arxiv: v1 [math.ap] 22 Jun 2017

Size: px
Start display at page:

Download "arxiv: v1 [math.ap] 22 Jun 2017"

Transcription

1 THE QKP LIMIT OF THE QUANTUM EULER-POISSON EQUATION arxv: v [math.ap] Jun 07 HUIMIN LIU AND XUEKE PU Abstract. In ths papr, w consdr th drvaton of th Kadomtsv-Ptvashvl KP quaton for cold on-acoustc wav n th long wavlngth lmt of th two-dmnsonal quantum Eulr-Posson systm, undr dffrnt scalngs for varyng drctons n th Gardnr-Morkawa transform. It s shown that th typs of th KP quaton dpnd on th scald quantum paramtr H > 0. Th QKP-I s drvd for H >, QKP-II for 0 < H < and th dsprsv-lss KP dkp quaton for th crtcal cas H =. Th rgorous proof for ths lmts s gvn n th wll-prpard ntal data cas, and th norm that s chosn to clos th proof s ansotropc n th two drctons, n accordanc wth th ansotropc structur of th KP quaton as wll as th Gardnr-Morkawa transform. Th rsults can b gnralzd n svral drctons.. Introducton Th Kadomtsv-Ptvashvl KP quaton s a two-dmnsonal xtnson of th KdV quaton drvd n [], as unvrsal modls for th propagaton of wakly nonlnar dsprsv long wavs that ar ssntally on-dmnsonal wth wak transvrs ffcts, whn studyng th stablty of th soltary wavs of th KdV quaton. In addton to bng an mportant dsprsv modls, both th KdV and th KP quatons approxmatly dscrb th voluton of long wavs n many physcal sttngs, such as shallow-watr wavs wth wakly non-lnar rstorng forcs, long ntrnal wavs n a dnsty-stratfd ocan, on acoustc wavs n a plasma, acoustc wavs on a crystal lattc and nonlnar mattr-wav pulss n Bos-Enstn condnsats BEC. Th followng s th classcal form of th Kadomtsv- Ptvashvl quaton KP { ut +uu x +µu xxx +λv y = 0,.a v x = u y,.b whr u = ux,y,t, x,y R, t 0 n two-dmnsonal spac. Th constant λ masurs th transvrs dsprson ffcts and ar normalzd to ±. Whn µ > 0,. s calld th KP-I quaton for λ = and KP-II for λ = +. Whn µ < 0, a smpl transform shows that t corrsponds to KP-I whn λ = + and KP-II whn λ =. Whn µ = 0 and λ 0, th quaton. dgnrats to th dsprsv-lss KP quaton dkp whch s ntgrabl [9]. For µ = λ = 0, th quaton. dgnrats to th Burgrs quaton whch xhbts sngularts n a fnt tm. Lk th KdV quaton, th KP-I as wll as KP-II quaton. ar compltly ntgrabl by usng th nvrs scattrng transform [8]. In th KdV quaton wavs ar strctly on-dmnsonal, whl n th KP quaton ths rstrcton s rlaxd. Stll, both n th KdV and th KP quaton, wavs hav to travl n th postv x-drcton. To b physcally manngful, th wav propagaton drcton has 000 Mathmatcs Subjct Classfcaton. 3M0; 3Q3. Ky words and phrass. Quantum Eulr-Posson quaton; th KP quaton; Rductv prturbaton mthod. Ths work s supportd n part by NSFC 707.

2 HUIMIN LIU AND XUEKE PU to b not-too-far from th x-drcton,.. wth only slow varatons of solutons n th y- drcton. Bcaus of th asymmtry n th x- and y-drctons, th wavs dscrbd by th KP quaton bhav dffrntly n th drcton of propagaton x-drcton and transvrs y-drcton, and oscllatons n th y-drcton tnd to b smoothr or, to b of small dvaton n othr words. Th KP quaton can b usd to modl wavs of long wavlngth wth wakly nonlnar rstorng forcs and frquncy dsprson and can b justfd from varous physcs contxts. Thr s a lot of work concrnng th rgorous or formal justfcaton of th KP lmt. For clarfy, w lst only a fw. Frst, a rgorous comparson btwn analytc solutons of 3D watr wav problm and thos of KP but on a tm ntrval not allowng to obsrv th KP dynamc was gvn n [7]. Gallay and Schndr [0] obtand rgorously th dynamc of th KP-II quaton to that of a Boussnsq quaton. Youssf and Lanns provd [3] rgorously that a soluton of a gnral class of quaslnar hyprbolc systm but not th 3D watr wav problm can b approxmatd by two wavs movng n two oppost drctons and satsfyng a coupld or uncoupld systm of KP-II quatons at dffrnt ordrs. Morovr Lanns showd n [0] th consstncy of th KP-II approxmaton from a Boussnsq systm. Pu [8] drvd th D KP-II quaton rgorously from th dynamcs of ons n a hot plasma, whl lavs th cold plasma cas opn. Chron and Rousst [] provd rgorously th convrgnc to th Kortwg-d Vrs KdV quaton n D and to th KP-I quaton n hghr dmnsons for th nonlnar Schrödngr quaton wth nonzro lmt at nfnty by a compactnss argumnt. Thn Chron [] drvd rgorously n som sns a gkdv or gkp-i quaton nvolvng cubc nonlnarty for thr sutabl nonlnarts for nonlnar Schrödngr quaton thr a Landau-Lfshtz typ quaton. On th formal lvl, thr s much work rcntly. For xampl, th KP-I asymptotc dynamcs for th Gross-Ptavsk quaton n thr dmnson s drvd n []. Th D KP-II quaton can b drvd from dusty plasma wth varabl dust charg or on acoustc wavs, and th modfd KP quaton can b drvd n an nhomognous plasma wth fnt tmpratur drftng ons []. In ths papr, w am to justfy rgorously th quantum Kadomtsv-Ptvashvl QKP quaton. from th quantum Eulr-Posson QEP systm., whch s an mportant on acoustc wav modl. For smplcty, QKP wll rfr thr to QKP-I or to QKP- II n what follows, dpndng on th scald quantum paramtr H > 0. Such a QEP quaton cannot b catgorzd mathmatcally nto th quatons mntond abov from whch rgorous KP justfcaton was mad, du to th dffrnt structur of th QEP quaton. Ths maks th prsnt papr ntrstng. Th quantum Eulr-Posson systm coms nto playfromthclasscmodlsmanlydu tothprsncofth Bohmpotntal, whosffct s mboddwthatrmcontanngthplanck sconstant ndcatngthquantumffct. Haas t al. [3, ] usd th quantum hydrodynamcs modl QHD to study quantum on acoustc wavs n th wakly nonlnar thory and obtand a dformd Kortwg-d Vrs quaton whch nvolvs th paramtr H, proportonal to th Planck s constant. Thy obsrvd svral charactrstc faturs of pur quantum orgn for th lnar, wakly nonlnar and fully nonlnar wavs. Such an approxmaton by th KdV quaton was justfd rcntly[]. As a frst stp towards a justfcaton of th QKP quaton as an nvlop quaton, w consdr n ths papr th followng D quantum Eulr-Posson quatons wth two spcs quantum plasmas: t n + n u = 0, t u +u u = φ, φ = n n,.a.b.c

3 QUANTUM EULER-POISSON EQUATION 3 whr n, ar th lctronc and onc numbr dnsts, u = u,u th onc vlocts, φ th scalar potntal at tm t 0 and poston x = x,x R. Partcularly, th rlaton btwn of th lctrostatc potntal and th lctron dnsty satsfs φ = + n H n n..3 H n / n s th so-calld quantum Bohm potntal, H = ω p /κ B T F > 0 s th nondmnsonal quantum paramtr, s th Planck constant dvdd by π, κ B s th Boltzmann s constant, T F s th Frm tmpratur and ω p = πn 0 /m /, n 0 s th qulbrum dnsty for both lctrons and ons, s th lctron charg and m, th lctron and onc mass. u s th on flud spd normalzd to th on acoustc vlocty C s = κ B T F /m /. Th tm and spac varabls ar n unts of th on plasma prod = m /πn 0 / and th Dby radus λ D = κ B T F /πn 0 / rspctvly. W assum that th lctrons oby th quaton of stat n two-dmnson Manfrd and Haas [6] ω p p = m v F n 0 n 3, whr th lctron Frm vlocty s v F connctd to th Frm tmpratur T F by m v F / = κ B T F. Th quantum paramtr H s a masur of quantum dffracton ffcts and only modfs th dsprsv coffcnt. Physcally, H s th rato btwn th lctron plasmon nrgy and th lctron Frm nrgy. Ths modl.-.3 s th basc modl to b studd n th followng, whch wll lad to th QKP quaton. undr th Gardnr-Morkawa transform.. Th formal drvaton s gvn n Scton. Th man ntrst n ths papr s to mak such a formal drvaton rgorous, whch s prsntd n Scton 3. Th mplcaton of th justfcaton s at last twofold. It not only maks ntrstng all th rsults on QKP quaton up to dat, but also t stats that th soluton of th QEP can xst on a vry long tm ntrval [0,ε 3/ τ], whr τ s th tm scal of th rgorously QKP quaton obsrvd and ε s th scal undr Sobolv norm of th ntal data of th QEP quaton. It also stats that th approxmaton rror of th QKP quaton to th QEP s of ordr Oε. For dtals, s Thorm. and th rmarks that follow. In ths paragraph, w mak som rmarks on th xstng work that s closly rlatd to our prsnt work. Indd, n th past on or two dcads, many fforts hav bn mad to rgorously justfy varous quatons, such as th nonlnar Schrödngr quaton [6, 9], th KdV quaton[,7,,], th KP quaton[,7,0,,8,3], th Zakharov-KuzntsovZK quaton [, 8] and vry rcntly th Ostrovsky quaton []. Whthr th KP quaton provds a good approxmaton to th D quantum Eulr-Posson systm s not known. As sad abov, many sgnfcant rsults alrady xst. Frst, wthout quantum ffcts, Guo and Pu [] stablshd rgorously th KdV lmt for th on Eulr-Posson systm n D for both cold and hot plasma cass, whr th lctron dnsty satsfs th classcal Maxwll- Boltzmann law. Rcntly, Lu and Pu [] obtand rgorously th QKdV lmt for th on-dmnsonal QEP systm for th cold as wll as hot plasma, th lctron qulbrum s gvn by a Frm-Drac dstrbuton. As n th study of transvrsal stablty of undmnsonal soltons, th KP quaton arss as a bdmnsonal gnralzaton of th KdV, so that w hav rason to blv that th KP quaton provds a good approxmaton to th soluton of th D quantum Eulr-Posson problm, but thr ar dffrnt sngularts btwn x and y drctons for th Gardnr-Morkawa transform. compard to KdV lmt, whch s on of th dffcult aspcts n ths papr. Hnc, th am of ths papr s to tak a nw

4 HUIMIN LIU AND XUEKE PU stp n ths drcton and to justfy a systm of QKP quatons, lkly to furnsh a bttr approxmaton to th xact soluton of th QEP systm. On th othr hand, Pu [8] drvd rgorously th D KP-II quaton from th Eulr- Posson quaton for hot plasma and drvd th 3D ZK quaton for both th cold and hot plasma cass, n whch th hot sothrmal lctron ar dscrbd by th Boltzmann dstrbuton. Howvr, t lavs opn th rgorous drvaton of D KP-II quaton from th mportant cold plasma cas. W may nd to not that th scalngs btwn KP lmt and ZK lmt ar dffrnt and th ZK lmt scalng s sotropc and s much mor lk th KdV lmt cas. Th man rason may l n th facts that th D Eulr-Posson systm n th cold plasma cas s not Frdrch symmtrzabl and th scalng s ansotropc n th two drctons, whch lads to dffcults for obtanng unform stmats for th rmandr N,,U. In our prsnt papr, w show that th QKP quaton ndd gvs a rgorous approxmaton to th soluton of th D quantum Eulr-Posson systm for a cold plasma wth th Bohm potntal. Th ssntal dffrnc compard to [8] s that a nw trpl norm.3 s dfnd for th rmandr, whch wll lad to a closd stmats nqualty. Th rsult n ths papr gvs affrmatvly th rgorous justfcaton that lavs opn n [8]. Ths maks th prsnt papr dffrnt and mor ntrstng, whl also maks th proof n Scton 3 mor tough. Bfor w nd th Introducton, w would lk to pont out svral possbl gnralzatons, whos formal or rgorous justfcatons wll not b gvn blow. Frstly, th on momntum quaton.b dos not contan on prssur, whch gnrally dpnds on on dnsty wth th form P n = T lnn for T 0. Th prsnt papr corrsponds to th cold on cas T = 0, but th rsult n ths papr can b gnralzd to gnral cas T > 0, and ndd, th proof wll b slghtly smplr snc n ths cas, th systm s Frdrch symmtrzabl. Th rsult n ths papr can b also gnralzd to th gnral γ-law of th on prssur,.., whn P n = T n γ for γ. Scondly, wthout quantum ffcts, th rsult n ths papr gvs rgorous KP-II justfcaton from th Eulr-Posson quatons for th ons n cold plasma, whch lavs opn n [8]. Thrdly, n th Eulr-Posson systm w tak.3 as th rlaton btwn th lctrostatc potntal and th lctron dnsty. But w can also obtan smlar rsults for th cas that th hot sothrmal lctron ar dscrbd by th Boltzmann dstrbuton as n [8]. Fnally, w can gnralz th rsult to justfy th 3D ZK quaton from th 3D QEP quaton. For ths th Gardnr-Morkawa transform. should b changd nto th followng form, consstng wth th sotropc proprty of th ZK quaton x ǫ / x Vt, y ǫ / y, z ǫ / z, t ǫ 3/ t. All th gnralzatons can b mad rgorous, but for clarty w only focus on. wth.3 and no mor rmarks on ths gnralzatons wll b mad blow. Ths papr s organzd as follows. In Scton, w prsnt th formal drvaton of th QKP quaton. and stat th man rsult n Thorm.. In Scton 3, w prsnt unform stmats for th rmandrs n.0. Th man stmats ar statd n Proposton 3. and 3.. Fnally, w complt th proof n Scton.. Formal xpanson and man rsults.. Formal QKP xpanson. In ths subscton, w drv th QKP quaton from th D Eulr-Posson quatons.-.3. Consdr th followng Gardnr-Morkawa typ of transformaton n.-.3 x ǫ / x Vt, x ǫx, t ǫ 3/ t,.

5 QUANTUM EULER-POISSON EQUATION whr ε stands for th ampltud of th ntal dsturbanc and s assumd to b small compard wth unty and V s th wav spd to b dtrmnd. Thn w obtan th paramtrzd systm ε t n V x n + x n u +ε / x n u = 0,.a ε t u V x u +u x u +ε / u x u = x φ,.b ε t u V x u +u x u +ε / u x u = ε / x φ,.c ε x φ+ε x φ = n n,.d and φ = + n H ε n x n +ε x n..3 W consdr th followng formal xpanson around th qulbrum soluton n,n,u,u =,,0,0, n = +ǫn +ǫ n +ǫ 3 n 3 +ǫ n +ǫ n +ǫ 6 n 6 +, n = +ǫn +ǫ n +ǫ 3 n 3 +ǫ n +ǫ n +ǫ 6 n 6 +, u = ǫu +ǫ u +ǫ 3 u 3 +ǫ u +ǫ u +ǫ 6 u 6. +, u = ǫ 3/ u +ǫ / u +ǫ 7/ u 3 +ǫ 9/ u +ǫ / u +ǫ 3/ u 6 +. Pluggng. nto.-.3, w gt a powr srs of ǫ, whos coffcnts dpnd on n k,n k,u k,u k for k =,,.... Drvaton of th QKP quaton for n. At th ordr Oǫ, w obtan V x n + x u = 0, S 0 V x u = x n, 0 = n n..a.b.c To gt a nontrval soluton of n,n,u, w lt th dtrmnant of th coffcnt matrx of. vansh to obtan V =..6 At th ordr Oǫ 3, w obtan V xu = x n..7 At th ordr Oǫ, w obtan t n V x n + x u + x n u + x u = 0, t u V x u +u x u S = x n n x n + H 3 x n, x n = n n. From., w may assum that.8a.8b.8c n = n, u = Vn,.9 whch also mak. vald, thanks to.6. Thn from.7, w hav x u = V x n,.0 thanks to.9. Thrfor, to solv n,n,u,u, w nd only to solv n.

6 6 HUIMIN LIU AND XUEKE PU To fnd out th quaton satsfd by n, w tak x of.8c, multply.8a by V, and thn add thm to.8b. W obtan t n + 3 V + V n x n + H V 3 x n + x u = 0.. Dffrntatng ths quaton wth rspct to x, and usng.0, w obtan x t n + 3 V + V n x n + H V 3 x n + V x n = 0.. Ths s th quantum Kadomtsv-Ptvashvl-I QKP-I quaton for H >, quantum Kadomtsv-Ptvashvl-II QKP-II quaton for 0 < H < and dsprsv-lss Kadomtsv- Ptvashvl dkp quaton for th crtcal cas H =, satsfd by th frst ordr profl n. W hav th followng wll-posdnss thorm for QKP-I and QKP-II, whch was shown by usng PDE tchnqus [3] and [7], rspctvly. Thorm.. Th Cauchy problms for th QKP-II QKP-I quton. ar globally locally wll-posd n H s for s 0. Whn H =,. dgnrats to th dsprsv-lss Kadomtsv-Ptvashvl dkp quaton whch was drvd arlr than th KP quaton by Ln, Rssnr and Tsn [3] and Khokhlov and Zabolotskaya [3] n thr spatal dmnsons. Th local wll-posdnss of th Cauchy problm for dsprsv-lss KP quatondkp has bn provd n crtan Sobolv spacs n [9]. Thorm.. Th Cauchy problm for th dkp quton. s locally wll-posd for any ntal data n 0 n Hs for s >. Th systm of.9,.0 and. s a closd systm. Onc n s solvd from., w hav all th othr profls n,u,u from.9,.0. From.8a and.8c, w may assum { u = Vn +u, kp n = n +n kp,.3 whr u,n kp kp dpnd only on n. At th ordr Oǫ, w obtan t u V x u +u x u By usng.3 and rarrangng, w hav = x n +n x n H x x n.. V x u = t u +u x u + x n +n x n H. x x n +n kp.... Drvaton of th Lnarzd QKP quaton for n k k. From.3 and., w s that to dtrmn n,n,u,u, w nd only to dtrmn n.

7 QUANTUM EULER-POISSON EQUATION 7 At th ordr Oǫ 3, w obtan t n V x n 3 + x u 3 +n u +n u + x u +n u = 0,.6a t u V x u 3 + x u u +u x u = x n 3 x n n H 3 x n x x n +n 3 x n + x n x n, x n + x n +n x n + x n H x n = n 3 n 3..6b.6c W tak x of.6c, multply.6a by V, and thn add thm to.6b, w obtan th lnarzd nhomognous QKP quaton x t n + 3 V + V x n n + H V 3 x n + V x n = A kp,.7 whr w hav usd.3 and.. Hr A kp dpnds only on n nhomognous dpndnc of u and n on n n.3. At th ordr Oǫ 7, w obtan and coms from th t u V x u 3 +u x u +u x u +u x u = x n 3 + x n n H + x x n +n x x n + x n x x n + x n x n..8 Inductvly, w can drv all th profls n k for k 3. Procdng as abov, w obtan th followng lnarzd nhomognous QKP quaton for k 3 x t n k + 3 V + V x n n k + H V 3 x n k + V x n k = A k kp, whr th nhomognous trm A k kp For n k, w hav,n k,u k.9 dpnds only on n j,n j,u j for j k. Thorm.3. Th Cauchy problm for th lnarzd QKP-II QKP-I/dKP quaton.9 k s globally locally wll-posd n H s for s >... Man rsult. To show that n convrgs to a soluton of th QKP quaton. as ǫ 0, w must mak th abov procdur rgorous. Lt n,n,u b th soluton of th scald systm. of th followng xpanson n = +ǫn +ǫ n +ǫ 3 n 3 +ǫ n +ǫ n +ǫ 6 n 6 +ǫ N, n = +ǫn +ǫ n +ǫ 3 n 3 +ǫ n +ǫ n +ǫ 6 n 6 +ǫ, u = ǫu +ǫ u +ǫ 3 u 3 +ǫ u +ǫ u +ǫ 6 u 6 +ǫ U, u = ǫ 3/ u +ǫ / u +ǫ 7/ u 3 +ǫ 9/ u +ǫ / u +ǫ 3/ u 6 +ǫ U,.0 whr n,n,u,u satsfs.9,.0 and., n k,n k,u k,u k satsfs.3,. and.7 for k 6, and N,,U s th rmandr. To smplfy

8 8 HUIMIN LIU AND XUEKE PU th notaton slghtly, w st ñ = n +ǫn +ǫ n 3 +ǫ 3 n +ǫ n +ǫ n 6, ñ = n +ǫn +ǫ n 3 +ǫ 3 n +ǫ n +ǫ n 6, u = u +ǫu +ǫ u 3 +ǫ3 u +ǫ u +ǫ u 6, u = ε / u +ǫ3/ u +ǫ/ u 3 +ǫ7/ u +ǫ9/ u +ǫ/ u 6. Aftr carful computatons, w obtan th followng rmandr systm for N,,U, t N V u x N + ǫ/ ǫ ǫ u x N + n ǫ x U + ǫ/ ǫ n x U + x u N +ǫ / x u N + x ñ U +ǫ / x ñ U +ǫr = 0, t U V u x U + ǫ/ ǫ ǫ u x U + x u U +ǫ / x u U +ǫr = n ǫ x x ñ + H 3 x +ǫ x x + H A n + A n 3 + ǫr +ǫr 3 n 3 n.a,.b t U V u x U + ǫ/ ǫ ǫ u x U + x u U +ǫ / x u U +ǫ 3/ R 3 = ǫ/ n x ǫ / x ñ + ǫ/ H x x +ǫ 3 x ǫ n + ǫ/ H B n + B n 3 + ǫr 3 +ǫr 3 3 n 3 n,.c ǫ x +n x + x ñ x +ǫ x ñ x + ǫ x +ǫ x + x ñ +ǫ x ñ +R H x +ǫ x x +ǫ x n + H C n C n 3 + C 3 n + R +R 3 n = N ǫ,.d whr R, R, R, R 3, R 3 and R, R only dpnd on nk,n k,u k,u k for k 6, R 3, R3 3 and R3 ar smooth functons of, and do not nvolv any drvatvs of. For clarty, w put th concrt xprssons of A,B and C j j 3 n Appndx and gv th stmats of R j n Lmma A.. W nd to drv unform n ǫ stmats for th rmandr,n,u,u, to mak th abov drvaton rgorous. From Thorm., w may assum that th known profls ñ,ñ,ũ ar smooth nough such that thr xst som C > 0 and som s, sup ñ,ñ,ũ H s C, [0,τ ]. whr τ s th xstnc tm n Thorm./.. Th basc plan s to stmat som unform bound for,u frst and thn rcovr th stmat for N from th stmat of by th quaton.. W want to apply th Gronwall lmma to complt th proof.

9 QUANTUM EULER-POISSON EQUATION 9 To apply th Gronwall nqualty to complt th proof, w dfn th trpl norm,n,u ǫ := ǫ α+β x α x β N L + ǫ α+β α x x β U,U L 0 α+β α+β 7 0 α+β ǫ α+β α x β x L..3 W not that ths norm s ansotropc n th sns that th powrs of ε n th two spatal drctons ar dffrnt, n accordanc wth th ansotropc structur of th QKP quaton as wll as th Gardnr-Morkawa transform.. Our man rsult of ths papr s th followng Thorm.. Lt s such that. holds and n j,n j,u j H s j 6 b a soluton on th ntrval [0,τ constructd n Thorm./. and Thorm.3 for th QKP/dKP quatons wth ntal data n j 0,nj 0,uj 0 Hs. Assum th ntal data n 0,n 0,u 0 for th QEP systm.-.3 has th xpanson of th form.0 and N,,U t=0 = N 0,0,U 0 satsfy.. Thn for 0 < τ < τ, thr xsts ǫ 0 > 0 such that f 0 < ǫ < ǫ 0, th soluton of th QEP systm.-.3 wth ntal data n 0,n 0,u 0 can b xprssd as n th xpanson.0, and th solutons N,,U of. satsfy sup,u,n ǫ C+ 0,U 0,N 0 ǫ.. [0,τ] From., w s that th H -norm of th rmandr N,,U s boundd unformly n ǫ. Not also th Gardnr-Morkawa transform., w s that n /ǫ sup n /ǫ [0,ǫ 3/ τ] u /ǫ QKP/dKP Cǫ,. u /ǫ 3 for som C > 0 ndpndnt of ǫ > 0. Hr QKP/dKP s th soluton of th frst approxmaton n,n,u n.. Th followng commutat stmats wll b frquntly usd throughout. Lmma. Commutator Estmat. Lt m b an ntgr, and thn th commutator whch s dfnd by th followng can b boundd by H [ m,f]g := m fg f m g,.6 [ m,f]g L p f L p m g L p + m f L p 3 g L p,.7 whr p,p,p 3, and p = p + p = p 3 + p. Proof. Th proof can b found n [6,8], for xampl. 3. Unform nrgy stmats In ths scton, w gv th nrgy stmats unformly n ǫ for th rmandr,n,u, whch rqurs a combnaton of nrgy mthod and analyss of th rmandr quaton.. To smplfy th prsntaton, w assum that. has smooth solutons n [0,τ ǫ ] for τ ǫ > 0 dpndng on ǫ. Lt C b a constant ndpndnt of ǫ, whch wll b dtrmnd

10 0 HUIMIN LIU AND XUEKE PU latr, much largr than th bound,n,u0 ǫ of th ntal data. It s classcal that thr xsts τ ǫ > 0 such that n [0,τ ǫ ],,N,U ǫ C. 3. As a drct corollary, thr xsts som ǫ > 0 such that n and n ar boundd from abov and blow, say < n,n < 3 and u < whn ǫ < ǫ. Snc R 3,R3 3,R3 ar smooth functons of, thr xsts som constant C = C ǫ C for any α,β 0 such that α β n j R 3,R 3 3,R 3 C = C ǫ C, whr C can b chosn to b nondcrasng n ts argumnt. Th purpos of ths scton s to prov Proposton 3. and 3.. Snc th proof of Proposton 3. wll b almost th sam to that of Proposton 3., th proof of Proposton 3. wll b omttd. In Subscton 3., w frst show thr lmmas that wll b frquntly usd latr. In Subscton 3. and Subscton 3.3, w prsnt and prov th two man propostons. Hr, w only prsnt th dtals of Lmma 3., whl stmats of som smlar rsults ar postpond to Subscton 3.. For smplcty, w us nstad of L n th followng. 3.. Basc stmats. W frst prov th followng Lmmas , n whch w bound N and t n trms of. Lmma 3.. Lt N,,U b a soluton to. and α,β,k 0 b ntgr. Thr xst som constants 0 < ǫ < and C = C ǫ C such that for vry 0 < ǫ < ǫ, ǫ α+β x α x β N ǫ α+β x α x β C 0 α+β k C 0 α+β k+ 0 α+β k ǫ α+β α x β x N. 3. Proof. Whn k = 0, takng nnr product of.d wth and ntgraton by parts, w hav +ǫ n x +ǫ n x + ǫ H x +ǫ xx +ǫ x n = ǫ x n x ǫ x n x +ǫ x ñ x +ǫ x ñ x N +ǫ 6 x +ǫ x +ǫ x ñ +ǫ x ñ N +ǫ R ǫ H x x n x ǫ H x x n ǫ3 H x xx n x ǫ3 H x xx n x ǫ3 H xx xx n ǫ H + ǫ H x x n x ǫ H C n C n 3 + C 3 n + R +R 3 n x x n + N

11 QUANTUM EULER-POISSON EQUATION = : D. = 3.3 Snc < n < 3 and H s a fxd constant, thr xsts a fxd constant C such that th LHS of 3.3 s qual or gratr than C + ǫ x +ǫ x +ǫ x + ǫ 3 xx + ǫ x. Nxt, w stmat th RHS of 3.3. For D, snc n = +ǫñ +ǫ, thr xsts som constant C such that D = ǫ ǫ x ñ +ǫ x x C+ǫ L ǫ +ǫ x C+ǫ H ǫ +ǫ x Cǫ Cǫ +ǫ x C ǫ +ǫ x, whr w hav usd Höldr s nqualty, Cauchy nqualty, Sobolv mbddng H L and th pror assumpton 3.. Smlarly, w hav Not that and D 6 Cǫ +ǫ x +ǫ 3 x. x C ǫ x ñ +ǫ x, 3. n x C ǫ+ǫ x + x n +ǫ 0 x, 3. x x C ǫ+ǫ xx n + x +ǫ 0 x x. 3.6 Thus smlarly w hav D 7 3 C ǫ N +ǫ x +ǫ 3 x +ǫ 3 x +ǫ xx +ǫ x. By th xprsson of C 3 and Lmma A., w smlarly hav D C ǫ N +ǫ x +ǫ 3 x +ǫ 3 x +ǫ xx +ǫ x, thanks to th pror assumpton 3. agan. By vrtu of Young nqualty, w obtan N δ +C δ N, for arbtrary δ > 0. Hnc, thr xsts som ǫ > 0 such that for 0 < ǫ < ǫ, +ǫ x +ǫ x +ǫ x +ǫ 3 xx +ǫ x C N. 3.7 Takng nnr product of.d wth ǫ x, ǫ x, ǫ x, and ǫ x rspctvly, andapplyngthcauchynqualty,sobolvmbddngh L andthprorassumpton 3., w hav smlarly th followng nqualts ǫ x +ǫ x +ǫ 3 xx +ǫ 3 3 x +ǫ x x +ǫ x x C N +ǫ +ǫ 3 x +ǫ x, 3.8

12 HUIMIN LIU AND XUEKE PU ǫ x +ǫ x +ǫ 3 xx +ǫ x x +ǫ x x +ǫ 6 x 3 C N +ǫ +ǫ x +ǫ 3 x, 3.9 ǫ x +ǫ 3 x 3 +ǫ x x +ǫ x +ǫ x 3 x +ǫ 6 x x C N +ǫ +ǫ x +ǫ 3 x +ǫ xx +ǫ x +ǫ 7 x 3 +ǫ 6 x x, 3.0 ǫ x +ǫ x x +ǫ 6 x 3 +ǫ 6 x x +ǫ 7 x x 3 +ǫ 8 x C N +ǫ +ǫ x +ǫ 3 x +ǫ xx +ǫ 3 x +ǫ x 3 +ǫ x x. 3. Puttng togthr, w obtan ǫ α+β x α x β C N. 0 α+β 3. On th othr hand, by.d, t follows from th Höldr nqualty, Cauchy nqualty and th pror assumpton 3. that C N 0 α+β ǫ α+β α x β x. 3.3 Combnng 3. wth 3.3, w dduc th nqualty 3. for k = 0. For hghr ordr nqualts, w dffrntat.d wth x α and x β α,β = k +,k and thn tak nnr product wth ǫ α x α and ǫ β x β sparatly, and thn puttng th rsults wth 3. togthr, thus w obtan th RHS of nqualty 3.. On th othr hand, dffrntatng.d wth x α x β α +β k and thn takng nnr product wth ǫ α+β x α x β N sparatly. Th Lmma thn follows by th sam procdur of th abov. Rcall,U ǫ n.3. In fact, w only nd 0 k 3 n Lmma 3.. Lmma 3.. Lt N,,U b a soluton to. and α,β,k 0 b ntgr. Thr xst som constants C and C = C ǫ C such that ǫ ǫ ǫ α+β t x α x β N C ǫ α+β x α x β U + x α x β U 0 α+β k Proof. From.a, w hav + 0 α+β k+ 0 α+β k+ ǫ α+β α x β x +Cǫ. 3. ǫ t N =V u x N ǫ u x N n x U ǫ n x U ǫ x u +ǫ x u N ǫ x ñ U ǫǫ x ñ U ǫ R.

13 QUANTUM EULER-POISSON EQUATION 3 Snc < n < 3 and u <, takng L -norm ylds ǫ t N V u x N +ǫ u x N + n x U +ǫ n x U +ǫ x ũ N +ǫ 3 x ũ N +ǫ x ñ U +ǫ 3 x ñ U +ǫ R C x N +ǫ x N + x U +ǫ x U +Cǫ ǫ + N + U + U. Applyng Lmma 3., w hav nqualty for k = 0, ǫ ǫ t N C U + U +ǫ x U +ǫ x U + 0 α+β ǫ α+β α x β x. 3. To prov 3., w tak ǫ α+β x α x β α+β = k, k of.a rspctvly and thn sum th rsults wth 3.. Rcall,U ǫ n.3. In fact, w only nd 0 k n Lmma 3.. Lmma 3.3. Lt N,,U b a soluton to. and α,β,k 0 b ntgr. Thr xst som constants C = C ǫ C and ǫ > 0 such that for vry 0 < ǫ < ǫ, ǫ α+β t x α x β C ǫ α+β t x α x β N +C α+β k+ 0 α+β k Proof. Th proof s smlar to that of Lmma 3.. Whn k = 0, by frst takng t of.d and thn takng nnr product wth t and ntgraton by parts, w hav t +ǫ n tx +ǫ n tx + ǫ H t x n + ǫ3 H t xx n + ǫ H t x n = ǫ x n tx t +ǫ t n x t ǫ x n tx t +ǫ t n x t +ǫ t x ñ x +ǫ x ñ x t +ǫ 6 t x +ǫ x t +ǫ t x ñ +ǫ x ñ t +ǫ 3 t R t ǫ H x t x n tx ǫ H x t x n t ǫ H t x n t ǫ3 H x t xx n tx ǫ3 H x t xx n tx ǫ3 H xx t xx n t ǫ3 H ǫ H + ǫ H t x n x t ǫ H x t x n tx x t x n t ǫ H t x n t C t n C n 3 + C 3 n + ǫr +ǫr 3 t n + t N t

14 HUIMIN LIU AND XUEKE PU 0 = : E. = 3.7 Estmat of th LHS of 3.7. Snc < n < 3 and H s a fxd constant, thr xsts a fxd constant C such that th LHS of 3.7 s qual or gratr than C t + ǫ tx +ǫ tx +ǫ t x +ǫ 3 t xx +ǫ t x. Nxt, w stmat th rght hand sd trms. For E, by applyng Höldr s nqualty and Cauchy nqualty, w hav E C+ǫ 9 x L ǫ tx +ǫ t C+ǫ 9 x H ǫ tx +ǫ t Cǫ Cǫ tx +ǫ t C ǫ tx +ǫ t, whr w hav usd 3. and Sobolv mbddng H L. Smlarly, E 8 C ǫ t +ǫ tx +ǫ 3 tx +C. Estmat of E 9. By applyng Höldr s nqualty and Cauchy nqualty, w hav E 9 +ǫ 6 x L ǫ tx +ǫ 3 t x C ǫ tx +ǫ 3 t x, whr w hav usd 3.. Smlar to 3., w not that t n Cǫ t ñ +ǫ t. 3.8 Thus, smlarly by usng 3., 3., 3.6 and 3.8, w hav E 0 9 C ǫ t +ǫ tx +ǫ 3 tx +ǫ 3 t x +ǫ t xx +ǫ t x +C. Estmat of B. Applyng Young nqualty, w hav B = t N t γ t +C γ t N, whr for arbtrary small γ > 0. Hnc, w hav shown that thr xsts som ǫ > 0 such that for 0 < ǫ < ǫ, w hav t +ǫ tx +ǫ tx +ǫ t x +ǫ 3 t xx +ǫ t x C γ t N +C. 3.9 Smlarly, takng tx, tx, t x, t xx, t x of.c and thn takng nnr product wth ǫ tx,ǫ tx,ǫ t x,ǫ 3 t xx,ǫ x rspctvly, w hav ǫ tx +ǫ t x +ǫ 3 t xx +ǫ 3 t 3 x +ǫ t x x +ǫ t x x C γ t N +ǫ t +ǫ 3 tx +ǫ t x, 3.0 ǫ tx +ǫ 3 t xx +ǫ t x +ǫ t x x +ǫ t x x +ǫ 6 t 3 x C γ3 t N +ǫ t +ǫ tx +ǫ 3 t x, 3. ǫ t x +ǫ 3 t 3 x +ǫ t x x +ǫ t x +ǫ t 3 x x +ǫ 6 t x x

15 QUANTUM EULER-POISSON EQUATION C γ t N +ǫ t +ǫ tx +ǫ 3 tx +ǫ t xx +ǫ t x +ǫ 6 t x x +ǫ 7 t 3 x, 3. ǫ 3 t xx +ǫ t x x +ǫ t x x +ǫ t 3 x x +ǫ 6 t x x +ǫ 7 t x 3 x C γ t N +ǫ t +ǫ tx +ǫ 3 tx +ǫ 3 t x +ǫ t 3 x +ǫ t x +ǫ 7 t 3 x, 3.3 ǫ t x +ǫ t x x +ǫ 6 t 3 x +ǫ 7 t x x +ǫ 8 t x 3 x +ǫ 6 t x C γ6 t N +ǫ t +ǫ tx +ǫ 3 tx +ǫ 3 t x +ǫ t xx +ǫ t 3 x +ǫ t x x. 3. Puttng 3.9 to 3. togthr, lt C = maxc γ, 6, w obtan 0 α+β ǫ α+β t α x β x C t N +C. For hghr ordr nqualts, w dffrntat.c wth t α x β x for α +β = k + and thn tak nnr product wth ǫ α+β t α x β x sparatly. Thus w hav provn Zroth to thrd ordr stmats for U. Th zroth, frst, scond and thrd ordr stmats can b summarzd n th followng Proposton 3.. Lt N,,U b a soluton to. and α,β,k b ntgr for k = 0,,,3, w hav d ǫ α+β x α dt x β U + x α x β U α+β=k + d n ǫ α+β x α dt n x β + d dt α+β=k + H d ǫ α+β x α dt x β + H 6 n α+β=k+ n + H n d dt n n n n α+β=k+ α+β=k+3 ǫ α+β α x β x ǫ α+β α x β x C+ǫ,U 6 ǫ +,U ǫ. 3. Th proof of ths proposton wll b omttd for smplcty, whch can b provd by rpatng th proof of Proposton 3. blow. Indd, th proof hr s slghtly asr than that of Proposton 3., snc th norm alrady conssts of hghr ordr norms such as Ḣ7 of and hnc th nonlnar trms can b controlld by Sobolv mbddngs and othr tchnqus. But not that 3. s not closd, thrfor w nd th hghr ordr stmats n Proposton 3., from whch w obtan a closd nqualty. by addng 3. to Fourth ordr stmats for U.

16 6 HUIMIN LIU AND XUEKE PU Proposton 3.. Lt N,,U b a soluton to., thn d ǫ α+β x α dt x β U + x α x β U α+β= + d n ǫ α+β x α dt n x β + d n + H ǫ α+β x α dt n n n x β α+β= α+β= + H d ǫ α+β x α dt n x β + H d 6 dt n n ǫ α+β x α x β α+β=6 C+ǫ,U 6 ǫ+,u ǫ. α+β=7 3.6 Proof. Th proof conssts of th rsults of th followng Lmmas whch ar all about th stmats of th fourth ordr drvatvs for U. In ths subscton, w only prov Lmma 3. and lav th othrs to th nxt subscton. Lmma 3.. Lt N,,U b a soluton to.. Thn ǫ d dt x U + x U + ǫ d n x dt n + ǫ d n + H x dt n n n +ǫ x x + ǫ6 H 6 n x +3ǫ x x +ǫ x x n 7 x +3ǫ 6 x x +3ǫ x x +ǫ 3 x 3 x + ǫ7 H 6 C +ǫ,u 6 ǫ +,U ǫ. 3.7 Proof of Lmma 3.. Th proof of Lmma 3. s dvdd nto thr stps. For smplcty, th stmats of som crucal trms whch appar n stp ar postpond to stp and stp 3. Stp. W tak x of.b and.c rspctvly, thn tak nnr product of ǫ x U, ǫ x U and sum th rsults. By ntgraton by parts and usng commutator notaton.6, w obtan ǫ d dt x U + x U ǫ = 3 n x ǫ H x 7 +ǫ x x n x U +ǫ / 3 x x U +ǫ 3 x V u x U ǫ / x u x U U x ǫ 3 [ x,n ] x x U +ǫ 3 x V u x U ǫ / x u x U x U ǫ 3 ǫ / x n x x 3 x U +ǫ 3 ǫ / x n x x U + ǫ H [ x, ] x 3 n +ǫ x x x U + ǫ ǫ / H [ x, ] x n x +ǫ x 3 x U ǫ 3 ǫ / [ x,n ] x x U + ǫ ǫ / H x 7 n x +ǫ x x 3 x U

17 ǫ ǫ / H ǫ QUANTUM EULER-POISSON EQUATION 7 x n 6 x x +ǫ x 3 x 3 x U x x u U +ǫ / x u U x U ǫ ǫ x R x U +ǫ ǫ / x R 3 x U ǫ ǫ ǫ / + ǫ ǫ / H 8 = : F. = x x ñ x U + ǫ H x B n + B n 3 x A n + R 3 +ǫr 3 3 n 3 x x u U +ǫ / x u U x U x x ñ x U x U + A n 3 + ǫr +R 3 n 3 x U 3.8 Estmat of th RHS of 3.8. Frst, w stmat th scond trm on th RHS of 3.8. Usng commutator notaton.6 to rwrt t as F =ǫ 3 [ x,v u ] x U x U ǫ 3 ǫ / [ x,u ] x U x U +ǫ 3 V u x U x U ǫ 3 ǫ / u x x U x U = : F. = W frst stmat F. By commutator stmat of Lmma., w hav [ x,v u ] x U x V u L x U + x V u x U L. Ths ylds that F ǫ 3 [ x,v u ] x U x U C+ǫ 7 x U L ǫ x U +ǫ x U L C+ǫ 7 x U H ǫ x U +ǫ x U H C+ǫ,U ǫ,u ǫ, whr,u ǫ s gvn n.3. Smlarly, w obtan F C+ǫ 8 x U L +ǫ x U +ǫ x 3 x U C+ǫ,U ǫ,u ǫ. Nxt, w stmat F 3. By ntgraton by parts, F 3 = ǫ3 x V u x U 3.9 C+ǫ 7 x U L ǫ x U C+ǫ,U ǫ,u ǫ, whr th Sobolv mbddng thorm H L s usd. Smlarly, w hav F C+ǫ,U ǫ,u ǫ.

18 8 HUIMIN LIU AND XUEKE PU Thus w hav F C+ǫ,U ǫ,u ǫ. Smlarly, w hav F 3 6 C+ǫ,U ǫ,u ǫ. By applyng 3., 3.6 and Lmma A., w also obtan F 7 8 C+ǫ,U 6 ǫ,u ǫ. Estmat of th F. W tak x 3 of.a and applyng commutator notaton, w obtan x U +ǫ / x 3 x U = ǫ t x 3 n N + x 3 V u x N ǫ / x 3 u x N [ x 3,n ] x U ǫ / [ x 3,n ] x U ǫ x 3 x u N +ǫ / x u N ǫ x 3 x ñ U +ǫ / x ñ U ǫ x 3 R 3.30 = : 8 G. = Usng 3.30, w hav F = ǫ 3 n x ǫ H = ǫ 3 n x ǫ H = : 8 I. = x 7 +ǫ x x x n U +ǫ / 3 x x U 8 7 x +ǫ x x n = G 3.3 W frst stmat th trms I for 8 and lav I for 3 n th nxt two stps. For I, w hav I = ǫ 3 n x ǫ H x 7 +ǫ x x [ x 3 n,n ] x U C +ǫ 7 x U L + x n L +ǫ x +ǫ 7 7 x x +ǫ 9 x x +ǫ 3 3 x N C +ǫ,u ǫ + N,U ǫ, thanks to th Sobolv mbddng thorm and commutator stmats n Lmma.. Smlarly, w hav I 8 C +ǫ,u ǫ +,U ǫ. Stp. Estmat of I +I 3. Th I of 3.3 can b dvdd nto I = ǫ 3 n x n ǫh 7 x +ǫ x x n n 3 x V u x N = ǫ 3 n V u x n ǫh V u x 7 n n +ǫ x x x N

19 ǫ 3 n x n ǫh = : I +I. Th stmat of I s gvn by QUANTUM EULER-POISSON EQUATION 9 x 7 +ǫ x x [ x 3 n n,v u ] x N I C +ǫ,u ǫ,u ǫ. Nxt w stmat I. For ths w rcall from.d that x N = x ǫ x n x ǫ x n x + ǫ H = : + ǫ H x x n ǫ x x ñ x +ǫ x ñ x x x n + ǫ 3 H x x x n ǫ x ǫ x +ǫ x ǫ x x ñ +ǫ x ñ ǫ x R ǫ H C x = Thus w hav H. n C n 3 + C 3 n + ǫr +ǫr 3 n I = ǫ 3 n V u x n ǫh V u x 7 n n +ǫ x x =: I. = By ntgraton by parts and commutator notaton, w hav I = ǫ3 n V u x n x + ǫ H V u x 8 n n x + ǫ H V u x 8 n n x x ǫ H V u x 6 n n x x ǫ H V u x n n x x x = : = I. By computaton, w hav n V u x C ǫ+ǫ x + xn + xu, yldng th stmats n I C +ǫ 7 x L + x U L + x N L ǫ x C +ǫ,u ǫ N,U ǫ. Th othr trms n I can b boundd smlarly by I C +ǫ,u ǫ,u ǫ, = H

20 0 HUIMIN LIU AND XUEKE PU whch ylds n I C +ǫ,u ǫ,u ǫ. By ntgraton by parts and commutator notaton agan, w hav I = ǫ n V u x x + ǫ H V u x 6 n 8 n x + ǫ6 H V u x 8 n x x ǫ6 H V u x 6 n n x x n +ǫ V u x ǫh V u x 7 n +ǫ x x [ x,n ] x ǫ6 H x V u n x x 6 x. Smlar to I, usng commutator stmat, w hav Smlarly, w hav I C +ǫ,u ǫ,u ǫ. I 3 C +ǫ,u ǫ,u ǫ. By ntgraton by parts and commutator notaton, w hav I = ǫ H V u x 6 8 n x ǫ 6 H V u x 7 6 n n x + ǫ 7 H V u x 6 6 n x x + ǫ H V u x n n x x 7 + ǫ7 H V u x 6 n x x x 7 ǫ7 H V u x 6 n 6 n x x x 7 n ǫ H n V u x ǫh V u x 7 n n +ǫ x x [ x, ] x n. n Smlar to I, usng commutator stmat, w hav Smlarly, w hav Thus w hav Smlarly, w hav I C +ǫ,u ǫ,u ǫ. I C +ǫ,u ǫ,u ǫ. I C +ǫ,u ǫ,u ǫ. I 3 C +ǫ,u ǫ,u ǫ.

21 QUANTUM EULER-POISSON EQUATION Stp 3. Estmat of I. Takng x 3 wth.d, w hav t x 3 N = t x 3 ǫ t x 3 n x ǫ t x 3 n x + ǫ H t x 3 x + ǫ3 H n t x 3 x x + ǫ H n t x 3 x n ǫ t x 3 x ñ x +ǫ x ñ x ǫ t x 3 ǫ x +ǫ x ǫ t x 3 x ñ +ǫ x ñ ǫ t x 3 R ǫ H t x 3 C n C n 3 + C 3 n + ǫr +ǫr 3 n = : K. = From 3.3, w hav I =ǫ n x n ǫh For convnnc, w dnot I =ǫ n x n ǫh By ntgraton by parts, w hav d dt I = ǫ ǫ x 7 +ǫ x x K =: n n = x 7 +ǫ x x t x 3 n n =: n n x + ǫ x n n x t 3 x. t n n x = I I. By Lmma 3. and 3.3, th scond trm and th thrd trm can b boundd rspctvly by ǫ t n x n C +ǫ 7 ǫ t L + ǫ tn L ǫ x C +ǫ 7 ǫ t H + ǫ tn H ǫ x C +ǫ,u ǫ N,U ǫ, = and ǫ x n x n t x 3 C +ǫ 7 x L + x N L ǫ x +ǫ 6 t x 3 C +ǫ,u ǫ,u ǫ. Thus, w hav I ǫ d n x dt n +C +ǫ,u ǫ,u ǫ. 3.33

22 HUIMIN LIU AND XUEKE PU Smlarly, th othr two trms n I can b boundd by I = ǫ H d x dt n n + ǫ H t n n x ǫ H x n n x t x ǫ H x n n x t x 3 ǫ H d x dt n n +C +ǫ,u ǫ,u ǫ, and I 3 ǫ 6 H d dt 3.3 n n x x +C +ǫ,u ǫ,u ǫ. 3.3 rspctvly, thanks to Lmma 3. and 3.3. By 3.33, 3.3, 3.3, w hav I ǫ d n ǫ H d dt n x dt n n x +ǫ x x +C +ǫ,u ǫ,u ǫ. For convnnc, w rwrt I = ǫ n x n ǫh x 7 +ǫ x x t x 3 n n n x 3 = : I. = By ntgraton by parts, w hav I = ǫ d dt n n x ǫ t n n x ǫ n x n [ 3 x, t n ] x +[ x 3,n ] t x 3 =: I. = Applyng thanks to Lmma 3. and 3.3, w hav I C +ǫ,u ǫ,u ǫ, 3.36 and I 3 Cǫ x [ 3 x, t n ] x + [ 3 x,n ] t x Cǫ x t x n L x + x L t 3 x n + x n L t x + t x L 3 x n C +ǫ,u ǫ,u ǫ, thanks to th commutator stmats. Thus w hav I ǫ d dt n n x +C +ǫ,u ǫ,u ǫ.

23 QUANTUM EULER-POISSON EQUATION 3 By ntgraton by parts, w hav I = ǫ6 H d x 6 dt n + ǫ 6 H t x 6 n ǫ6 H x x 6 n t x + ǫ6 H 7 x n n [ 3 x, t n ] x +[ x 3,n ] t x, and yldng I 3 = ǫ7 H d x dt n x + ǫ7 H x n n x [ 3 x, t n ] x +[ x 3,n ] t x + ǫ 7 H t x n x ǫ7 H x x n x t x, I +I 3 ǫ6 H d x 6 dt n ǫ7 H d x dt n x +C +ǫ,u ǫ,u ǫ. Thus w hav I ǫ d n x dt n ǫ6 H d 6 dt n x +ǫ x x +C +ǫ,u ǫ,u ǫ. For I, w hav 3.37 I 3 = ǫ 6 n x n ǫh x 7 +ǫ x x t x 3 n n n x ǫ6 d n x dt n x ǫ 7 H d dt n x x +ǫ x x +C +ǫ,u ǫ,u ǫ. For I, w rwrt I = ǫ6 H n x n ǫh By ntgraton by parts, w can rwrt I = ǫ 6 H ǫ6 H + ǫ6 H d dt x 7 +ǫ x x t 3 x x n n =: n x 6 n + ǫ 6 H x n x t 6 x n n x [ 3 x, t n ] x +[ 3 x, whch, thanks to Lmma 3. and 3.3, ylds th stmats I ǫ 6 H d dt t n 6 x ] t x n, n 6 x +C +ǫ,u ǫ,u ǫ. 3 I. = 3.38

24 HUIMIN LIU AND XUEKE PU For I, w hav by ntgraton by parts I = ǫ 7 H d 6 dt n x 7 + n ǫ7 H x 7 6 n n yldng I ǫ7 H 6 d dt ǫ 7 H 6 t n n 7 x [ 3 x, t n ] x +[ 3 x, n ] t x, n n x 7 +C +ǫ,u ǫ,u ǫ, agan thanks to Lmma 3. and 3.3. For I 3, w hav I 3 = ǫ 8 H d x 6 6 dt n x + ǫ 8 H t x 6 6 n x ǫ8 H x x 6 6 n x t x 6 + ǫ8 H x x 6 n x t x 6 ǫ8 H x 6 n n x [ x 3, t ] x n +[ x 3, ] t x n, and hnc I 3 ǫ 8 H d x 6 6 dt n x +C +ǫ,u ǫ,u ǫ. Thus, w hav I = ǫ6 H d x 6 dt n ǫ7 H d 7 6 dt n n x +ǫ x 6 x C +ǫ,u ǫ,u ǫ. For I, w can dvd I = ǫ7 H 3 = : I. = n x n ǫh By ntgraton by parts, w hav I = ǫ 7 H ǫ7 H + ǫ7 H d dt x n x + ǫ 7 H x n x t x x n n x whch can b boundd smlarly to I, I ǫ 7 H d dt x 7 +ǫ x x t x 3 n n x x n [ 3 x, t n ] x x +[ 3 x, t n x x ] t x n x, x n x +C +ǫ,u ǫ N,U ǫ.

25 QUANTUM EULER-POISSON EQUATION By ntgraton by parts, w hav I = ǫ 8 H d x 6 8 dt n x + ǫ8 H xx 8 x 6 n t x x ǫ8 H x 8 x 6 n t x x + ǫ 8 H t x 6 8 n x + ǫ8 H x x 7 8 n t x x ǫ8 H x x 7 8 n t x x ǫ8 H x 7 8 n n [ x 3, t ] x n x +[ x 3, ] t x n x 7 = : I. = Notng x x n C ǫ+ǫ x N + x N + xx N +ǫ 0 x N x N, and x n C ǫ+ǫ x N + x N +ǫ 0 x N, th trm I and I3 can b boundd by and I C +ǫ 7 x N L +ǫ x N L ǫ 6 6 x +ǫ 0 t x x +C +ǫ ǫ t x x ǫ xx N L 3 +ǫ8 6 x L 6 C +ǫ 7 x N H +ǫ x N H ǫ 6 6 x +ǫ 0 t x x +C +ǫ ǫ t x x ǫ xx N H +ǫ8 6 x H C +ǫ,u ǫ,u ǫ, I 3 C +ǫ,u ǫ,u ǫ, rspctvly, thanks to Lmma 3. and 3.3 and th Sobolv mbddng nqualts. Th othr trms n I can b smlarly boundd by I 7 C +ǫ,u ǫ,u ǫ. Thrfor, w hav I ǫ 8 H d x 6 8 dt n x +C +ǫ,u ǫ,u ǫ. Th I 3 trm can b boundd by I 3 = ǫ9 H d 8 dt n n x x + ǫ9 H t 8 n n x x ǫ9 H x 8 n n x [ 3 x, t ] x n x +[ 3 x, ] t x n x ǫ9 H d 6 dt n n x x +C +ǫ,u ǫ,u ǫ,

26 6 HUIMIN LIU AND XUEKE PU and fnally ylds th stmats I ǫ7 H d x dt n x ǫ8 H d 6 8 dt n x x +ǫ x x 3.0 +C +ǫ,u ǫ,u ǫ. From3.3, th trm I 6 can b rwrttn as I 6 = ǫ8 H n x n ǫh 7 x +ǫ x x n n t x 3 x =: n 3 I 6. By ntgraton by parts, th frst trm s dvdd nto I 6 = ǫ8 H d x dt n x + ǫ8 H t x 8 n x ǫ8 H x x n x t x x ǫ8 H x x n t x x + ǫ8 H x x n t x x + ǫ8 H x x n t x x + ǫ8 H n x n [ 3 x, t ] x n +[ x 3, ] t x n, and can b boundd by I 6 ǫ8 H = d x dt n x +C +ǫ,u ǫ,u ǫ, agan thanks to Lmma 3. and 3.3. For I 6, w hav by ntgraton by parts that I 6 = ǫ9 H d 6 dt n x x + ǫ9 H t n 6 n x x n + ǫ9 H x 8 n n x x t x x + 3ǫ9 H x 6 n n x x t x x + ǫ9 H 3 x 6 n x t x x ǫ9 H x 7 n 8 n x t x x n 3ǫ9 H 6 ǫ9 H 6 x 6 n n x t x x ǫ9 H 6 7 x n n [ 3 x, t ] x n +[ x 3, x 3 n n x t x x n ] t x. By Lmma 3. and 3.3 and varoussobolv mbddngs H L, H L 3 and H L 6, w hav I 6 ǫ9 H d 6 dt n n x x +C +ǫ,u ǫ,u ǫ. For I 63, w hav I 63 = ǫ0 H d 6 dt n n x x 3 + ǫ0 H t 6 n n x x 3 ǫ0 H x 6 n n x x 3 t x 3 x 3 + ǫ0 H x 6 n n x x t x 3 x 3 ǫ0 H x 6 n n x [ x 3, t ] x n +[ x 3, ] t x n,

27 QUANTUM EULER-POISSON EQUATION 7 and hnc I 63 ǫ0 H 6 d dt n n x x 3 +C +ǫ,u ǫ,u ǫ. Ths thr nqualts yld th stmat for I 6 that I 6 ǫ8 H d dt n x x ǫ9 H d 6 dt n x x +ǫ x x 3 3. n +C +ǫ,u ǫ N,U ǫ. Fnally, usng Sobolv nqualts and Lmma 3. and 3.3, w hav for I that I 7 C +ǫ,u 6 ǫ,u ǫ. 3. Summng up all ths nqualts from 3.33 to 3., w hav I ǫ d dt ǫ6 ǫ7 H H 6 n x n ǫ d n + H dt n d 6 dt n x +3ǫ x x +ǫ x x d dt n n x + x x n n 7 x +3ǫ 6 x x +3ǫ x x +ǫ 3 x 3 x +C +ǫ,u 6 ǫ +,U ǫ, compltng th proof of Lmma Th stmats of th othr fourth ordr for U. Lmma 3.. Lt N,,U b a soluton to.. Thn ǫ d 3 dt x x U + x 3 x U + ǫ d n 3 ǫ 6 dt n x x + d n H + dt n n n x x +ǫ 3 x x + ǫ7 H n x x +3ǫ x x +ǫ x 3 x 3 + ǫ8 H 6 6 n x x +3ǫ x x +3ǫ x x 3 +ǫ 3 x 3 x n C +ǫ,u 6 ǫ +,U ǫ. 3.3 Proof of Lmma 3.. Th proof of ths lmma s smlar to that of Lmma 3.. W tak x 3 x of.b and.c rspctvly, thn tak nnr product ofǫ x 3 x U,ǫ x 3 x U and sum th rsults.

28 8 HUIMIN LIU AND XUEKE PU Lmma 3.6. Lt N,,U b a soluton to.. Thn ǫ 6 d dt x x U + x x U + ǫ6 d n x dt n x + ǫ7 d n H + dt n n n x x +ǫ x x + ǫ8 H n x x +3ǫ x 3 x 3 +ǫ x x + ǫ9 H 6 n x x +3ǫ x x 3 +3ǫ x 3 x +ǫ 3 x x n C +ǫ,u 6 ǫ +,U ǫ. 3. Proof of Lmma 3.6. Th proof of ths lmma s smlar to Lmma 3.. W tak x x of.b and.c rspctvly, thn tak nnr product of ǫ 6 x x U,ǫ 6 x x U and sum th rsults. Lmma 3.7. Lt N,,U b a soluton to.. Thn ǫ 7 d x x 3 dt U + x x 3 U + ǫ7 d n x x 3 dt n + ǫ8 + ǫ9 + ǫ0 H d n H + dt n n n x 3 x +ǫ x x 3 n x x 3 +3ǫ x x +ǫ x x H 6 n n x x 3 +3ǫ x 3 x +3ǫ x x +ǫ 3 x x 6 C +ǫ,u 6 ǫ+,u ǫ. 3. Proof of Lmma 3.7. Th proof of ths lmma s smlar to Lmma 3.. W tak x x 3 of.b and.c rspctvly, thn tak nnr product of ǫ 7 x x 3 U,ǫ 7 x x 3 U and sum th rsults. Lmma 3.8. Lt N,,U b a soluton to.. Thn ǫ 8 d dt x U + x U + ǫ8 d n x dt n + ǫ9 d n H + x x dt n n n +ǫ x + ǫ0 H n x x +3ǫ x x +ǫ x 6 + ǫ H 3 6 n n x x +3ǫ x x +3ǫ x x 6 +ǫ 3 x 7 C +ǫ,u 6 ǫ+,u ǫ. 3.6 Proof of Lmma 3.8. Th proof of ths lmma s smlar to Lmma 3.. W tak x of.b and.c rspctvly, thn tak nnr product of ǫ 8 x U,ǫ 8 x U and sum th rsults.

29 QUANTUM EULER-POISSON EQUATION 9 Summng th rsults of Lmma , w complt th proof of th Proposton 3... Proof of Thorm. Proof of Thorm.. Addng Propostons 3. wth k = 0,,,3 and Proposton 3. togthr, w obtan d ǫ α+β x α dt x β U + x α x β U 0 α+β + d n N + d n + n + H ǫ α+β x α dt n dt n n n n x β α+β= + d n + n + H + H ǫ α+β x α dt n n n n n β x α+β= + d n + n + H + H + H dt n n n n n 6 n n ǫ α+β x α β x 3 α+β. + d n + H + H + H dt n n n n 6 n ǫ α+β x α β x n α+β= + H d H + H dt n 6 n n ǫ α+β x α β x α+β=6 + H d 6 dt n n ǫ α+β x α x β α+β=7 C +ǫ,u 6 ǫ + N,U ǫ. Intgratng th nqualty. ovr 0, t ylds,ut ǫ C,U0 ǫ + C,U0 ǫ + t 0 t 0 C +ǫ,u 6 ǫ+,u ǫds C +ǫ C+,U ǫds, whr C s an absolut constant. Rcall that C dpnds on,u ǫ through ǫ,u ǫ and s nondcrasng. Lt C = C and C > Csup ǫ< u ǫ R,φǫ R 0 ǫ. For any arbtrarly gvn τ > 0, w choos C suffcntly larg such that C > C τ +C +C. Thn thr xsts ǫ 0 > 0 such that ǫ C for all ǫ < ǫ 0, usng Gronwall nqualty, w hav sup 0 t τ In partcular, w hav th unform bound for,u, ǫ α+β x α x β U,U L + sup 0 t τ 0 α+β,ut ǫ C τ C + < C.. 0 α+β 7 On th othr hand, by Lmma 3. and.3, w hav sup ǫ α+β x α x β N L C. 0 t τ 0 α+β 3 ǫ α+β x α x β L C..3 It s now standard to obtan unform stmats ndpndnt of ǫ by th contnuty mthod.

30 30 HUIMIN LIU AND XUEKE PU Appndx A. Th concrt xprsson of A,B and C j j 3 ar gvn by A = ǫ x ñ +ǫ x x + ǫ x ñ +ǫ x ñ x + ǫ x ñ +ǫ x xx + ǫ x ñ +ǫ 6 x x +ǫ xx ñ x, A =ǫ 9 x 3 + ǫ 7 x ñ +ǫ 0 x x +3ǫ 6 x ñ x +ǫ 7 x ñ x x +3ǫ x ñ +ǫ 3 x ñ x +ǫ 3 x ñ x ñ x, B = ǫ x ñ +ǫ x x + ǫ x ñ +ǫ x xx + ǫ 3 x ñ +ǫ 6 x x + ǫ x ñ +ǫ x ñ x +ǫ xx ñ x, B =ǫ 0 x 3 + ǫ 6 x ñ +ǫ 0 x x +3ǫ 7 x ñ x +ǫ 6 x ñ x x +ǫ x ñ +3ǫ 3 x ñ x +ǫ x ñ x ñ x, C = 3ǫ x ñ +3ǫ x 3 x +ǫ x x + 3ǫ x ñ +3ǫ 7 x x x +ǫ x 3 + ǫ x ñ +ǫ x ñ +ǫ x x + ǫ xx ñ +ǫ 6 xx xx + ǫ x ñ +ǫ 3 x ñ +ǫ 6 x +ǫ 7 x x + 3ǫ x 3 ñ +3ǫ x x ñ x + 3ǫ x x ñ +3ǫ 3 x 3 ñ x, C = 7ǫ 0 x +3ǫ x +ǫ 6 x ñ x +6ǫ 7 x ñ x x + 3ǫ 3 x ñ +7ǫ x ñ x + 3ǫ 3 x ñ +7ǫ x ñ x + 3ǫ x +7ǫ x +6ǫ 7 x ñ x +ǫ 8 x ñ x x + 8ǫ x x +8ǫ 7 x ñ x +8ǫ 7 x ñ x +8ǫ 3 x ñ x ñ xx + ǫ x ñ x ñ +8ǫ 3 x ñ xx ñ +6ǫ 3 x ñ x ñ x + 3ǫ 7 x ñ x +8ǫ 7 xx ñ x +7ǫ 6 x ñ x x + 6ǫ 3 x ñ x ñ +8ǫ 3 x ñ xx ñ +ǫ x ñ x ñ x + 3ǫ 7 x ñ x +7ǫ 8 x ñ x x, C 3 =3ǫ 6 x +6ǫ 7 x x +3ǫ 8 x +ǫ x ñ x 3 +ǫ x ñ x x +ǫ x ñ x x +ǫ 3 x ñ x 3 +8ǫ 7 x ñ x +6ǫ 8 x ñ x +ǫ 8 x ñ x ñ x x +6ǫ 8 x ñ x +8ǫ 9 x ñ x +ǫ 3 x ñ 3 x +ǫ x ñ x ñ x +ǫ x ñ x ñ x +ǫ x ñ 3 x. For radr s convnnc, w gv th followng Lmma A.. For α = 0,, ntgrs and γ = max{,α }, thr xst constants C = C n H α and C = C ǫ H γ such that R,R,,R, 3,R, H α C n H α, α = 0,,, A.

31 QUANTUM EULER-POISSON EQUATION 3 and R 3,R 3 3,R 3 H α C ǫ H γ+ H α, α = 0,,, t R 3, t R 3 3, t R 3 H α C ǫ H γ+ t H α, α = 0,,, A. A.3 Proof. By Höldr nqualty and Sobolv mbddng, th stmats for Lmma A. ar straghtforward. Th dtals ar hnc omttd. Rfrncs [] M. Bnjamn, Long wav approxmaton for watr wavs undr a Corols forcng and th Ostrovsky quaton. arxv prprnt arxv: , 06. [] N. G. Brloff, P. H. Robrts, Motons n a Bos condnsat: X. Nw rsults on th stablty of axsymmtrc soltary wavs of th Gross-Ptavsk quaton. Journal of Physcs A: Mathmatcal and Gnral, 377, [3] J. Bourgan, On th Cauchy problm for th Kadomstv-Ptvashvl quaton. Gom. Funct. Anal., 3, [] D. Chron, Error bounds for th KdV or KP-I and gkdv or gkp-i asymptotc rgm for Nonlnar Schrödngr typ Equatons. Annals d l Insttut Hnr Poncar. Non Lnar Analyss, Elsvr Masson, 36, [] D. Chron and F. Rousst, Th KdV/KP-I lmt of th nonlnar Schrödngr quaton. SIAM J. Math. Anal.,, [6] R. Cofman and Y. Myr, Nonlnar harmonc analyss, oprator thory and P.D.E. In: Bjng Lcturs n Harmonc Analyss, pp. 3-. Prncton Unv. Prss, 986. [7] W. Crag, An xstnc thory for watr wavs and th Boussnsq and Kortwg-d Vrs scalng lmts. Commun. PDEs., 0, [8] V. S. Dryuma, Analytc soluton of th two-dmnsonal Kortwg-d Vrs KdV quaton. Sovt Journal of Exprmntal and Thortcal Physcs Lttrs, 9, [9] E. V. Frapontov and A. Moro, Dsprsv dformatons of hydrodynamc rductons of +D dsprsonlss ntgrabl systms. Journal of Physcs A: Mathmatcal and Thortcal, 3, [0] T. Gallay and G. Schndr, KP dscrpton of undrctonal long wavs. Th modl cas. Proc. Roy. Soc. Ednburgh Sct. A., 30, [] T. S. Gll, N. S. San and H. Kaur, Th Kadomstv-Ptvashvl quaton n dusty plasma wth varabl dust charg and two tmpratur ons. Chaos, Soltons Fractals, 8, [] Y. Guo and X. Pu, KdV lmt of th Eulr-Posson systm. Arch. Raton. Mch. Anal.,, [3] F. Haas, Quantum plasmas: An hydrodynamc approach. Vol. 6. Sprngr Scnc and Busnss Mda, 0. [] F. Haas, L. G. Garca, J. Godrt and G. Manfrd, Quantum on-acoustc wavs. Physcs of Plasmas, 99-prsnt, 00, [] B. B. Kadomtsv and V. I. Ptvashvl, On th stablty of soltary wavs n wakly dsprsng mda. Sovt Physcs Doklady,, [6] L. A. Kalyakn, Long wav asymptotcs, ntgrabl quatons as asymptotc lmts of nonlnar systms. Russ. Math. Surv.,, [7] T. Kano, L quaton d Kadomtsv-Ptvashvl approchant ls onds longus d surfac d l au n coulmnt tros-dmnsonnl. Studs n Mathmatcs and Its Applcatons., 8, [8] T. Kato and G. Ponc, Commutator stmats and th Eulr and Navr-Stoks quatons. Commun. Pur Appl. Math., 7, [9] P. Krrmann, G. Schndr and A. Mlk, Th valdty of modulaton quatons for xtndd systms wth cubc nonlnarts. Proc. R. Soc. Ednb. A.,, [0] D. Lanns, Consstncy of th KP approxmaton. Dscrt Contn. Dyn. Syst., [] D. Lanns, F. Lnars and J. C. Saut, Th Cauchy problm for th Eulr-Posson systm and drvaton of th Zakharov-Kuzntsov quaton. Studs n phas spac analyss wth applcatons to PDEs. Sprngr Nw York [] D, Lanns and J. C. Saut, Wakly transvrs Boussnsq systms and th Kadomtsv-Ptvashvl approxmaton. Nonlnarty, 9, [3] C. C. Ln, E. Rssnr and H. S. Tsn, On Two-Dmnsonal Non-Stady Moton of a Slndr Body n a Comprssbl Flud. Journal of Mathmatcs and Physcs, 7,

32 3 HUIMIN LIU AND XUEKE PU [] H. Lu and X. Pu, Long wavlngth lmt for th quantum Eulr-Posson quaton. SIAM J. Math. Anal., 06, 8: [] H. K. Malk, S. Sngh and R. P. Dahya, Kadomtsv-Ptvashvl soltons n nhomognous plasmas wth fnt tmpratur drftng ons. Physcs Lttrs A, 9, [6] G. Manfrd and F. Haas, Slf-consstnt flud modl for a quantum lctron gas. Physcal Rvw B., 67, [7] L. Molnt, J. C. Saut and N. Tzvtkov, Global wll-posdnss for th KP-I quaton. Mathmatsch Annaln. 3, [8] X. Pu, Dsprsv Lmt of th Eulr-Posson Systm n Hghr Dmnsons. SIAM J. Math. Anal., 03, : [9] A. Rozanova, Th Khokhlov-Zabolotskaya-Kuzntsov quaton. Compts Rndus Mathmatqu, 3, [30] B. Sahu and N. K. Ghosh, Kadomstv-Ptvashvl soltons n quantum plasmas. Astrophyscs and Spac Scnc, 33, [3] W. B. Youssf, D. Lanns, Th long wav lmt for a gnral class of D quaslnar hyprbolc problms. Commun. PDEs., 7-6, l00. [3] E. A. Zabolotskaya and R. V. Khokhlov, Quas-plan wavs n th nonlnar acoustcs of confnd bams. Sov. Phys. Acoust.,, Humn Lu Dpartmnt of Mathmatcs, Chongqng Unvrsty, Chongqng 033, P.R.Chna E-mal addrss: hmlucqu@63.com Xuk Pu Dpartmnt of Mathmatcs, Chongqng Unvrsty, Chongqng 033, P.R.Chna E-mal addrss: xukpu@cqu.du.cn

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS ACOUSTIC WAE EQUATION Contnts INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS INTRODUCTION As w try to vsualz th arth ssmcally w mak crtan physcal smplfcatons that mak t asr to mak and xplan our obsrvatons.

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

Phys 774: Nonlinear Spectroscopy: SHG and Raman Scattering

Phys 774: Nonlinear Spectroscopy: SHG and Raman Scattering Last Lcturs: Polaraton of Elctromagntc Wavs Phys 774: Nonlnar Spctroscopy: SHG and Scattrng Gnral consdraton of polaraton Jons Formalsm How Polarrs work Mullr matrcs Stoks paramtrs Poncar sphr Fall 7 Polaraton

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

arxiv: v1 [math.pr] 28 Jan 2019

arxiv: v1 [math.pr] 28 Jan 2019 CRAMÉR-TYPE MODERATE DEVIATION OF NORMAL APPROXIMATION FOR EXCHANGEABLE PAIRS arxv:190109526v1 [mathpr] 28 Jan 2019 ZHUO-SONG ZHANG Abstract In Stn s mthod, an xchangabl par approach s commonly usd to

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges Physcs of Vry Hgh Frquncy (VHF) Capactvly Coupld Plasma Dschargs Shahd Rauf, Kallol Bra, Stv Shannon, and Kn Collns Appld Matrals, Inc., Sunnyval, CA AVS 54 th Intrnatonal Symposum Sattl, WA Octobr 15-19,

More information

Physics 256: Lecture 2. Physics

Physics 256: Lecture 2. Physics Physcs 56: Lctur Intro to Quantum Physcs Agnda for Today Complx Numbrs Intrfrnc of lght Intrfrnc Two slt ntrfrnc Dffracton Sngl slt dffracton Physcs 01: Lctur 1, Pg 1 Constructv Intrfrnc Ths wll occur

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Gravitation as Geometry or as Field

Gravitation as Geometry or as Field Journal of Appld Mathmatcs and Physcs, 7, 5, 86-87 http://wwwscrporg/journal/jamp ISSN Onln: 37-4379 ISSN Prnt: 37-435 Gravtaton as Gomtry or as Fld Waltr Ptry Mathmatcal Insttut of th Unvrsty Dussldorf,

More information

EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In the absence of or in between ELMs)

EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In the absence of or in between ELMs) I. EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In th absnc of or n btwn ELMs) Abstract W. M. Stacy (Gorga Tch) and R. J. Grobnr (Gnral Atomcs) A constrant on th on prssur gradnt s mposd by momntum

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* Dr. G.S. Davd Sam Jayakumar, Assstant Profssor, Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall 620 020, South Inda,

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

1- Summary of Kinetic Theory of Gases

1- Summary of Kinetic Theory of Gases Dr. Kasra Etmad Octobr 5, 011 1- Summary of Kntc Thory of Gass - Radaton 3- E4 4- Plasma Proprts f(v f ( v m 4 ( kt 3/ v xp( mv kt V v v m v 1 rms V kt v m ( m 1/ v 8kT m 3kT v rms ( m 1/ E3: Prcntag of

More information

Chapter 6 Student Lecture Notes 6-1

Chapter 6 Student Lecture Notes 6-1 Chaptr 6 Studnt Lctur Nots 6-1 Chaptr Goals QM353: Busnss Statstcs Chaptr 6 Goodnss-of-Ft Tsts and Contngncy Analyss Aftr compltng ths chaptr, you should b abl to: Us th ch-squar goodnss-of-ft tst to dtrmn

More information

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES 13 th World Confrnc on Earthquak Engnrng Vancouvr, B.C., Canada August 1-6, 4 Papr No. 485 ORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WIT VARIABLE PROPERTIES Mngln Lou 1 and Wnan Wang Abstract:

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2 FACTA UNIVERSITATIS Srs: Mchancs, Automatc Control Robotcs Vol.3, N o, 00, pp. 7-33 VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 54.7(045)54.75.6:59.688:59.673 Ebrhard Malkowsky, Vsna Vlčkovć Dpartmnt of

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS Anuj Bshno and Sudsh K. Khanduja Dpartmnt of Mathmatcs, Panjab Unvrsty, Chandgarh-160014, Inda. E-mal: anuj.bshn@gmal.com, skhand@pu.ac.n ABSTRACT.

More information

Polytropic Process. A polytropic process is a quasiequilibrium process described by

Polytropic Process. A polytropic process is a quasiequilibrium process described by Polytropc Procss A polytropc procss s a quasqulbrum procss dscrbd by pv n = constant (Eq. 3.5 Th xponnt, n, may tak on any valu from to dpndng on th partcular procss. For any gas (or lqud, whn n = 0, th

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Electrostatic Surface Waves on Semi-Bounded Quantum Electron-Hole Semiconductor Plasmas

Electrostatic Surface Waves on Semi-Bounded Quantum Electron-Hole Semiconductor Plasmas Commun. Thor. Phys. 67 07 37 3 Vol. 67 No. 3 March 07 Elctrostatc Surfac Wavs on Sm-Boundd Quantum Elctron-Hol Smconductor Plasmas Afshn Morad Dpartmnt of Engnrng Physcs Krmanshah Unvrsty of Tchnology

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Guo, James C.Y. (1998). "Overland Flow on a Pervious Surface," IWRA International J. of Water, Vol 23, No 2, June.

Guo, James C.Y. (1998). Overland Flow on a Pervious Surface, IWRA International J. of Water, Vol 23, No 2, June. Guo, Jams C.Y. (006). Knmatc Wav Unt Hyrograph for Storm Watr Prctons, Vol 3, No. 4, ASCE J. of Irrgaton an Dranag Engnrng, July/August. Guo, Jams C.Y. (998). "Ovrlan Flow on a Prvous Surfac," IWRA Intrnatonal

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Epistemic Foundations of Game Theory. Lecture 1

Epistemic Foundations of Game Theory. Lecture 1 Royal Nthrlands cadmy of rts and Scncs (KNW) Mastr Class mstrdam, Fbruary 8th, 2007 Epstmc Foundatons of Gam Thory Lctur Gacomo onanno (http://www.con.ucdavs.du/faculty/bonanno/) QUESTION: What stratgs

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

ANALYTICITY THEOREM FOR FRACTIONAL LAPLACE TRANSFORM

ANALYTICITY THEOREM FOR FRACTIONAL LAPLACE TRANSFORM Sc. Rs. hm. ommn.: (3, 0, 77-8 ISSN 77-669 ANALYTIITY THEOREM FOR FRATIONAL LAPLAE TRANSFORM P. R. DESHMUH * and A. S. GUDADHE a Prof. Ram Mgh Insttt of Tchnology & Rsarch, Badnra, AMRAVATI (M.S. INDIA

More information

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti ICSV Carns ustrala 9- July 7 NON-LINER MOEL FOR STUYING THE MOTION OF HUMN OY Ncola-oru Stănscu Marna Pandra nl Popa Sorn Il Ştfan-Lucan Tabacu partnt of ppld Mchancs Unvrsty of Ptşt Ptşt 7 Roana partnt

More information

Study of Dynamic Aperture for PETRA III Ring K. Balewski, W. Brefeld, W. Decking, Y. Li DESY

Study of Dynamic Aperture for PETRA III Ring K. Balewski, W. Brefeld, W. Decking, Y. Li DESY Stud of Dnamc Aprtur for PETRA III Rng K. Balws, W. Brfld, W. Dcng, Y. L DESY FLS6 Hamburg PETRA III Yong-Jun L t al. Ovrvw Introducton Dnamcs of dampng wgglrs hoc of machn tuns, and optmzaton of stupol

More information

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2 166 ppnd Valnc Forc Flds.1 Introducton Valnc forc lds ar usd to dscrb ntra-molcular ntractons n trms of 2-body, 3-body, and 4-body (and gr) ntractons. W mplmntd many popular functonal forms n our program..2

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the Lctur 22-1 Byond Bohr Modl Unfortunatly, th classical visualization of th orbiting lctron turns out to b wrong vn though it still givs us a simpl way to think of th atom. Quantum Mchanics is ndd to truly

More information

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

:2;$-$(01*%<*=,-./-*=0;"%/;"-*

:2;$-$(01*%<*=,-./-*=0;%/;-* !"#$%'()%"*#%*+,-./-*+01.2(.*3+456789*!"#$%"'()'*+,-."/0.%+1'23"45'46'7.89:89'/' ;8-,"$4351415,8:+#9' Dr. Ptr T. Gallaghr Astrphyscs Rsarch Grup Trnty Cllg Dubln :2;$-$(01*%

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Modelling of new generation plasma optical devices

Modelling of new generation plasma optical devices NUKLEONIKA 216;61(2):27212 do: 1.1515/nuka-216-35 ORIGINAL PAPER Modllng of nw gnraton plasma optcal dvcs Irna V. Ltovko, Aly A. Goncharov, Andrw N. Dobrovolsky, Lly V. Nako, Irna V. Nako Abstract. Th

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Radial Cataphoresis in Hg-Ar Fluorescent Lamp Discharges at High Power Density

Radial Cataphoresis in Hg-Ar Fluorescent Lamp Discharges at High Power Density [NWP.19] Radal Cataphorss n Hg-Ar Fluorscnt Lamp schargs at Hgh Powr nsty Y. Aura, G. A. Bonvallt, J. E. Lawlr Unv. of Wsconsn-Madson, Physcs pt. ABSTRACT Radal cataphorss s a procss n whch th lowr onzaton

More information

First looking at the scalar potential term, suppose that the displacement is given by u = φ. If one can find a scalar φ such that u = φ. u x.

First looking at the scalar potential term, suppose that the displacement is given by u = φ. If one can find a scalar φ such that u = φ. u x. 7.4 Eastodynams 7.4. Propagaton of Wavs n East Sods Whn a strss wav travs throgh a matra, t ass matra parts to dspa by. It an b shown that any vtor an b wrttn n th form φ + ra (7.4. whr φ s a saar potnta

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

FEFF and Related Codes

FEFF and Related Codes FEFF and Rlatd Cods Anatoly Frnl Profssor Physcs Dpartmnt, Yshva Unvrsty, w Yor, USA Synchrotron Catalyss Consortum, Broohavn atonal Laboratory, USA www.yu.du/faculty/afrnl Anatoly.Frnl@yu.du FEFF: John

More information

A Novel Finite Volume Scheme with Geometric Average Method for Radiative Heat Transfer Problems *

A Novel Finite Volume Scheme with Geometric Average Method for Radiative Heat Transfer Problems * Appld Physcs Frontr Novmbr 013 Volum 1 Issu 4 PP.3-44 A Novl Fnt Volum Schm wth Gomtrc Avrag Mthod for Radatv Hat Transfr Problms * Cunyun N 1 Hayuan Yu 1. Dpartmnt of Mathmatcs and Physcs Hunan Insttuton

More information

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES CHOOL O ENGINEERING - TI IGNAL PROCEING INTITUTE Lornzo Potta and Prr Vandrghynst CH-1015 LAUANNE Tlphon: 4121 6932601 Tlfax: 4121 6937600 -mal: lornzo.potta@pfl.ch ÉCOLE POLYTECHNIQUE ÉDÉRALE DE LAUANNE

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

GPC From PeakSimple Data Acquisition

GPC From PeakSimple Data Acquisition GPC From PakSmpl Data Acquston Introducton Th follong s an outln of ho PakSmpl data acquston softar/hardar can b usd to acqur and analyz (n conjuncton th an approprat spradsht) gl prmaton chromatography

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Basic Electrical Engineering for Welding [ ] --- Introduction ---

Basic Electrical Engineering for Welding [ ] --- Introduction --- Basc Elctrcal Engnrng for Wldng [] --- Introducton --- akayosh OHJI Profssor Ertus, Osaka Unrsty Dr. of Engnrng VIUAL WELD CO.,LD t-ohj@alc.co.jp OK 15 Ex. Basc A.C. crcut h fgurs n A-group show thr typcal

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS O-YMMETRY OWER THREE-HAE YTEM Llana Marlna MATCA nvrsty of Orada, nvrstat str., no., 487, Orada; lmatca@uorada.ro Abstract. For thr-phas lctrcal systms, n non-symmtrcal stuaton, an analyz mthod costs on

More information

Collisions between electrons and ions

Collisions between electrons and ions DRAFT 1 Collisions btwn lctrons and ions Flix I. Parra Rudolf Pirls Cntr for Thortical Physics, Unirsity of Oxford, Oxford OX1 NP, UK This rsion is of 8 May 217 1. Introduction Th Fokkr-Planck collision

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM Avalabl onln at www.scncdrct.com Procda Engnrng 9 () 373 377 Intrnatonal Workshop on Informaton and Elctroncs Engnrng (IWIEE) Thr-Nod Eulr-Brnoull Bam Elmnt Basd on Postonal FEM Lu Jan a *,b, Zhou Shnj

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory Ch. 4 Molcular Raction Dynamics 1. Collision Thory Lctur 16. Diffusion-Controlld Raction 3. Th Matrial Balanc Equation 4. Transition Stat Thory: Th Eyring Equation 5. Transition Stat Thory: Thrmodynamic

More information

From Structural Analysis to Finite Element Method

From Structural Analysis to Finite Element Method From Structural Analyss to Fnt Elmnt Mthod Dhman Basu II Gandhnagar -------------------------------------------------------------------------------------------------------------------- Acknowldgmnt Followng

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Computation of Greeks Using Binomial Tree

Computation of Greeks Using Binomial Tree Journal of Mathmatcal Fnanc, 07, 7, 597-63 http://www.scrp.org/journal/jmf ISSN Onln: 6-44 ISSN Prnt: 6-434 Computaton of Grks Usng Bnomal Tr Yoshfum Muro, Shntaro Suda Graduat School of conomcs and Managmnt,

More information

JEE-2017 : Advanced Paper 2 Answers and Explanations

JEE-2017 : Advanced Paper 2 Answers and Explanations DE 9 JEE-07 : Advancd Papr Answrs and Explanatons Physcs hmstry Mathmatcs 0 A, B, 9 A 8 B, 7 B 6 B, D B 0 D 9, D 8 D 7 A, B, D A 0 A,, D 9 8 * A A, B A B, D 0 B 9 A, D 5 D A, B A,B,,D A 50 A, 6 5 A D B

More information

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions 9 Strss-Basd Fnt Elmnt Mthods for Dynamcs Analyss of Eulr-Brnoull Bams wth Varous Boundary Condtons Abstract In ths rsarch, two strss-basd fnt lmnt mthods ncludng th curvatur-basd fnt lmnt mthod (CFE)

More information

Decision-making with Distance-based Operators in Fuzzy Logic Control

Decision-making with Distance-based Operators in Fuzzy Logic Control Dcson-makng wth Dstanc-basd Oprators n Fuzzy Logc Control Márta Takács Polytchncal Engnrng Collg, Subotca 24000 Subotca, Marka Orškovća 16., Yugoslava marta@vts.su.ac.yu Abstract: Th norms and conorms

More information

Study interaction between intensive circularly polarized laser and hydrogen atom using a matrix method

Study interaction between intensive circularly polarized laser and hydrogen atom using a matrix method ISBN 978-1-84626-020-9 Procdngs of 3 rd Intrnatonal Workshop on Matrx Analyss angzhou,p.r.chna.july 9-13, 2009, pp. 199-202 ( Wll st y th pulshr ) Study ntracton twn ntnsv crcularly polarzd lasr and hydrogn

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

The Penalty Cost Functional for the Two-Dimensional Energized Wave Equation

The Penalty Cost Functional for the Two-Dimensional Energized Wave Equation Lonardo Jornal of Scncs ISSN 583-033 Iss 9, Jly-Dcmbr 006 p. 45-5 Th Pnalty Cost Fnctonal for th Two-Dmnsonal Enrgd Wav Eqaton Vctor Onoma WAZIRI, Snday Agsts REJU Mathmatcs/Comptr Scnc dpartmnt, Fdral

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES. Eduard N. Klenov* Rostov-on-Don, Russia

GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES. Eduard N. Klenov* Rostov-on-Don, Russia GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES Eduard N. Klnov* Rostov-on-Don, Russia Th articl considrs phnomnal gomtry figurs bing th carrirs of valu spctra for th pairs of th rmaining additiv

More information

FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED BEAMS

FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED BEAMS Journal of Appl Mathatcs an Coputatonal Mchancs, (), 9- FREE VIBRATION ANAYSIS OF FNCTIONAY GRADED BEAMS Stansław Kukla, Jowta Rychlwska Insttut of Mathatcs, Czstochowa nvrsty of Tchnology Czstochowa,

More information