Γ whr Γ Γ Γ th ontour nlong th oman an n th unt outwar normal ot that th ounar onton ma a

More information

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES 13 th World Confrnc on Earthquak Engnrng Vancouvr, B.C., Canada August 1-6, 4 Papr No. 485 ORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WIT VARIABLE PROPERTIES Mngln Lou 1 and Wnan Wang Abstract:

More information

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm . Grundlgnd Vrfahrn zur Übrtragung dgtalr Sgnal (Zusammnfassung) wt Dc. 5 Transmsson of Dgtal Sourc Sgnals Sourc COD SC COD MOD MOD CC dg RF s rado transmsson mdum Snk DC SC DC CC DM dg DM RF g physcal

More information

THE PRINCIPLE OF HARMONIC COMPLEMENTARITY IN EVALUATION OF A SPECIFIC THRUST JET ENGINE

THE PRINCIPLE OF HARMONIC COMPLEMENTARITY IN EVALUATION OF A SPECIFIC THRUST JET ENGINE U.P.B. S. Bull., Srs D, Vol. 76, Iss., 04 ISSN 454-358 THE PRINCIPLE OF HARMONIC COMPLEMENTARITY IN EVALUATION OF A SPECIFIC THRUST JET ENGINE Vrgl STANCIU, Crstna PAVEL Th fundamntal da of ths papr s

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation.

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation. Cuvlna Coodnats Outln:. Otogonal cuvlna coodnat systms. Dffntal opatos n otogonal cuvlna coodnat systms. Dvatvs of t unt vctos n otogonal cuvlna coodnat systms 4. Incompssbl N-S quatons n otogonal cuvlna

More information

CHAPTER 4. The First Law of Thermodynamics for Control Volumes

CHAPTER 4. The First Law of Thermodynamics for Control Volumes CHAPTER 4 T Frst Law of Trodynacs for Control olus CONSERATION OF MASS Consrvaton of ass: Mass, lk nrgy, s a consrvd proprty, and t cannot b cratd or dstroyd durng a procss. Closd systs: T ass of t syst

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

Fourier Transform: Overview. The Fourier Transform. Why Fourier Transform? What is FT? FT of a pulse function. FT maps a function to its frequencies

Fourier Transform: Overview. The Fourier Transform. Why Fourier Transform? What is FT? FT of a pulse function. FT maps a function to its frequencies .5.3..9.7.5.3. -. -.3 -.5.8.6.4. -. -.4 -.6 -.8 -. 8. 6. 4. -. -. 4 -. 6 -. 8 -.8.6.4. -. -.4 -.6 -.8 - orr Transform: Ovrvw Th orr Transform Wh T s sfl D T, DT, D DT T proprts Lnar ltrs Wh orr Transform?

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Matched Quick Switching Variable Sampling System with Quick Switching Attribute Sampling System

Matched Quick Switching Variable Sampling System with Quick Switching Attribute Sampling System Natur and Sn 9;7( g v, t al, Samlng Systm Mathd Quk Swthng Varabl Samlng Systm wth Quk Swthng Attrbut Samlng Systm Srramahandran G.V, Palanvl.M Dartmnt of Mathmats, Dr.Mahalngam Collg of Engnrng and Thnology,

More information

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations Analyss of a M/G// uu wth aatons Systms wth Ehaustv Sv, Multpl o Sngl aatons W onsd h th fnt apaty M/G// uu wth th vaaton that th sv gos fo vaatons whn t s dl. Ths sv modl s fd to as on povdng haustv sv,

More information

1.9 Cartesian Tensors

1.9 Cartesian Tensors Scton.9.9 Crtsn nsors s th th ctor, hghr ordr) tnsor s mthmtc obct hch rprsnts mny physc phnomn nd hch xsts ndpndnty of ny coordnt systm. In ht foos, Crtsn coordnt systm s sd to dscrb tnsors..9. Crtsn

More information

Erratum: A Generalized Path Integral Control Approach to Reinforcement Learning

Erratum: A Generalized Path Integral Control Approach to Reinforcement Learning Journal of Machne Learnng Research 00-9 Submtted /0; Publshed 7/ Erratum: A Generalzed Path Integral Control Approach to Renforcement Learnng Evangelos ATheodorou Jonas Buchl Stefan Schaal Department of

More information

SER/BER in a Fading Channel

SER/BER in a Fading Channel SER/BER in a Fading Channl Major points for a fading channl: * SNR is a R.V. or R.P. * SER(BER) dpnds on th SNR conditional SER(BER). * Two prformanc masurs: outag probability and avrag SER(BER). * Ovrall,

More information