Abstract. 1 Introduction

Size: px
Start display at page:

Download "Abstract. 1 Introduction"

Transcription

1 A multi-scale approach for modeling mechanical behavior of2d and 3D textile-reinforced composites D. Bigaud & P. Hamelin Laboratoire Mecanique Materiaux - IUT A Genie Civil - Universite Claude Bernard, Lyon 1-43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex, France hamelin@iutal2m.univ-lyonl.fr Abstract A procedure for the prediction of the elastic properties and failure behavior of 2D and 3D textile-reinforced composites is presented in this paper. Homogenization techniques based on energetical approaches are performed on multi-scale sub-elements in order to distinguish elastic from fracture behaviors. Scale details range from the filament to the yarn and the unit-cell. The reliability of our procedure is proved in the case of woven and SD-braided composites and the sensitivity to geometrical parameters are simulated. 1 Introduction The potential of 2D and 3D textile-reinforced composites is high but the challenges involved in predicting their mechanical characteristics do not facilitate their full exploitation. The main difficulty is to deal with their important material heterogeneity that implies anisotropy of the stress and strainfields.a geometrical description of the textile reinforcement must constitute the basis of a mechanical modeling which aims at dealing with this heterogeneity. The graphical techniques implicated in computeraided design tools find an appropriate way in the description of textile reinforcements geometry.

2 128 Computer Methods in Composite Materials The objective of this paper is to present a computer program dedicated to both the geometric and mechanical modeling of textile-reinforced composites, In section 2, we briefly present the software main features before giving the theoretical aspects of the model. Experimental data are compared to elastic and failure properties simulations of woven composites in the section 3. The case of a 3D-braided composite is studied in the last section. The effect of geometrical parameters on mechanical characteristics is investigated for both these textilecomposites. 2 Textile-reinforced composites modeling 2.1 General presentation of TIS3D TIS3D is divided in two main parts; a graphical and a mechanical one. The objective of the graphical section is to rebuild the textilereinforcement geometry through basic volumes. Reduced number of parameters allows the idealized geometry description of 2D and 3D reinforcement unit-cells (local representation of the reinforcement). We can talk about "geometrical homogenization" (bigaud*). The mechanical section aims at predicting the effective stiffness of the textile-composite and simulating the internal strains and stresses. So as, the unit-cell is considered as an aggregate of multi-scale elements. At the first scale, the mixture fiber + matrix is represented by a bi-dimensional network of micro-cells. The tows present the properties of this assembly (a meso-cell). At the upper scale, we consider the volume assembly of eight meso-cells. Such an intermediate-cell is created in order to improve the calculation capacity and rapidity. Finally, at the last scale, the unitcell is regarded as an aggregate of NxNyNz intermediate-cells. 2.2 Theoretical aspects For each scale, we have to define the mechanical characteristics of 2D or 3D elements as a function of sub-elements' individual properties. A numerical procedure based on stationary functionals derived from complementary and strain energy is developed. Its general aspects are presented below General aspects The main idea of the method consists in making stationary both the complementary U* and the strain Ug energy. This is done in order to define the lower and upper bounds of the effective stiffness and the

3 Computer Methods in Composite Materials 129 internal strain and stress values of the N%NyNz-cells assembly. In the case of the meso-cells, N%=Ny=2 and Nz=l. In the case of the intermediatecells, N%=Ny=Nz=2. fiber+matrix meso-cell meso-cell 2D assembly of 4 micro-cells and Ug are expressed as: intermediate-cell 3D assembly of 8 meso-cells The choice of meso-cell type depends on whether the intermediate-cell nodes belong to the yam volume or not Figure 1. Unit-cell multi-scale unit-cell 3D assembly of NxNyNz intermediate-cells description. L p=l L (1) Vp is the volume ratio of the p-cell. [s]«and [c]«represent the compliance matrix of the a entity. By means of Lagrangian multipliers, one can take into account the conditions of continuity and averaging of stress (U<j) and strain (Ug) and write the new functional LL* and UP*: *=Uo+X,f(^;(Tj HI,-.,6) *=Ug +ajg(ej ;S p) A.J,a,: Lagrangian multipliers (2)

4 130 Computer Methods in Composite Materials One can then write the conditions 9U_*=0 and 9U,*=0 as: Id! Solving eq.(3) for the sub-elements stress and strain allows to relate the sub and the total average vectors (Chen^): Then the upper and lower bounds of the N%NyNz-cells assembly effective stiffness can be written as: By writing eq(4) as: and by using eq(5), one can estimate the bounds of the internal strain and stress according to imposed external strain and stress up to the microcells scale. The knowledge of yarns' internal stresses and strains is directly exploitable to anticipate the composite failure behavior that is considered as a sequence of yarns local fractures Details on numerical procedure for progressive failure simulation The procedure for failure simulation of the NJSfyNz-cells assembly according to an external mono-axial stress is detailed in figure 2. The bounds of the undamaged composite stiffness matrix are calculated in the first step. Next, by using eq(6), the local stresses within the subelements are determined according to an arbitrary external stress. They are compared to the critical stresses (statistically assigned to each mesocell) in order to investigate the macroscopic stress value that would yield to the failure of thefirstmeso-cell (yarn segment). The stiffness matrix of the meso-cells is reduced by the selective RC method (rows and columns

5 Computer Methods in Composite Materials 131 of the matrix [c]p set to zero according to the critical stress which was exceeded). The elastic analysis is carried on taking into account of the drop of stress (.-».,) and the change of [C]. I Meso-cells' strength assignation ; Solving of the first elastic problem on the undamaged unit ceil Arbitrary macroscopic stress Determination of the local mesoscopic stresses comparisons to the critical stress values i Determination of the macroscopic stress Z* which leads to the failure of the i*h meso-cell Induced macroscopic strain E* Matrix reduction of damaged meso-cell the 1 Drop of to z I from i* Failure behavior modeling is considered as a sequence of elastic studies Figure 2. Illustration of the progressive failure simulation procedure. 3 Model predictions in the case of woven composites 3.1 Geometrical and mechanical characteristics The cases of two plain-woven (plain 1, plain2) and one satin-woven reinforcements are studied. Both these textile composites are glass/epoxy materials. The constituents properties and the main geometrical characteristics of the unit-cells are given in table 1. The main geometrical characteristics are shown in figure Elasticity The reliability of the elastic model in the case of woven composites has been already discussed in a previous paper (bigaud*). The table 2 gives an example of comparisons between the experimental and simulated results and a finite element method (Lene*, Chouchaoui*). The model rapidity and its sensitivity to geometrical parameters allow the study of unit-cell dimensions influence on compliance terms. In figure 4, we present the effect of the weft yarn waviness, assimilated to the unitcell height H, in the case of a plain-woven composite presenting the initial parameters of plain2. The variations of the compliance terms qy

6 132 Computer Methods in Composite Materials (average value of U* and Ug approaches) are described in the case of H varying from 160 to 480 iim. These geometrical bounds corresponds to the minimum and maximum weft yarn waviness. The variations of the total volume of fiber Vfg are also shown. For H=320 im, the warp and weft yarns present the same waviness (H=4b); the value of Vfg is then maximum. For H ranging from 160 to 320 jam, a decrease of qyy is observed (Aqyy=37%). This seems to be inconsistent with the waviness increase along the Y-direction (weft direction). Nevertheless, this can be explained by the increase of Vfg. When Vfg decreases again, qyy increases more rapidly than he decreased (increase of 86 % between H=320 and 480 jam). The variations of q%% can be deduced from those of qyy symmetrically around H=320 jam. We add that q%y et qss respectively decrease of 54 and 66% between H=160 and 320 jam. Glass Epoxy Carbon PA 12 E,, E22-& Gi2=Gn G Table 1. Constituents properties. Vi2=Vi3=V r volum vplurnc e -tm H a b wp H L Plain Plain >wf ^^r Figure 3. Plain-woven fabric unit-cell geometrical parameters. Satin Plain 1 Satin Exact Tis3D Exp. Exact Tis3D Table 2. Comparisons between experimental and numerical results Height H [^m] Figure 4. Influence of H on the compliance terms qy.

7 3.3 Failure Computer Methods in Composite Materials 133 Bi-axial tensile tests have been carried out on composite plates with plain2 reinforcement. In this case, we assume that the composite failure originates from local failures of the tows ((%*=! 240 MPa, (?s*=80 MPa) and the matrix (at*=60 MPa, <Js*=10 MPa) due to tensile and shear stresses. The experimental results and the tensile-tensile strength envelopes simulations (U<, and UE) are shown in figure 5a. First, we must notice that the two simulations give very different values. We also remark that the strength is greater along the X-direction that presents a less waviness then along the Y-direction. Finally, we emphasize that the experimental values are included between the two simulated bounds. This confirms the interest to carry out both the U^ and Ug approaches. In the figure 5b, we show a parametrical study done in order to assess the effect of H on the strength envelopes (average ofu* and UE). For HN320 jam, the strength envelope is symmetric respect to the line Oxx-Cyy- We also observe that the strength <jyy decreases when H (or the waviness) increases. As an example, variation of H from 320 to 480 (am results in a 35%-decrease of the strength in the case of a mono-axial load along the Y-direction. i?nft » H=320 pm " H=360 pm * * 1000 A H=400 nm * x H=440 urn ^800-". 1? 800 «. *H=480pm o " 600; : : : j «*.. x k $ 400- i * * u? : I! * *.. A X. comp. energy AX * strain energy * ^^ AX * o experiments ^ ^ ^^ MAX * 0 1 _.-.,- n ^ yi r r- i»» * i " i ' /. Q (\\\ Figures 5. (a) Comparison between simulated and experimental tensiletensile strength envelopes, (b) Influence of H on the strength envelopes. 4 Model predictions in the case of a 3D-braided composites We propose to test the validity of our numerical procedure for the failure behavior from experiments carried out on Carbon/PA12 3D rectangular Cartesian braided fabrics. The mechanical properties of the constituents are summed up in table 1.

8 134 Computer Methods in Composite Materials 4.1 Geometrical and material characteristics In order to determine the unit-cell geometry of the 3D rectangular Cartesian braided composites, the sectioning of specimens is carried out (figure 6). It allows the path reconstitution of each braiding yarn along the repetition unit. The orientations of each of yarn elements within the subcells and the volume of fiber in the composite can be determined from the process parameters. 4.2 Elasticity Model predictions and experimental values of compliance terms deduced from tensile and shear tests are compared in the table 3. First, we observe important differences between the two energetical approaches. They are respectively of 25, 14 and 25% for S%%, Sss and S%y. We also notice that the experimental value of 8%% is included between the two bounds. The term Sss is underestimated (ASss=15.4%) and the term S%y is overestimated (AS%y=7.3%). These low differences between experimental and simulated values reveal the correct reliability of our model in the case of the elastic behavior of 3D-braided composites. In figure 7, we complete the elastic study by showing the influence of the braiding angle 6 on the compliance terms. We remark that the term S%% increases with the braiding angle that is rather logical since the yarn move away from the X-direction. The term Sss decreases with 0 down to a value included between 40 and 50. Digitization sectioning, \ idealized geometry Figure 6. 3D braided unit-cell reconstitution by specimens sectioning. 4.3 Progressive failure Tensile tests are carried out on forty-three-yarn-braided-composites. The figure 8a shows a comparison between three experimental and two simulated progressive damage functions. In this case, data used to study the braided composite failure behavior are restricted to axial tension and shear strengths of the braiding yarns.

9 Computer Methods in Composite Materials 135 :600r &SS s*y U U(J Exp (a) Figure 7. (a) simulated and experimental compliance terms in the case of a 3D-braided composite, (b) Influence of the braiding angle. The meso-cells strength values are individually assigned according to Weibull laws which parameters are obtained from experiments carried out on yarn elements (bigaud^). The cumulative distribution for tensile and shear strength are: F^=l-exp F,=l-exp L: yarn element length (3 5=reference length) a: axial stress i: shear stress In the case of the U<? approach, the first simulated meso-element failure occurs before the one given by the Ug approach (130 MPa according to Uc and 180 MPa according to Us). The failure of the whole braided composite is then predicted before that determined from the Ug approach. We conclude the study of 3D-braided composites failure by the influence of the braiding angle on the tensile strength. We notice the significant effect of this parameter. The tensile strength value decreases from 805 to 87 MPa when 6 varies from 10 to ^ " (a) e [pni/m] Figures 8. (a) Comparisons between experimental and simulated damage functions in the case of a 3D-braided composite, (b) Influence of the braiding angle.

10 136 Computer Methods in Composite Materials 5 Conclusions A numerical procedure based on the knowledge of textile geometry is proposed in order to simulate the elastic and the failure behavior of woven and braided composites. The elastic predictions are shown to be quite close to usual F.E.M. and experimental results. The reliability of the model can be used to carry out parametrical studies. As far as the damage simulations are concerned, we have observed that experimental strength values are mostly included between the bounds predicted by our two energetical approaches. All these observations are rather encouraging since TIS3D can deal with more or less complex textile composite. In the future, this numerical procedure will be used in order to design the properties of tubular interlock braided composites. References [1] Bigaud, D. & Hamelin, P. TIS3D Software: From geometrical description to mechanical prediction - Application to woven fabric reinforced composites, Proc. ofcadcomp96, pp , [2] Bigaud, D. & Hamelin, P. Mechanical properties prediction of textile reinforced composite materials using a multi-scale energetical approach, Composite Structures, Vol. 38, N 4, pp , [3] Chen, D. and Cheng, S. Analysis of composite materials: A micromechanical approach, Journal of Reinforced Plastics and Composites, 12, pp , [4] Chouchaoui, C.S. Modelisation du comportement des materiaux composites a renforts tisses et a matrice organique, Ph.D. thesis, Universite de technologic de Compiegne, France, [5] Lene, F., Hassim, A. & Paumelle, P. Homogenized behaviour of woven fabric composites, Proc. of "Comportement des composites a renforts tissus - Comportement dynamique des composites", Ed. Pluralis, pp , 1991.

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE Jean Paul Charles, Christian Hochard,3, Pierre Antoine Aubourg,3 Eurocopter, 375 Marignane cedex, France Unimeca, 6 rue J. Curie, 3453

More information

Transactions on Engineering Sciences vol 21, 1998 WIT Press, ISSN

Transactions on Engineering Sciences vol 21, 1998 WIT Press,   ISSN Micromechanical modelling of textile composites using variational principles A. Prodromou, Ph. Vandeurzen, G. Huysmans, J. Ivens & I. Verpoest Department ofmetallurgy and Materials Engineering, Katholieke

More information

Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension, compression or shear

Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension, compression or shear Xi an 2-25 th August 217 Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension compression or shear Heyin Qi 1 Mingming Chen 2 Yonghong Duan 3 Daxu

More information

FINITE ELEMENT ANALYSIS OF THE ELASTIC CONSTITUTIVE BEHAVIOR OF A 2.5D INTERLOCK COMPOSITE

FINITE ELEMENT ANALYSIS OF THE ELASTIC CONSTITUTIVE BEHAVIOR OF A 2.5D INTERLOCK COMPOSITE FINITE ELEMENT ANALYSIS OF THE ELASTIC CONSTITUTIVE BEHAVIOR OF A 2.5D INTERLOCK COMPOSITE NEHME Samer *, HAGEGE Benjamin *, KAABI Abderrahmen **, BENZEGGAGH Malk * * Université de Technologie de Compiègne,

More information

2 Experiment of GFRP bolt

2 Experiment of GFRP bolt 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FATIGUE LIFE EVALUATION OF BOLT MADE OF WOVEN FABRIC FRP Takeshi INOUE*, Hiroaki NAKAI**, Tetsusei KURASHIKI**, Masaru ZAKO**, Yuji KOMETANI*** *Graduate

More information

Dynamic analysis of Composite Micro Air Vehicles

Dynamic analysis of Composite Micro Air Vehicles Dynamic analysis of Composite Micro Air Vehicles Shishir Kr. Sahu Professor and Head, Civil Engineering, National Institute of Technology, Rourkela, India E-mail: sksahu@nitrkl.ac.in ABSTRACT The present

More information

Composite models 30 and 131: Ply types 0 and 8 calibration

Composite models 30 and 131: Ply types 0 and 8 calibration Model calibration Composite Bi-Phase models 30 and 3 for elastic, damage and failure PAM-CRASH material model 30 is for solid and 3 for multi-layered shell elements. Within these models different ply types

More information

Acta Materiae Compositae Sinica Vol123 No12 April 2006

Acta Materiae Compositae Sinica Vol123 No12 April 2006 Acta Materiae Compositae Sinica Vol123 No12 April 2006 : 1000 3851 (2006) 02 0059 06 23 2 4 2006 3, (, 300160) :, 4 / 3D 2 0 30 45 60 90 :,, ; 4,, ;,, : ; ; : TB332 ; V258. 3 : A Mechanical anisotropy

More information

Nigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37

Nigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37 Nigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37 APPLICATION OF THE REISSNERS PLATE THEORY IN THE DELAMINATION ANALYSIS OF A THREE-DIMENSIONAL, TIME- DEPENDENT, NON-LINEAR, UNI-DIRECTIONAL

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

LOCKING AND STABILITY OF 3D TEXTILE COMPOSITE REINFORCEMENTS DURING FORMING

LOCKING AND STABILITY OF 3D TEXTILE COMPOSITE REINFORCEMENTS DURING FORMING 10th International Conference on Composite Science and Technology ICCST/10 A.L. Araújo, J.R. Correia, C.M. Mota Soares, et al. (Editors) IDMEC 015 LOCKING AND STABILITY OF 3D TEXTILE COMPOSITE REINFORCEMENTS

More information

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS H. Kumazawa and T. Takatoya Airframes and Structures Group, Japan Aerospace Exploration Agency 6-13-1, Ohsawa, Mitaka,

More information

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion Van Paepegem, W. and Degrieck, J. (3. alculation of Damage-dependent Directional Failure Indices from the sai-wu Static Failure riterion. omposites Science and echnology, 63(, 35-3. alculation of Damage-dependent

More information

EVALUATION OF DAMAGE DEVELOPMENT FOR NCF COMPOSITES WITH A CIRCULAR HOLE BASED ON MULTI-SCALE ANALYSIS

EVALUATION OF DAMAGE DEVELOPMENT FOR NCF COMPOSITES WITH A CIRCULAR HOLE BASED ON MULTI-SCALE ANALYSIS THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EVALUATION OF DAMAGE DEVELOPMENT FOR NCF COMPOSITES WITH A CIRCULAR HOLE BASED ON MULTI-SCALE ANALYSIS T. Kurashiki 1 *, Y. Matsushima 1, Y. Nakayasu

More information

INVESTIGATION OF THE PROCESSING PARAMETERS OF A 3D WOVEN REINFORCEMENT

INVESTIGATION OF THE PROCESSING PARAMETERS OF A 3D WOVEN REINFORCEMENT INVESTIGATION OF THE PROCESSING PARAMETERS OF A 3D WOVEN REINFORCEMENT Andreas Endruweit, Dhiren K. Modi and Andrew C. Long School of Mechanical, Materials and Manufacturing Engineering, University of

More information

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha

More information

A Stress Gradient Failure Theory for Textile Structural Composites. Final Technical Report submitted to ARO

A Stress Gradient Failure Theory for Textile Structural Composites. Final Technical Report submitted to ARO A Stress Gradient Failure Theory for Textile Structural Composites Final Technical Report submitted to ARO By RYAN KARKKAINEN and BHAVANI SANKAR University of Florida Department of Mechanical & Aerospace

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

NUMERICAL MODELLING OF COMPOSITE PIN- JOINTS AND EXPERIMENTAL VALIDATION

NUMERICAL MODELLING OF COMPOSITE PIN- JOINTS AND EXPERIMENTAL VALIDATION NUMERICAL MODELLING OF COMPOSITE PIN- JOINTS AND EXPERIMENTAL VALIDATION Fabrice PIERRON*, François CERISIER*, and Michel GRÉDIAC** * SMS/ Département Mécanique et Matériaux, École Nationale Supérieure

More information

A continuum elastic plastic model for woven-fabric/polymer-matrix composite materials under biaxial stresses

A continuum elastic plastic model for woven-fabric/polymer-matrix composite materials under biaxial stresses Composites Science and Technology 61 (2001) 2501 2510 www.elsevier.com/locate/compscitech A continuum elastic plastic model for woven-fabric/polymer-matrix composite materials under biaxial stresses G.

More information

MESO-SCALE MODELLING IN THERMOPLASTIC 5-HARNESS SATIN WEAVE COMPOSITE

MESO-SCALE MODELLING IN THERMOPLASTIC 5-HARNESS SATIN WEAVE COMPOSITE MESO-SCALE MODELLING IN THERMOPLASTIC 5-HARNESS SATIN WEAVE COMPOSITE S. Daggumati a*,i. De Baere a, W. Van Paepegem a, J. Degrieck a, J. Xu b, S.V. Lomov b, I. Verpoest b a Ghent University, Dept. of

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Contact analysis for the modelling of anchors in concrete structures H. Walter*, L. Baillet** & M. Brunet* *Laboratoire de Mecanique des Solides **Laboratoire de Mecanique des Contacts-CNRS UMR 5514 Institut

More information

Crashworthiness of Composite Structures with Various Fiber Architectures

Crashworthiness of Composite Structures with Various Fiber Architectures 11 th International L-DYNA Users Conference Crash afety Crashworthiness of Composite tructures with Various Fiber Architectures Nageswara R. Janapala 1, Fu-Kuo Chang, Robert K. Goldberg 3, Gary D. Roberts

More information

Open-hole compressive strength prediction of CFRP composite laminates

Open-hole compressive strength prediction of CFRP composite laminates Open-hole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr

More information

INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS

INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS ISSN 1846-6168 (Print), ISSN 1848-5588 (Online) ID: TG-217816142553 Original scientific paper INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS Željko PENAVA, Diana ŠIMIĆ PENAVA, Željko

More information

Elastic parameters prediction under dynamic loading based on the. unit cell of composites considering end constraint effect

Elastic parameters prediction under dynamic loading based on the. unit cell of composites considering end constraint effect Elastic parameters prediction under dynamic loading based on the unit cell of composites considering end constraint effect Wang Meng 1,, Fei Qingguo 1,, Zhang Peiwei 1, (1. Institute of Aerospace Machinery

More information

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,

More information

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France 20 th International Conference on Composite Materials Copenhagen, 19-24th July 2015 Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. Thierry Lorriot 1, Jalal El Yagoubi

More information

Plane Strain Test for Metal Sheet Characterization

Plane Strain Test for Metal Sheet Characterization Plane Strain Test for Metal Sheet Characterization Paulo Flores 1, Felix Bonnet 2 and Anne-Marie Habraken 3 1 DIM, University of Concepción, Edmundo Larenas 270, Concepción, Chile 2 ENS - Cachan, Avenue

More information

Multi-scale digital image correlation of strain localization

Multi-scale digital image correlation of strain localization Multi-scale digital image correlation of strain localization J. Marty a, J. Réthoré a, A. Combescure a a. Laboratoire de Mécanique des Contacts et des Strcutures, INSA Lyon / UMR CNRS 5259 2 Avenue des

More information

Mechanical modelling of SiC/SiC composites and design criteria

Mechanical modelling of SiC/SiC composites and design criteria Mechanical modelling of SiC/SiC composites and design criteria F. Bernachy CEA, DEN/DMN/SRMA/LC2M, Gif-sur-Yvette, France L. Gélébart CEA, DEN/DMN/SRMA/LC2M, Gif-sur-Yvette, France J. Crépin Centre des

More information

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent

More information

Progressive Failure Analysis of Plain Weaves Using Damage Mechanics Based Constitutive Laws

Progressive Failure Analysis of Plain Weaves Using Damage Mechanics Based Constitutive Laws Progressive Failure Analysis of Plain Weaves Using Damage Mechanics Based Constitutive Laws M. Kollegal, S. N. Chatterjee and G. Flanagan Materials Sciences Corporation, 500 Office Center Drive, Suite

More information

ANALYSIS OF LOAD FLOW AND STRESS CONCENTRATIONS IN TEXTILE COMPOSITES

ANALYSIS OF LOAD FLOW AND STRESS CONCENTRATIONS IN TEXTILE COMPOSITES 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS ANALYSIS OF LOAD FLOW AND STRESS CONCENTRATIONS IN TEXTILE COMPOSITES Deepak Goyal*, John D. Whitcomb*, Julian Varghese* *Department of Aerospace Engineering,

More information

Multiscale analyses of the behaviour and damage of composite materials

Multiscale analyses of the behaviour and damage of composite materials Multiscale analyses of the behaviour and damage of composite materials Presented by Didier BAPTISTE ENSAM, LIM, UMR CNRS 8006 151 boulevard de l hôpital l 75013 PARIS, France Research works from: K.Derrien,

More information

CHARACTERIZATION AND DAMAGE EVOLUTION OF S.M.C COMPOSITES MATERIALS BY ULTRASONIC METHOD

CHARACTERIZATION AND DAMAGE EVOLUTION OF S.M.C COMPOSITES MATERIALS BY ULTRASONIC METHOD CHARACTERIZATION AND DAMAGE EVOLUTION OF S.M.C COMPOSITES MATERIALS BY ULTRASONIC METHOD M. SAYARI, D.BAPTISTE, M. BOCQUET AND J.FITOUSSI Laboratoire de Microstructure et Mécanique des Matériaux, URA CNRS

More information

ScienceDirect. Unit cell model of woven fabric textile composite for multiscale analysis. Anurag Dixit a *,Harlal Singh Mali b, R.K.

ScienceDirect. Unit cell model of woven fabric textile composite for multiscale analysis. Anurag Dixit a *,Harlal Singh Mali b, R.K. Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 68 ( 2013 ) 352 358 The Malaysian International Tribology Conference 2013 (MITC2013) Unit cell model of woven fabric textile

More information

ANALYSIS OF YARN BENDING BEHAVIOUR

ANALYSIS OF YARN BENDING BEHAVIOUR ANALYSIS OF YARN BENDING BEHAVIOUR B. Cornelissen, R. Akkerman Faculty of Engineering Technology, University of Twente Drienerlolaan 5, P.O. Box 217; 7500 AE Enschede, the Netherlands b.cornelissen@utwente.nl

More information

IDENTIFICATION OF THE ELASTIC PROPERTIES ON COMPOSITE MATERIALS AS A FUNCTION OF TEMPERATURE

IDENTIFICATION OF THE ELASTIC PROPERTIES ON COMPOSITE MATERIALS AS A FUNCTION OF TEMPERATURE IDENTIFICATION OF THE ELASTIC PROPERTIES ON COMPOSITE MATERIALS AS A FUNCTION OF TEMPERATURE Hugo Sol, hugos@vub.ac.be Massimo Bottiglieri, Massimo.Bottiglieri@vub.ac.be Department Mechanics of Materials

More information

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic

More information

Micro-meso draping modelling of non-crimp fabrics

Micro-meso draping modelling of non-crimp fabrics Micro-meso draping modelling of non-crimp fabrics Oleksandr Vorobiov 1, Dr. Th. Bischoff 1, Dr. A. Tulke 1 1 FTA Forschungsgesellschaft für Textiltechnik mbh 1 Introduction Non-crimp fabrics (NCFs) are

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

A STRAIN-BASED DAMAGE MECHANICS MODELING FOR WOVEN FABRIC COMPOSITES UNDER BIAXIAL FATIGUE LOADING

A STRAIN-BASED DAMAGE MECHANICS MODELING FOR WOVEN FABRIC COMPOSITES UNDER BIAXIAL FATIGUE LOADING International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 3, March 2018, pp. 282 291, Article ID: IJCIET_09_03_030 Available online at http://http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=3

More information

Nonlinearities in mechanical behavior of textile composites

Nonlinearities in mechanical behavior of textile composites Composite Structures 71 (25) 61 67 www.elsevier.com/locate/compstruct Nonlinearities in mechanical behavior of textile composites Enrico DÕAmato Energetics Departement, L Aquila University, 674 Monteluco

More information

Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas

Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas San Miguel de Tucuman, Argentina September 14 th, 2011 Seminary on Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas Antonio Caggiano 1, Guillermo Etse 2, Enzo

More information

International Journal of Advanced Engineering Technology E-ISSN

International Journal of Advanced Engineering Technology E-ISSN Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,

More information

Code_Aster. SSNP161 Biaxial tests of Kupfer

Code_Aster. SSNP161 Biaxial tests of Kupfer Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Kupfer Summary: Kupfer [1] is interested to characterize the performances of the concrete under biaxial loadings.

More information

In-situ local strain measurement in textile composites with embedded optical fibre sensors

In-situ local strain measurement in textile composites with embedded optical fibre sensors In-situ local strain measurement in textile composites with embedded optical fibre sensors S. Daggumati, E. Voet, I. De Baere, W. Van Paepegem & J. Degrieck Ghent University, Department of Materials Science

More information

Influence of uniaxial and biaxial tension on meso-scale geometry and strain fields in a woven composite

Influence of uniaxial and biaxial tension on meso-scale geometry and strain fields in a woven composite Composite Structures 77 (7) 45 418 www.elsevier.com/locate/compstruct Influence of uniaxial and biaxial tension on meso-scale geometry and strain fields in a woven composite P. Potluri *, V.S. Thammandra

More information

An Evaluation of Simplified Methods to Compute the Mechanical Steady State

An Evaluation of Simplified Methods to Compute the Mechanical Steady State An Evaluation of Simplified Methods to Compute the Mechanical Steady State T. Herbland a,b, G. Cailletaud a, S. Quilici a, H. Jaffal b, M. Afzali b a Mines Paris Paris Tech, CNRS UMR 7633, BP 87, 91003

More information

A MULTISCALE MODELING APPROACH FOR THE PROGRESSIVE FAILURE ANALYSIS OF TEXTILE COMPOSITES MAO JIAZHEN NATIONAL UNIVERSITY OF SINGAPORE

A MULTISCALE MODELING APPROACH FOR THE PROGRESSIVE FAILURE ANALYSIS OF TEXTILE COMPOSITES MAO JIAZHEN NATIONAL UNIVERSITY OF SINGAPORE A MULTISCALE MODELING APPROACH FOR THE PROGRESSIVE FAILURE ANALYSIS OF TEXTILE COMPOSITES MAO JIAZHEN NATIONAL UNIVERSITY OF SINGAPORE 2014 A MULTISCALE MODELING APPROACH FOR THE PROGRESSIVE FAILURE ANALYSIS

More information

The influence of fiber undulation on the mechanical properties of FRP-laminates. Christian Fiebig, Michael Koch

The influence of fiber undulation on the mechanical properties of FRP-laminates. Christian Fiebig, Michael Koch URN (Paper): urn:nbn:de:gbv:ilm1-2014iwk-099:3 58 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 08 12 September 2014 URN: urn:nbn:de:gbv:ilm1-2014iwk:3 The influence of fiber undulation

More information

IMPACT ON LAMINATED COMPOSITE PLATES: COMPARISON OF TEST AND SIMULATION RESULTS OBTAINED WITH LMS SAMTECH SAMCEF

IMPACT ON LAMINATED COMPOSITE PLATES: COMPARISON OF TEST AND SIMULATION RESULTS OBTAINED WITH LMS SAMTECH SAMCEF V ECCOMAS Thematic Conference on the Mechanical Response of Composites COMPOSITES 015 S.R. Hallett and J.J.C. Remmers (Editors) IMPACT ON LAMINATED COMPOSITE PLATES: COMPARISON OF TEST AND SIMULATION RESULTS

More information

FRACTURE MECHANICS APPROACHES STRENGTHENING USING FRP MATERIALS

FRACTURE MECHANICS APPROACHES STRENGTHENING USING FRP MATERIALS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICATIO Publishers, D-79104 Freiburg, Germany FRACTURE MECHANICS APPROACHES STRENGTHENING USING FRP MATERIALS Triantafillou Department

More information

A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK

A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK A. Medjahed, M. Matallah, S. Ghezali, M. Djafour RiSAM, RisK Assessment and Management,

More information

Evaluation Axisymmetric Analysis of Thermal Stress Residual Near Fiber/Epoxy Interface

Evaluation Axisymmetric Analysis of Thermal Stress Residual Near Fiber/Epoxy Interface Materials Research, Vol. 12, No. 2, 133-137, 2009 2009 Evaluation Axisymmetric Analysis of Thermal Stress Residual Near Fiber/Epoxy Interface Aboubakar Seddik Bouchikhi Department of Mechanical Engineering,

More information

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES Konuralp Girgin (Ph.D. Thesis, Institute of Science and Technology,

More information

Don Robbins, Andrew Morrison, Rick Dalgarno Autodesk, Inc., Laramie, Wyoming. Abstract

Don Robbins, Andrew Morrison, Rick Dalgarno Autodesk, Inc., Laramie, Wyoming. Abstract PROGRESSIVE FAILURE SIMULATION OF AS-MANUFACTURED SHORT FIBER FILLED INJECTION MOLDED PARTS: VALIDATION FOR COMPLEX GEOMETRIES AND COMBINED LOAD CONDITIONS Don Robbins, Andrew Morrison, Rick Dalgarno Autodesk,

More information

ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL

ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL 5 th International Conference Advanced Composite Materials Engineering COMAT 2014 16-17 October 2014, Braşov, Romania ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE

More information

DAMAGE MODELLING OF A SATIN SEPCARB COMPOSITE

DAMAGE MODELLING OF A SATIN SEPCARB COMPOSITE DAMAGE MODELLING OF A SATIN SEPCARB COMPOSITE X. Aubard 1, C. Cluzel 2,3, P. Ladevèze 2 and J.N. Périé 2 1 SEP Division de SNECMA, Le Haillan BP 37, 33165 St MEDARD-EN-JALLES, FRANCE 2 LMT Cachan, E.N.S.

More information

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

More information

DRAPING SIMULATION. Recent achievements and future trends. Dr. Sylvain Bel LGCIE University Lyon 1

DRAPING SIMULATION. Recent achievements and future trends. Dr. Sylvain Bel LGCIE University Lyon 1 DRAPING SIMULATION Recent achievements and future trends 1 Dr. Sylvain Bel LGCIE University Lyon 1 2 DRAPING SIMULATION Why? How? What? DRAPING SIMULATION WHY? Clamps Punch Fabric Die 1 2 Resin 3 4 Fig.

More information

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds

More information

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and

More information

CHARACTERIZATION OF THE LONGITUDINAL AND TRANSVERSE THERMAL CONDUCTIVITIES OF CARBON/EPOXY COMPOSITE MATERIAL

CHARACTERIZATION OF THE LONGITUDINAL AND TRANSVERSE THERMAL CONDUCTIVITIES OF CARBON/EPOXY COMPOSITE MATERIAL CHARACTERIZATION OF THE LONGITUDINAL AND TRANSVERSE THERMAL CONDUCTIVITIES OF CARBON/EPOXY COMPOSITE MATERIAL A. Azran 1,3*, Pr. Y.Lapusta 2, B.Laine 3, J.Di Tomaso 4 1 LAMI/JTT Composite, Materials and

More information

INFLUENCE OF RANDOM LOCAL LOAD SHARING ON TENSILE BEHAVIOR OF MULTIFILAMENT TOWS AND CERAMIC MATRIX COMPOSITE FAILURE

INFLUENCE OF RANDOM LOCAL LOAD SHARING ON TENSILE BEHAVIOR OF MULTIFILAMENT TOWS AND CERAMIC MATRIX COMPOSITE FAILURE INFLUENCE OF RANDOM LOCAL LOAD SHARING ON TENSILE BEHAVIOR OF MULTIFILAMENT TOWS AND CERAMIC MATRIX COMPOSITE FAILURE V. Calard and J. Lamon Laboratoire des Composites Thermostructuraux UMR 501 (CNRS-SNECMA-CEA-University

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

Composites Science and Technology

Composites Science and Technology Composites Science and Technology 7 (1) 194 1941 Contents lists available at ScienceDirect Composites Science and Technology journal homepage: www.elsevier.com/locate/compscitech Local damage in a 5-harness

More information

Random Fiber-Matrix Model for Predicting Damage in Multiscale Analysis of Textile Composites under Thermomechanical Loads

Random Fiber-Matrix Model for Predicting Damage in Multiscale Analysis of Textile Composites under Thermomechanical Loads THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Random Fiber-Matrix Model for Predicting Damage in Multiscale Analysis of Textile Composites under Thermomechanical Loads W. R. McLendon, J. D.

More information

FRACTURE TOUGHNESS OF ADHESIVE BONDED COMPOSITE JOINTS UNDER MIXED MODE LOADING.

FRACTURE TOUGHNESS OF ADHESIVE BONDED COMPOSITE JOINTS UNDER MIXED MODE LOADING. FRACTURE TOUGHNESS OF ADHESIVE BONDED COMPOSITE JOINTS UNDER MIXED MODE LOADING. X. J. Gong, F. Hernandez, G. Verchery. ISAT - Institut Supérieur de l Automobile et des Transports, LRMA - Laboratoire de

More information

1 Durability assessment of composite structures

1 Durability assessment of composite structures 1 Durability assessment of composite structures 1.1 Introduction Composite structures for mechanical and aerospace applications are designed to retain structural integrity and remain durable for the intended

More information

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 48 (5) A TWO-PHASE SIMPLIFIED COLLAPSE ANALYSIS OF RC BUILDINGS PHASE : SPRING NETWORK PHASE Shanthanu RAJASEKHARAN, Muneyoshi

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X Parameters controlling the numerical simulation validity of damageable composite toughness testing S. Yotte, C. Currit, E. Lacoste, J.M. Quenisset Laboratoire de Genie Meanique - IUT 'A\ Domaine Universitaire,

More information

Material characterization and modeling of carbon carbon textile composites

Material characterization and modeling of carbon carbon textile composites High Performance Structures and Materials V 3 Material characterization and modeling of carbon carbon textile composites J. Vorel, J. Němeček & M. Šejnoha Department of Mechanics, Faculty of Civil Engineering,

More information

Overview of Probabilistic Modeling of Woven Ceramic Matrix Composites ABSTRACT

Overview of Probabilistic Modeling of Woven Ceramic Matrix Composites ABSTRACT ABSTRACT An overview of current research efforts in understanding the cause of variability in the thermo-mechanical properties of woven ceramic matrix composites is presented. Statistical data describing

More information

NUMERICAL SIMULATION OF CONCRETE EXPOSED TO HIGH TEMPERATURE DAMAGE AND EXPLOSIVE SPALLING

NUMERICAL SIMULATION OF CONCRETE EXPOSED TO HIGH TEMPERATURE DAMAGE AND EXPLOSIVE SPALLING NUMERICAL SIMULATION OF CONCRETE EXPOSED TO HIGH TEMPERATURE DAMAGE AND EXPLOSIVE SPALLING Prof. Joško Ožbolt 1 Josipa Bošnjak 1, Goran Periškić 1, Akanshu Sharma 2 1 Institute of Construction Materials,

More information

DESIGN OF LAMINATES FOR IN-PLANE LOADING

DESIGN OF LAMINATES FOR IN-PLANE LOADING DESIGN OF LAMINATES FOR IN-PLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily

More information

Debonding process in composites using BEM

Debonding process in composites using BEM Boundary Elements XXVII 331 Debonding process in composites using BEM P. Prochazka & M. Valek Czech Technical University, Prague, Czech Republic Abstract The paper deals with the debonding fiber-matrix

More information

A direct micromechanics method for analysis of failure initiation of plain weave textile composites

A direct micromechanics method for analysis of failure initiation of plain weave textile composites Composites Science and Technology 66 (2006) 137 150 COMPOSITES SCIENCE AND TECHNOLOGY www.elsevier.com/locate/compscitech A direct micromechanics method for analysis of failure initiation of plain weave

More information

Multiscale Approach to Damage Analysis of Laminated Composite Structures

Multiscale Approach to Damage Analysis of Laminated Composite Structures Multiscale Approach to Damage Analysis of Laminated Composite Structures D. Ivančević and I. Smojver Department of Aeronautical Engineering, Faculty of Mechanical Engineering and Naval Architecture, University

More information

PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses

PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses OPTIMAT BLADES Page 1 of 24 PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses first issue Peter Joosse CHANGE RECORD Issue/revision date pages Summary of changes draft 24-10-02

More information

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382-390 Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading K Sivaji Babu a *, K Mohana

More information

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Hany El Naggar, Ph.D., P. Eng. and M. Hesham El Naggar, Ph.D., P. Eng. Department of Civil Engineering

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 Delamination Studies in Fibre-Reinforced Polymer Composites K.Kantha Rao, Dr P. Shailesh, K. Vijay Kumar 1 Associate Professor, Narasimha Reddy Engineering College Hyderabad. 2 Professor, St. Peter s Engineering

More information

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,

More information

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without

More information

Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites

Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites Module 4: Behaviour of a Laminae-II Learning Unit 1: M1 M4.1 Mechanics of Composites M4.1.1 Introduction to Mechanics of Composites The relation between ply uniaxial strengths and constituent properties

More information

Simulation of the mechanical behaviour of woven fabrics at the scale of fibers

Simulation of the mechanical behaviour of woven fabrics at the scale of fibers Simulation of the mechanical behaviour of woven fabrics at the scale of fibers Damien Durville To cite this version: Damien Durville. Simulation of the mechanical behaviour of woven fabrics at the scale

More information

EXPERIMENTAL AND NUMERICAL STUDY OF OBLIQUE IMPACT ON HELICOPTER BLADES INFLUENCE OF THE CURVATURE

EXPERIMENTAL AND NUMERICAL STUDY OF OBLIQUE IMPACT ON HELICOPTER BLADES INFLUENCE OF THE CURVATURE EXPERIMENTAL AND NUMERICAL STUDY OF OBLIQUE IMPACT ON HELICOPTER BLADES INFLUENCE OF THE CURVATURE F. Pascal a, P. Navarro a*, S. Marguet a, J.F. Ferrero a, J. Aubry b, S. Lemaire b a Université de Toulouse,

More information

Failure Analysis of Unidirectional Composite Pinned- Joints

Failure Analysis of Unidirectional Composite Pinned- Joints 217 IJEDR Volume, Issue 4 ISSN: 2321-9939 Failure Analysis of Unidirectional Composite Pinned- Joints 1 Sai Ashok.M, 2 Mr. U. Koteswara Rao 1 M-tech Machine Design, 2 Associate Professor & Asst. COE 1

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown

More information

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,

More information

This is an author-deposited version published in: Eprints ID: 10605

This is an author-deposited version published in:  Eprints ID: 10605 Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

FINITE ELEMENT MODELING OF BALLISTIC IMPACT ON MULTI-LAYER WOVEN FABRICS

FINITE ELEMENT MODELING OF BALLISTIC IMPACT ON MULTI-LAYER WOVEN FABRICS THE 19 TH NTERNATONAL CONFERENCE ON COMPOSTE MATERALS FNTE ELEMENT MODELNG OF BALLSTC MPACT ON MULT-LAYER WOVEN FABRCS D. Zhu 1*, B. Mobasher 2, S.D. Rajan 2 1 College of Civil Engineering, Hunan University,

More information

MULTI-SCALE UNIT CELL ANALYSES OF TEXTILE COMPOSITES

MULTI-SCALE UNIT CELL ANALYSES OF TEXTILE COMPOSITES 5th ASC ngineering Mechanics Conference June -5,, Columbia University, New York, NY M MULTI-SCAL UNIT CLL ANALYSS OF TXTIL COMPOSITS Colby C. Swan,MemberASC andhyungjookim ABSTRACT Unit cell homogenization

More information

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Abstract: FRP laminated composites have been extensively used in Aerospace and allied industries

More information

EFFECTS OF FIBRE SIZING ON DAMAGE DEVELOPMENT IN UNIDIRECTIONAL GLASS/EPOXY COMPOSITES

EFFECTS OF FIBRE SIZING ON DAMAGE DEVELOPMENT IN UNIDIRECTIONAL GLASS/EPOXY COMPOSITES EFFECTS OF FIBRE SIZING ON DAMAGE DEVELOPMENT IN UNIDIRECTIONAL GLASS/EPOXY COMPOSITES M. Kharrat 1,3, T. Monlèon 1,2, L. Carpentier 3, A. Chateauminois 1 and M.L. Maspoch 2 1 Laboratoire d Ingéniérie

More information

Analysis of nonlinear shear deformations in CFRP and GFRP textile laminates

Analysis of nonlinear shear deformations in CFRP and GFRP textile laminates Loughborough University Institutional Repository Analysis of nonlinear shear deformations in CFRP and GFRP textile laminates This item was submitted to Loughborough University's Institutional Repository

More information

Micromechanics Based Multiscale Modeling. of the Inelastic Response and Failure of. Complex Architecture Composites. Kuang Liu

Micromechanics Based Multiscale Modeling. of the Inelastic Response and Failure of. Complex Architecture Composites. Kuang Liu Micromechanics Based Multiscale Modeling of the Inelastic Response and Failure of Complex Architecture Composites by Kuang Liu A Dissertation Presented in Partial Fulfillment of the Requirements for the

More information

Prediction of Micromechanical Behaviour of Elliptical Frp Composites

Prediction of Micromechanical Behaviour of Elliptical Frp Composites Prediction of Micromechanical Behaviour of Elliptical Frp Composites Kiranmayee.Nerusu Dept. of Mechanical Engg. P. V. P. Siddhartha Institute of Technology, Vijayawada 520 007, A.P, India. P. Phani Prasanthi

More information