The Standard Model Effective Field Theory and Dimension 6 Operators

Size: px
Start display at page:

Download "The Standard Model Effective Field Theory and Dimension 6 Operators"

Transcription

1 The Standard Model Effective Field Theory and Dimension 6 Operators Aneesh Manohar University of California, San Diego 17 Mar 2015 / Vienna A Manohar (UCSD) 17 Mar 2015 / Vienna 1 / 46

2 Outline The SMEFT Equations of Motion Operators Naive Dimensional Analysis µ eγ and MFV Holomorphy A Manohar (UCSD) 17 Mar 2015 / Vienna 2 / 46

3 Talk based on: Rodrigo Alonso, Elizabeth Jenkins, Michael Trott, AM C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and h γγ Decay, JHEP 1304:016 (2013). E.E. Jenkins, A.V. Manohar and M. Trott, On Gauge Invariance and Minimal Coupling, JHEP 1309:063 (2013). E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and λ Dependence, JHEP 1310:087 (2013). E.E. Jenkins, A.V. Manohar and M. Trott, Naive Dimensional Analysis Counting of Gauge Theory Amplitudes and Anomalous Dimensions, Phys. Lett. B726 (2013) E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 1401:035 (2014). R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 1404:159 (2014). R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without Supersymmetry in the Standard Model Effective Field Theory, arxiv: [hep-ph].

4 SMEFT A model independent way to include the effects of new physics. The assumption is that there are no new particles at the electroweak scale. This is what the data indicates. Fields are the SM fields. H breaks SU(2) U(1). L = L SM + L 5 Λ + L 6 Λ Need to include the Cannot just stop at a given dimension. A Manohar (UCSD) 17 Mar 2015 / Vienna 4 / 46

5 H = ( ( ϕ + 1 v + h + iϕ 0 ) 2 ) ϕ +, ϕ 0 give mass to W, Z, and h is the Higgs scalar. H H W 2 ( 1 2 v 2 + hv + 1 ) 2 h2 W 2 Couplings of h fixed because it is part of H. An alternate approach is to assume SU(2) U(1) U(1) broken symmetry, i.e. a chiral field U, and a scalar field h, with arbitrary couplings. A Manohar (UCSD) 17 Mar 2015 / Vienna 5 / 46

6 Notation Fields are three generations of fermions L : q r, l r, R : u r, d r, e r r = 1,..., n g = 3 the scalar doublet H, and SU(3) SU(2) U(1) gauge fields. L = L SM + 1 Λ L(5) + 1 Λ 2 L(6) +... note the dots Λ is the scale of new physics, and assume Λ > v Power Counting L (6) m2 H Λ 2 L (8) m4 H Λ 4 L (6) L (6) m4 H Λ 4 m H a typical electroweak scale (v, m t, m Z ) A Manohar (UCSD) 17 Mar 2015 / Vienna 6 / 46

7 SMEFT: dim 5 L 5 = c rs ( H i l iαr ) ( H j l jβs ) ɛ αβ i : SU(2) index α : Lorentz index r : flavor index Violates lepton number L = 2. This is the operator that gives Majorana mass to the neutrino. The scale is the seesaw scale and is high. Not relevant for physics at LHC. A Manohar (UCSD) 17 Mar 2015 / Vienna 7 / 46

8 SMEFT: dim 6 Lots of operators at dimension six. 59 operators that preserve baryon number, and 4/5 that violate baryon number. Buchmuller and Wyler, Nucl.Phys. B268 (1986) 621 Grzadkowski et al. JHEP 1010 (2010) 085 Flavor indices run over n g = 3 values baryon number conserving operators, including flavor indices CP-even and 1149 CP-odd operators. Alonso, Jenkins, AM, and Trott, JHEP 1404 (2014) 159. Notation: L : q r, l r, R : u r, d r, e r r = 1,..., n g = 3 H j, Hj = ɛ ij H j X µν : G A µν, W I µν, B µν A Manohar (UCSD) 17 Mar 2015 / Vienna 8 / 46

9 Fierz Identities Write down all possible gauge invariant operators of dimension 6. Use Fierz identities: ψ 1 γ µ P L ψ 2 ψ 3 γ µ P L ψ 4 = ψ 3 γ µ P L ψ 2 ψ 1 γ µ P L ψ 4 So in the four-quark operators: p γµ q rβj q λk s γ µq tσl q λk s γµ q rβj q αi p γ µq tσl q αi q γ µ Γ q q γ µ Γ q, Γ Γ 1 1, T A T A, τ I τ I, T A τ I T A τ I Two independent contractions: Q (1) qq = q p γ µ q r q s γ µ q t 1 1 Q (3) qq = q p γ µ τ I q r q s γ µ τ I q t τ I τ I A Manohar (UCSD) 17 Mar 2015 / Vienna 9 / 46

10 not needed: Q (8) qq = q p γ µ T A q r q s γ µ T A q t T A T A Q (3,8) qq = q p γ µ τ I T A q r q s γ µ τ I T A q t τ I T A τ I T A [T A] α [T A] λ = 1 β σ 2 δα σ δβ λ 1 δβ α 2N δλ σ 1 + swap color c [τ I] i [τ I] k = 2δl i δk j δj i δk l 1 + swap weak j l 1 swap both swap weak swap color A Manohar (UCSD) 17 Mar 2015 / Vienna 10 / 46

11 SM Equations of Motion D 2 H k λv 2 H k + 2λ(H H)H k + q j Y u u ɛ jk + d Y d q k + e Y e l k = 0, for the Higgs field (mix H and fermion operators) i /D q j = Y u u H j + Y d d H j, i /D d = Y d q j H j, i /D u = Y u q j H j, i /D l j = Y e eh j, i /D e = Y e l j H j, for the fermion fields, and [D α, G αβ ] A = g 3 j A β, [Dα, W αβ ] I = g 2 j I β, Dα B αβ = g 1 j β, for the gauge fields, where [D α, F αβ ] is the covariant derivative in the adjoint representation. A Manohar (UCSD) 17 Mar 2015 / Vienna 11 / 46

12 Equations of Motion Can use classical equations of motion in a quantum field theory. No quantum corrections needed. Green s functions can change, but the S-matrix does not. The two versions of the operator do not agree diagram by diagram. Only the total contribution to the S-matrix is unchanged. A Manohar (UCSD) 17 Mar 2015 / Vienna 12 / 46

13 SMEFT Operators Leading higher dimension operators are d = 6. Assuming B and L conservation, there are 59 independent dimension-six operators which form complete basis of d = 6 operators. 59 operators divided into eight operator classes. 1 : X 3 2 : H 6 3 : H 4 D 2 4 : X 2 H 2 5 : ψ 2 H 3 6 : ψ 2 XH 7 : ψ 2 H 2 D 8 : ψ 4 X = G A µν, W I µν, B µν ψ = q, l, u, d, e Buchmuller & Wyler 1986 Grzadkowski, Iskrzynski, Misiak and Rosiek 2010 A Manohar (UCSD) 17 Mar 2015 / Vienna 13 / 46

14 Dimension Six Operators Q G Q G 1 : X 3 f ABC Gµ Aν Gν Bρ Gρ Cµ ABC Aν f G µ Gν Bρ Gρ Cµ 2 : H 6 3 : H4D2 Q H (H H) 3 Q H (H H) (H H) Q HD ( H D ) ( µh H D ) µh 5 : ψ 2 H 3 + h.c. Q eh (H H)( l pe r H) Q uh (H H)( q pu r H) Q W ɛ IJK Wµ Iν Wν Jρ Wρ K µ Q dh (H H)( q pd r H) Q W IJK Iν ɛ W µ Wν Jρ Wρ K µ 4 : X 2 H 2 Q HG H H GµνG A Aµν Q H G H H G µνg A Aµν Q HW H H WµνW I Iµν Q H W H H W µνw I Iµν Q HB H H B µνb µν Q H B H H B µνb µν Q HWB H τ I H WµνB I µν Q H W B H τ I H W µνb I µν 6 : ψ 2 XH + h.c. Q ew ( l pσ µν e r )τ I HWµν I Q eb ( l pσ µν e r )HB µν Q ug ( q pσ µν T A u r ) H Gµν A Q uw ( q pσ µν u r )τ I H Wµν I Q ub ( q pσ µν u r ) H B µν Q dg ( q pσ µν T A d r )H Gµν A Q dw ( q pσ µν d r )τ I H Wµν I Q db ( q pσ µν d r )H B µν 7 : ψ 2 H 2 D Q (1) Hl (H i D µh)( l pγ µ l r ) Q (3) Hl (H i D I µh)( l pτ I γ µ l r ) Q He (H i D µh)(ē pγ µ e r ) Q (1) Hq (H i D µh)( q pγ µ q r ) Q (3) Hq (H i D I µh)( q pτ I γ µ q r ) Q Hu (H i D µh)(ū pγ µ u r ) Q Hd (H i D µh)( d pγ µ d r ) Q Hud + h.c. i( H D µh)(ū pγ µ d r ) A Manohar (UCSD) 17 Mar 2015 / Vienna 14 / 46

15 Dimension Six Operators 8 : ( LL)( LL) 8 : ( RR)( RR) 8 : ( LL)( RR) Q ll ( l p γ µ l r )( l s γ µ l t ) Q (1) qq ( q p γ µ q r )( q s γ µ q t ) Q (3) qq ( q p γ µ τ I q r )( q s γ µ τ I q t ) Q (1) lq ( l p γ µ l r )( q s γ µ q t ) Q (3) lq ( l p γ µ τ I l r )( q s γ µ τ I q t ) Q ee (ē p γ µ e r )(ē s γ µ e t ) Q uu (ū p γ µ u r )(ū s γ µ u t ) Q dd ( d p γ µ d r )( d s γ µ d t ) Q eu (ē p γ µ e r )(ū s γ µ u t ) Q ed (ē p γ µ e r )( d s γ µ d t ) Q (1) ud (ū p γ µ u r )( d s γ µ d t ) Q (8) ud (ū p γ µ T A u r )( d s γ µ T A d t ) Q le ( l p γ µ l r )(ē s γ µ e t ) Q lu ( l p γ µ l r )(ū s γ µ u t ) Q ld ( l p γ µ l r )( d s γ µ d t ) Q qe ( q p γ µ q r )(ē s γ µ e t ) Q (1) qu ( q p γ µ q r )(ū s γ µ u t ) Q (8) qu ( q p γ µ T A q r )(ū s γ µ T A u t ) Q (1) qd ( q p γ µ q r )( d s γ µ d t ) Q (8) qd ( q p γ µ T A q r )( d s γ µ T A d t ) 8 : ( LR)( RL) + h.c. Q ledq ( l j pe r )( d s q tj ) 8 : ( LR)( LR) + h.c. Q (1) quqd ( q pu j r )ɛ jk ( q s k d t ) Q (8) quqd ( q pt j A u r )ɛ jk ( q s k T A d t ) Q (1) lequ ( l pe j r )ɛ jk ( q s k u t ) Q (3) lequ ( l pσ j µν e r )ɛ jk ( q s k σ µν u t ) Buchmuller & Wyler 1986 Grzadkowski, Iskrzynski, Misiak and Rosiek 2010 ψ 4 JJ, (LR)(LR), (LR)(RL)

16 In the broken phase: H = [ ( ϕ + 1 v + h + ϕ 0 ) 2 ] X 2 H 2 : h γγ, h gg ψ 2 XH : l r σ µν e s F µν µ eγ ψ 2 H 3 : higgs coupling mass = 3 1 A Manohar (UCSD) 17 Mar 2015 / Vienna 16 / 46

17 Power Counting for the RGE Amplitudes and anomalous dimensions obey power counting: µ d dµ C(6) C (6) µ d dµ C(8) C (8) + [C (6)] 2 In the SM, because of the dimension two operator H H, have µ d dµ C(4) C (4) + m 2 H C(6) +... equivalently m 2 H v 2 SM parameter RG evolution affected. A Manohar (UCSD) 17 Mar 2015 / Vienna 17 / 46

18 Anomalous Dimension Matrix g 3 X 3 H 6 H 4 D 2 g 2 X 2 H 2 yψ 2 H 3 gyψ 2 XH ψ 2 H 2 D ψ g 3 X 3 1 g H 6 2 g 6 λ λ, g 2, y 2 g 4, g 2 λ, λ 2 g 6, g 4 λ λy 2, y 4 0 λy 2, y 4 0 H 4 D 2 3 g 6 0 g 2, λ, y 2 g 4 y 2 g 2 y 2 g 2, y 2 0 g 2 X 2 H 2 4 g g 2, λ, y 2 0 y yψ 2 H 3 5 g 6 0 g 2, λ, y 2 g 4 g 2, λ, y 2 g 2 λ, g 4, g 2 y 2 g 2, λ, y 2 λ, y 2 gyψ 2 XH 6 g g 2 1 g 2, y ψ 2 H 2 D 7 g 6 0 g 2, y 2 g 4 y 2 g 2 y 2 g 2, λ, y 2 y 2 ψ 4 8 g g 2 y 2 g 2, y 2 g 2, y 2 Structure of anomalous dimension matrix. Jenkins, Trott, AM: Many entries exist because of EOM A Manohar (UCSD) 17 Mar 2015 / Vienna 18 / 46

19 Naive Dimensional Analysis Georgi, AM: NPB234 (1984) 189 Jenkins, Trott, AM: Related recent work by Buchalla et al. arxiv: L = f 2 Λ 2 ( ψ f Λ ) a ( H f ) b ( yh Λ NDA weight w powers of f 2 in denominator. ) c ( ) D d ( ) gx e Λ Λ 2, Λ = 4πf L = f 2 Λ 2 ( H f ) 6 = Λ 2 (H H) 3 f 4, w = 2 γ ij ( ) λ nλ ( ) y 2 ny ( ) g 2 ng 16π 2 16π 2 16π 2, N = n λ + n y + n g N = 1 + w i w j A Manohar (UCSD) 17 Mar 2015 / Vienna 19 / 46

20 Familiar Example: b sγ Use Then O q = bγ µ P L u uγ µ P L s w = 1 O g = g 16π 2 m b b σ µν G µν P L s w = 0 µ d [ Cq dµ C g ] [ = L L + 1 L 1 L ] [ Cq C g ] where L is the number of loops of the diagram. A Manohar (UCSD) 17 Mar 2015 / Vienna 20 / 46

21 Tree-Loop Mixing (incorrect) Claim Operators can be classified into tree and loop Based on some notion of minimal coupling The mixing of tree and loop operators vanishes at one loop Bauer et al. for HQET provides a counterexample A Manohar (UCSD) 17 Mar 2015 / Vienna 21 / 46

22 γ 68 as a counterexample [ µ d dµ C eb = 1 pr 16π 2 [ µ d dµ C ew = 1 pr 16π 2 µ d dµ C ub pr = 1 16π 2 µ d dµ C uw pr = 1 16π 2 [ [ 4g 1 N c (y u + y q )C (3) 2g 2 N c C (3) lequ prst 4g 1 (y e + y l ) C (3) 2g 2 C (3) Class 6 are the magnetic dipole operators: Class 8 are four-fermion operators Q (3) lequ stpr lequ prst [Y u ] ts ] +... lequ stpr [Y u ] ts ] +... [Y e ] ts ] +... [Y e ] ts ] +..., Q eb pr = ( l p,a σ µν e r )H a B µν lequ = ( l pσ j µν e r )ɛ jk ( q s k σ µν u t ) = 4( l pe j r )ɛ jk ( q s kα u αt ) 8( l pu j αt )ɛ jk ( q s kα e r ) = 4Q (1) lequ 8( l j pu αt )ɛ jk ( q kα s e r ) A Manohar (UCSD) 17 Mar 2015 / Vienna 22 / 46

23 Full anomalous dimension matrix computed, including all Yukawa couplings, not just y t. Alonso, Jenkins, Trott, AM: JHEP 1310 (2013) 087, JHEP 1401 (2014) 035, arxiv: Group theory can be quite complicated the penguin graph gives an anomalous dimension 7 pages long. Concentrate on a small part of the result. A Manohar (UCSD) 17 Mar 2015 / Vienna 23 / 46

24 There are some big numbers: The evolution of the H 6 coefficient is µ d dµ C H = 1 16π 2 [ 108 λ C H 160 λ 2 C H + 48 λ 2 C HD ] +... Independent of normalization of C H. For m H 126 GeV, 108 λ/(16π 2 ) 0.1. A Manohar (UCSD) 17 Mar 2015 / Vienna 24 / 46

25 X 2 H 2 (Gauge-Higgs) Operators Grojean, Jenkins, Trott, AM: JHEP 1304 (2013) 016 Look at only 4 operators (since there are 59 operators) C HW c W, etc. rescaled by g i g j /(2Λ 2 ) O G = g2 3 2 Λ 2 H H G A µ νg A µ ν, O B = g2 1 2 Λ 2 H H B µ ν B µ ν, O W = g2 2 2 Λ 2 H H W a µ νw a µ ν, O WB = g 1 g 2 2 Λ 2 H τ a H W a µ νb µ ν, Also CP-odd versions, which do not interfere with the SM amplitude. When you expand them out in the broken phase, H h + v, get h γγ, h γz and gg h. A Manohar (UCSD) 17 Mar 2015 / Vienna 25 / 46

26 Considered these operators in an earlier work, and an explicit model that produced these operators. AM, M.B. Wise, PLB636 (206) 107, PRD74 (2006) An exactly solvable model that produces only the O W, O WB and O B operators and the W 3 operator: AM: PLB 726 (2013) 347 L = L SM + D µ S α D µ S α V, the usual Standard Model Lagrangian L SM, the S α, α = 1,..., N kinetic energy term, and the potential V = m 2 S S α S α + λ 1 N H H S α S α + λ 2 N H τ a H S α τ a S α + λ 3 N S α S α S β S β + λ 4 N S α τ a S α S β τ a S β A Manohar (UCSD) 17 Mar 2015 / Vienna 26 / 46

27 c W = (λ 1/λ 3 ) 48 log Λ2 3 Φ, c B = (λ 1/λ 3 )Y 2 S 12 log Λ2 3 Φ, c WB = (λ 2/λ 4 )Y S 24 log Λ2 4 Φ c W 3 = N g π 2 Φ. disproves claims that these are loop-supressed operators, and smaller than other contributions such as four-fermion operators. All terms depend on RG invariant quantities. A Manohar (UCSD) 17 Mar 2015 / Vienna 27 / 46

28 Constraint on c WB from the S parameter. c WB = 1 Λ 2 8π v 2 S. The gg h amplitude gets contribution from c G For h γγ, For h γz, c γγ = c W + c B c WB c γz = c W cot θ W c B tan θ W c WB cot 2θ W, A Manohar (UCSD) 17 Mar 2015 / Vienna 28 / 46

29 Contribution to the Higgs Decay Rate Γ(h γγ) Γ SM (h γγ) and I γ Note the 4π π2 v 2 c γγ Λ 2 I γ Similar expressions for gg h and h γz. 2 A Manohar (UCSD) 17 Mar 2015 / Vienna 29 / 46

30 Brief Experimental Summary ATLAS: µ γγ = 1.17 ± 0.27 CMS: µ γγ = 1.14 ± 0.25 Naive combination of these results (not recommended) gives If due to c γγ : µ γγ ± 0.18 v 2 Λ 2 c γγ(m h ) 0.086, ± The second solution is preferred. The first solution is when c γγ switches the sign of the standard model h γγ amplitude. The experiments are sensitive to these effects if the new physics scale Λ is near a few TeV. (4.5 TeV) A Manohar (UCSD) 17 Mar 2015 / Vienna 30 / 46

31 Magnetic Dipole Operator Ceγ = 1 C eb 1 C ew rs g 1 rs g 2 rs L = ev 2 Ceγ rs e r σ µν P R e s F µν + h.c. where r and s are flavor indices ({e e, e µ, e τ } {e, µ, τ}) and Ceγ = {Y (s) + e ( csc2 θ W + 14 )} sec2 θ W Ceγ rs rs + 2Ceγ rv [Y e Y e] vs + (2 sin θ W cos θ W ) [Y ey e ] rw C ez ( ) cos2 θ W [Y ey e ] rw Ceγ + ws e2 (12 cot 2θ W ) C ez rs cot θ W [Y ( ) e] rs CHWB + ic H W B ws + 8 ) 3 e2 [Y e] rs (C γγ + i Cγγ + e (cot 2 θ W 5 3 tan θ W + 16[Y u ] wv C (3) lequ rsvw as corrected by Signer and Pruna, arxiv:1408:3565 ) ) [Y e] rs (C γz + i CγZ A Manohar (UCSD) 17 Mar 2015 / Vienna 31 / 46

32 The current experimental limit BR(µ eγ) < from the MEG experiment implies at the low energy scale µ m µ. This bound implies v 2 me Ceγ µe TeV 2 m t C (3) m lequ TeV 2 e µett using the estimate ln(λ/m H )/(16π 2 ) 0.01 for the renormalization group evolution, and assuming that this term is the only contribution to at low energies. Ceγ µe A Manohar (UCSD) 17 Mar 2015 / Vienna 32 / 46

33 The anomalous magnetic moment of the muon is δa µ = 4m µv 2 Re Ceγ µµ which yields the limits C HWB 0.6 TeV 2, C γγ 4 TeV 2, m t Re C (3) m lequ µ 7 TeV 2, µµtt assuming that each of these is the only contribution to Ceγ µµ. The bound on the electric dipole moment of the electron translates to the limits CH W B TeV 2, C γγ TeV 2, m t Im C lequ m e TeV 2 using the recently measured upper bound d e < e cm from the ACME collaboration, again assuming each of these terms is the only contribution. eett A Manohar (UCSD) 17 Mar 2015 / Vienna 33 / 46

34 Minimal Flavor Violation MFV based on the structure of flavor violation in the SM. i SU(3) i i = Q, U, D, L, E Y D U Q Y D U D The RGE preserves MFV, since it is a symmetry But if MFV is violated by dimension-six operators, then MFV feeds into all the sectors via the RGE Allows one to test MFV in a model-independent way MFV not compatible with GUTS. Accidental symmetry of the SM. Recent polarization B modes indicate a GUT scale. A Manohar (UCSD) 17 Mar 2015 / Vienna 34 / 46

35 Empirical Observation ( ) Ceγ C γγ + i Cγγ, Ceγ no ( ) C γγ i Cγγ, Ceγ f (z) depends only on z but not z Find this after adding all graphs and using the EOM. Individual contributions are not holomorphic, and only the total respects holomorphy. Observation: 1-loop anomalous dimension matrix respects holomorphy to a large extent. Using EOM, so equivalent to computing (on-shell) S-matrix elements. A Manohar (UCSD) 17 Mar 2015 / Vienna 35 / 46

36 Holomorphy Recall d = 6 operator classes 1 : X 3 2 : H 6 3 : H 4 D 2 4 : X 2 H 2 5 : ψ 2 H 3 6 : ψ 2 XH 7 : ψ 2 H 2 D 8 : ψ 4 Divide d = 6 Operators into Holomorphic, Antiholomorphic and Non-Holomorphic Operators X ± µν = 1 2 (X µν i X µν ), X ± µν = ±ix ± µν, X µν ɛ µναβ X αβ /2 X µν = X µν X X ± ψ L, R Complex self-duality condition in Minkowski space. A Manohar (UCSD) 17 Mar 2015 / Vienna 36 / 46

37 Holomorphy Definition The holomorphic part of the Lagrangian, L h, is the Lagrangian constructed from the fields X +, R, L, but none of their hermitian conjugates. These transform as (0, 1 2 ) or (0, 1) under the Lorentz group, i.e. only under the SU(2) R part of SU(2) L SU(2) R.

38 Holomorphy L d=6 = L h + L h + L n = C h Q h + C h Q h + C n Q n { Q h X + 3, X +2 H 2, ( Lσ µν R ) } X + H, (LR)(LR) { Q h X 3, X 2 H 2, ( Rσ µν L ) } X H, (RL)(RL) { } Q n H 6, H 4 D 2, ψ 2 H 3, ψ 2 H 2 D, (LR)(RL), JJ Some of the n operators are complex. A Manohar (UCSD) 17 Mar 2015 / Vienna 38 / 46

39 Holomorphy Ċ i 16π 2 µ d dµ C i = j=h,h,n γ ij C j, i = h, h, n γ hh γ hh γ hn γ hh γ hh γ hn γ nh γ nh γ nn γ hh = γ hh γ hh = γ hh γ hn = γ hn only need to look at: ( γhh γ hh γ hn ) γ nh γ nh γ nn

40 0: Vanishes by NDA, i.e. NDA gives a negative loop order : There is no one-loop diagram (including from EOM) h F : Holomorphic. Nonholomorphic terms forbidden by NDA and flavor symmetry 0: Vanishes by explicit computation, after adding all contributions. Individual graphs need not vanish. h: Holomorphic, by explicit computation : Non-zero Q ew = ( l p σ µν e r )τ I HW I µν Q (1) lequ = ( l j pe r )ɛ jk ( q k s u t ) but NDA says only order y 2. Ċ ew Y e Y e Y uc (1) lequ A Manohar (UCSD) 17 Mar 2015 / Vienna 40 / 46

41 Holomorphy (X + ) 3 (X + ) 2 H 2 ψ 2 X + H (LR)(LR) (LR)(RL) JJ ψ 2 H 3 H 6 H 4 D 2 ψ 2 H 2 D (X + ) 3 h (X + ) 2 H 2 h h h ψ 2 X + H h h h h F (LR)(LR) 0 h F h F Y uy e,d Y uy e,d 0 (LR)(RL) 0 0 Y u Y d, Y uy e h F 0 JJ 0 0 Y u Y e,d ψ 2 H 3 0 Y u,d,e h h H 6 0 H 4 D ψ 2 H 2 D

42 The 1 1 block is holomorphic γ hh = 0 The 1 2 block vanishes except for the red terms proportional to Y u Y e or Y u Y d. L Y = q j Y d d H j q j Y u u H j l j Y e e H j + h.c. H j = ɛ ij H j ψ 2 H 3 behaves to some extent like a holomorphic operator. one entry present even if Yukawa couplings set to zero. A Manohar (UCSD) 17 Mar 2015 / Vienna 42 / 46

43 RGE of SM parameters Recall that µ d dµ C(4) m 2 H C(6) ( ) µ d dµ τ = µ d 4π dµ gx 2 i θ X 2π = 2m2 H πgx 2 C HX,+ where θ-terms are normalized as L (θ X g 2 X /32π2 )X X and X {SU(3), SU(2), U(1)}. τ is the SUSY holmorphic gauge coupling A Manohar (UCSD) 17 Mar 2015 / Vienna 43 / 46

44 Entry: Some Numerology ) Ċ H = 3g2 (g g2 2 12λ Re(C HW,+ ) ) 3g1 (g g2 2 4λ Re(C HB,+ ) ( ) 3g 1 g 2 g1 2 + g2 2 4λ Re(C HWB,+ ) +... The C HB,+ and C HWB,+ terms vanish if g g2 2 = 4λ: m 2 H = 2m2 Z = (129 GeV)2, and the C HW,+ term vanishes if g g2 2 = 12λ: If g g2 2 = 4λ: m 2 H = 2 3 m2 Z m2 W = (119 GeV)2, Ċ H = 6g 2 1 g2 2 Re(C HW,+) +... A Manohar (UCSD) 17 Mar 2015 / Vienna 44 / 46

45 No explanation for this at present. A Manohar (UCSD) 17 Mar 2015 / Vienna 45 / 46

46 Summary Complete RGE of dimension-six operators of SM EFT computed for first time. Contribution of dimension-six operators to running of SM parameters calculated for first time. RG evolution of dimension-six operators important for Higgs boson production gg h and decay h γγ and h Z γ, which occur at one loop in SM. Significant constraints on flavor structure of SM EFT. Test of MFV hypothesis. Approximate holomorphy of 1-loop anomalous dimension matrix of dimension-six operators. Does it hold in a more general gauge theory? Does any of it extend beyond one loop? A Manohar (UCSD) 17 Mar 2015 / Vienna 46 / 46

RGE of d = 6 Operators in SM EFT

RGE of d = 6 Operators in SM EFT RGE of d = 6 Operators in SM EFT Elizabeth Jenkins Department of Physics University of California, San Diego Madrid HEFT2014, September 29, 2014 Papers C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott,

More information

Lectures on Standard Model Effective Field Theory

Lectures on Standard Model Effective Field Theory Lectures on Standard Model Effective Field Theory Yi Liao Nankai Univ SYS Univ, July 24-28, 2017 Page 1 Outline 1 Lecture 4: Standard Model EFT: Dimension-six Operators SYS Univ, July 24-28, 2017 Page

More information

arxiv: v3 [hep-ph] 27 Jul 2015

arxiv: v3 [hep-ph] 27 Jul 2015 Prepared for submission to JHEP arxiv:131.014v3 [hep-ph] 7 Jul 015 Renormalization Group Evolution of the Standard Model Dimension Six Operato III: Gauge Coupling Dependence and Phenomenology Rodrigo Alonso,

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Flavor Physics Part 2

Flavor Physics Part 2 Flavor Physics Part 2 Wolfgang Altmannshofer altmanwg@ucmail.uc.edu Summer School on Symmetries, Fundamental Interactions and Cosmology 2016, Abtei Frauenwörth, September 20, 2016 Wolfgang Altmannshofer

More information

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

Effective Field Theory and EDMs

Effective Field Theory and EDMs ACFI EDM School November 2016 Effective Field Theory and EDMs Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture III outline EFT approach to physics beyond the Standard Model Standard Model EFT

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Lepton Flavor Violation

Lepton Flavor Violation Lepton Flavor Violation I. The (Extended) Standard Model Flavor Puzzle SSI 2010 : Neutrinos Nature s mysterious messengers SLAC, 9 August 2010 Yossi Nir (Weizmann Institute of Science) LFV 1/39 Lepton

More information

EWSB by strongly-coupled dynamics: an EFT approach

EWSB by strongly-coupled dynamics: an EFT approach EWSB by strongly-coupled dynamics: an EFT approach EWSB by strongly-coupled dynamics: an EFT approach (page 1) Outline Motivation Linear vs non-linear realization of EWSB Organizing the expansion: Power-counting

More information

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University Minimal Flavor Violating Z boson Xing-Bo Yuan Yonsei University Yonsei University, Korea 21 Sep 2015 Outline 1. Standard Model and Beyond 2. Energy Scalar of New Physics Beyond the SM From Naturalness:

More information

arxiv: v1 [hep-ph] 16 Mar 2017

arxiv: v1 [hep-ph] 16 Mar 2017 Flavon-induced lepton flavour violation arxiv:1703.05579v1 hep-ph] 16 Mar 017 Venus Keus Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu, FIN-00014 University of Helsinki,

More information

Effective field theory approach to the Higgs boson phenomenology

Effective field theory approach to the Higgs boson phenomenology Effective field theory approach to the Higgs boson phenoenology Supervisor: Dr. Roberto Contino Roa, October 8th, 013 Introduction After the discovery of the Higgs boson, we are looking for New Physics

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

Dark matter and collider signatures from extra dimensions

Dark matter and collider signatures from extra dimensions KAIST TF, A. Menon, Z. Sullivan, PRD 86 (2012) 093006 L. Edelhäuser, TF, M. Krämer, JHEP 1308 (2013) 091 TF, KC Kong, SC Park, JHEP 1305 (2013) 111, arxiv:1309.xxxx COSMO 2013, Cambridge Outline Universal

More information

arxiv: v1 [hep-ph] 27 Nov 2014

arxiv: v1 [hep-ph] 27 Nov 2014 Top couplings and new physics: theoretical overview and developments arxiv:1411.7685v1 [hep-ph] 27 Nov 2014 Cen Zhang Department of Physics, Brookhaven National Laboratory, Upton, N.Y., 11973, U.S.A. E-mail:

More information

Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators.

Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators. Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators. Janusz Rosiek based on JHEP 1404 (2014) 167, A. Crivellin, S. Najjari, JR Qui Nhon, 1 Aug 2014 Lepton Flavor Violation

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

arxiv: v1 [hep-ph] 25 Nov 2015

arxiv: v1 [hep-ph] 25 Nov 2015 The Non-Linear Higgs Legacy of the LHC Run I Tyler Corbett, 1, Oscar J. P. Éboli,3 Dorival Gonçalves, 4 J. Gonzalez Fraile, 5 Tilman Plehn, 5 and Michael Rauch 6 1 C.N. Yang Institute for Theoretical Physics,

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

New Physics Scales to be Lepton Colliders (CEPC)

New Physics Scales to be Lepton Colliders (CEPC) New Physics Scales to be Probed @ Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 2016-1-11 Contribution to CEPC precdr & CDR Collaboration

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Optimal-Observable Analysis of Top Production/Decay at Photon-Photon Colliders

Optimal-Observable Analysis of Top Production/Decay at Photon-Photon Colliders Optimal-Observable Analysis of Top Production/Decay at Photon-Photon Colliders Univ. of Tokushima Zenrō HIOKI 1. Introduction 2. Basic Framework 3. Optimal-Observable Analyses 4. Summary 1. Introduction

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Higgs EFTs and signatures of a nonstandard Higgs from flavor physics

Higgs EFTs and signatures of a nonstandard Higgs from flavor physics Higgs EFTs and signatures of a nonstandard Higgs from flavor physics Oscar Catà LMU Munich INT Workshop, September 17, 2015 (based on collaborations with G. Buchalla, A. Celis, M. Jung and C. Krause) Outline

More information

Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective

Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective Tyler Corbett Melbourne Node arxiv:1705.02551, with Aniket Joglekar (Chicago), Hao-Lin Li (Amherst), Jiang-Hao Yu (Amherst).

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

Gauged Flavor Symmetries

Gauged Flavor Symmetries Gauged Flavor Symmetries NOW 2012 Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 15.9.2012 based on J.H., Werner Rodejohann, PRD 84 (2011), PRD 85 (2012); Takeshi Araki, J.H., Jisuke Kubo,

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN The Higgs as a composite pseudo-goldstone boson Roberto Contino - CERN Part I: The need for an EWSB sector...... and how this could be strongly interacting The physics discovered so far: L = L 0 + L mass

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

arxiv: v2 [hep-ph] 26 Oct 2017

arxiv: v2 [hep-ph] 26 Oct 2017 Leptonic CP violation in the charged sector and effective field theory approach arxiv:1710.08311v2 [hep-ph] 26 Oct 2017 Paul Scherrer Institut,CH-5232 Villigen PSI, Switzerland E-mail: Giovanni-Marco.Pruna@psi.ch

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

Constraining BSM physics in effective Higgs interactions

Constraining BSM physics in effective Higgs interactions Constraining BSM physics in effective Higgs interactions Theory Seminar Liverpool Alexander K Knochel RWTH Aachen 26.02.2014 In collaboration with the Fittino Group (Bonn) M.Krämer, B. Heller, A. Biekötter

More information

Higgs Basis: Proposal for an EFT basis choice for LHC HXSWG

Higgs Basis: Proposal for an EFT basis choice for LHC HXSWG LHC Higgs Cross Section Working Group Higgs Properties LHCHXSWG-INT-015-001 July 15, 015 Higgs Basis: Proposal for an EFT basis choice for LHC HXSWG We acknowledge contributions and feedback from: Hermès

More information

Andreas Crivellin Effective Field Theory, Higgs-quark couplings and Dark Matter Direct Detection in the MSSM

Andreas Crivellin Effective Field Theory, Higgs-quark couplings and Dark Matter Direct Detection in the MSSM Andreas Crivellin Effective Field Theory, Higgs-quark couplings and Dark Matter Direct Detection in the MSSM Supported by a Marie Curie Intra-European Fellowship of the European Community's 7th Framework

More information

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings Matthias Ko nig Johannes Gutenberg-University Mainz 25th International Workshop on Weak Interactions and Neutrinos Heidelberg,

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Effective Lagrangian Approach. Ansgar Denner, University of Würzburg

Effective Lagrangian Approach. Ansgar Denner, University of Würzburg Effective Lagrangian Approach Ansgar Denner, University of Würzburg Hamburg Workshop on Higgs Physics Preparing for Higgs Boson Studies with Future LHC Data DESY Hamburg, October 22, 2014 Introduction

More information

Beyond the Higgs. new ideas on electroweak symmetry breaking

Beyond the Higgs. new ideas on electroweak symmetry breaking E = mc 2 Beyond the Higgs new ideas on electroweak symmetry breaking Higgs mechanism. The Higgs as a UV moderator of EW interactions. Needs for New Physics beyond the Higgs. Dynamics of EW symmetry breaking

More information

Phenomenology of the Higgs Triplet Model at the LHC

Phenomenology of the Higgs Triplet Model at the LHC Phenomenology of the Higgs Triplet Model at the LHC Andrew Akeroyd SHEP, University of Southampton, UK Higgs Triplet Model (HTM) and doubly charged scalars (H ±± ) The decay channel H 1 γγ and contribution

More information

Minimal Lepton Flavor Violation

Minimal Lepton Flavor Violation Minimal Lepton Flavor Violation Benjamin Grinstein INT, Seattle, October 28, 2008 Vincenzo Cirigliano, Gino Isidori, Mark Wise NPB728, 121(2005) NPB752, 18 (2006) NPB763, 35 (2007) Motivation, rationale,

More information

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn Tuesday group seminar 17/03/15 University of Liverpool 1 Introduction Outline The SM & SUSY Flavour Problem. Solving it by imposing a

More information

Dipole operator constraints on composite Higgs models

Dipole operator constraints on composite Higgs models Matthias König May 27th, 2014 Dipole operators: emerge from one-loop correction to fermion-photon coupling f i R f j L γ/g. Various observables are governed by dipole operatores such as electric dipole

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

Baryon and Lepton Number Violation at the TeV Scale

Baryon and Lepton Number Violation at the TeV Scale Baryon and Lepton Number Violation at the TeV Scale S. Nandi Oklahoma State University and Oklahoma Center for High Energy Physics : S. Chakdar, T. Li, S. Nandi and S. K. Rai, arxiv:1206.0409[hep-ph] (Phys.

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

QCD running in neutrinoless double beta decay: Short range mechanism

QCD running in neutrinoless double beta decay: Short range mechanism QCD running in neutrinoless double beta decay: Short range mechanism In Press in PRD/arXiv:1511.03945 Marcela Paz González. Universidad Técnica Federico Santa María. 6-12 January 2016 High Energy Physics

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

Updated S 3 Model of Quarks

Updated S 3 Model of Quarks UCRHEP-T56 March 013 Updated S 3 Model of Quarks arxiv:1303.698v1 [hep-ph] 7 Mar 013 Ernest Ma 1 and Blaženka Melić 1, 1 Department of Physics and Astronomy, University of California, Riverside, California

More information

arxiv:hep-ph/ v3 15 Aug 2006

arxiv:hep-ph/ v3 15 Aug 2006 Flavor Changing Neutral Currents, an Extended calar ector, and the Higgs Production Rate at the LHC arxiv:hep-ph/060617 v3 15 Aug 006 Aneesh V. Manohar 1 and Mark B. Wise 1 Department of Physics, University

More information

Effective Field Theories Beyond the Standard Model

Effective Field Theories Beyond the Standard Model NNPSS-TSI 2010, Vancouver, July 1 2010 Effective Field Theories Beyond the Standard Model Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lecture Introduction: Search for physics BSM! direct

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Effective Lagrangians for Higgs Physics

Effective Lagrangians for Higgs Physics Effective Lagrangians for Higgs Physics Tyler Corbett YITP, SUNY Stony Brook arxiv:1311.1823 (JHEP) 1304.1151 (PRL) 1211.4580 (PRD) 1207.1344 (PRD) T.C., O.J.P. Éboli, J. Gonzalez Fraile, M.C. Gonzalez

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

J. C. Vasquez CCTVal & USM

J. C. Vasquez CCTVal & USM Maorana Higgses at Colliders arxiv:1612.06840 J. C. Vasquez CCTVal & USM ( Work in collaboration with F. esti and M. emevsek) University of Massachusetts, October 2017 Outline The minimal LR model Decay

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo International Workshop On Discoveries In Flavour Physics At E+ E- Colliders

More information

Top quark effects in composite vector pair production at the LHC

Top quark effects in composite vector pair production at the LHC Top quark effects in composite vector pair production at the LHC Antonio Enrique Cárcamo Hernández. Universidad Tecnica Federico Santa Maria. SILAFAE 01, 10th-14th of December of 01. Based on: A. E. Cárcamo

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Perspectives Flavor Physics beyond the Standard Model

Perspectives Flavor Physics beyond the Standard Model Perspectives Flavor Physics beyond the Standard Model Invited Talk at FLASY13 (Jul 2013) OTTO C. W. KONG Nat l Central U, Taiwan Personal :- PhD. dissertation on horizontal/family symmetry Frampton & O.K.

More information

A Two Higgs Doublet Model for the Top Quark

A Two Higgs Doublet Model for the Top Quark UR 1446 November 1995 A Two Higgs Doublet Model for the Top Quark Ashok Das and Chung Kao 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA Abstract A two Higgs doublet

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Electroweak Theory: 3

Electroweak Theory: 3 Electroweak Theory: 3 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS January, 2011 Paul Langacker IAS 55 References Slides

More information

Composite Higgs/ Extra Dimensions

Composite Higgs/ Extra Dimensions Composite Higgs/ Extra Dimensions Eduardo Pontón Instituto de Física Teórica -UNESP & ICTP-SAIFR Snowmass on the Pacific, KITP May 30, 2013 Fundamental Question raised by the SM How and why is the Electroweak

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Carleton University, Ottawa University of Freiburg W. Kilian, J. Reuter, PLB B642 (2006), 81, and work in progress (with

More information

STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS

STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS HODA HESARI SCHOOL OF PARTICLES AND ACCELERATORS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM) The LHeC is a proposed deep inelastic electron-nucleon

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Kinematics in Higgs Fits

Kinematics in Higgs Fits Kinematics in Higgs Fits Universität Heidelberg LHCHXS Meeting, November 2015 Higgs Couplings Standard Model operators [SFitter: Gonzalez-Fraile, Klute, TP, Rauch, Zerwas] Lagrangian [in terms of non-linear

More information

Theory of CP Violation

Theory of CP Violation Theory of CP Violation IPPP, Durham CP as Natural Symmetry of Gauge Theories P and C alone are not natural symmetries: consider chiral gauge theory: L = 1 4 F µνf µν + ψ L i σdψ L (+ψ R iσ ψ R) p.1 CP

More information

PAPER 45 THE STANDARD MODEL

PAPER 45 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Friday, 6 June, 014 1:0 pm to 4:0 pm PAPER 45 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Anything but... Leptogenesis. Sacha Davidson IPN de Lyon/CNRS, France

Anything but... Leptogenesis. Sacha Davidson IPN de Lyon/CNRS, France Anything but... Leptogenesis Sacha Davidson IPN de Lyon/CNRS, France CP Violation in µ e Conversion Sacha Davidson IPN de Lyon/CNRS, France 1. Why is CP in muon physics interesting? in general leptogenesis

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Running quark and lepton masses

Running quark and lepton masses Running quark and lepton masses ------Tables of updated values Shun Zhou MPI für Physik, München Based on the work: Z.Z. Xing, H. Zhang & S.Z., Phys. Rev. D 77, 113016 (2008) 48 th Winter School on Theoretical

More information

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter UCRHEP-T593 Aug 018 arxiv:1808.05417v [hep-ph] 5 Jan 019 Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter Ernest Ma Physics and Astronomy Department, University of California, Riverside,

More information

Lepton flavor nonuniversality

Lepton flavor nonuniversality Lepton flavor nonuniversality + in b s processes Nejc Košnik 6OJWFSTJUZ PG -KVCMKBOB 'BDVMUZ PG.BUIFNBUJDT BOE 1IZTJDT Moriond EW La Thuile, March 13 2016 Outline Introduction Effective theory analysis

More information

arxiv: v1 [hep-ph] 30 Aug 2017

arxiv: v1 [hep-ph] 30 Aug 2017 Proceedings of the Fifth Annual LHCP August 27, 2018 Theoretical aspects of the study of top quark properties arxiv:1708.09201v1 [hep-ph] 30 Aug 2017 Cen Zhang Institute of High Energy Physics, Chinese

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

A Domino Theory of Flavor

A Domino Theory of Flavor A Domino Theory of Flavor Peter Graham Stanford with Surjeet Rajendran arxiv:0906.4657 Outline 1. General Domino Framework 2. Yukawa Predictions 3. Experimental Signatures General Domino Framework Inspiration

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University) D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) Int. J. Mod. Phys. A27 (2012) 1250159 [arxiv: 1109.2276 [hep-ph]] 12/6/2012 SCGT2012@Nagoya University

More information

Electroweak Effective Theory

Electroweak Effective Theory Electroweak Effective Theory Antonio Pich IFIC, Univ. Valencia - CSIC Schladming 2014, Styria, Austria, 1 8 March 2014 Coset Space Coordinates: G SU(2) L SU(2) R H SU(2) L+R H ξ(ϕ) g h ϕ ϕ G/H EWET A.

More information

First steps toward an asymptotically safe model of electroweak interactions

First steps toward an asymptotically safe model of electroweak interactions First steps toward an asymptotically safe model of electroweak interactions (with M. Fabbrichesi, R. Percacci, F. Bazzocchi, L. Vecchi and O. Zanusso) Alberto Tonero SISSA Trieste - Asymptotic Safety Seminar

More information

Aspetti della fisica oltre il Modello Standard all LHC

Aspetti della fisica oltre il Modello Standard all LHC Aspetti della fisica oltre il Modello Standard all LHC (con enfasi sulla verificabilità sperimentale in gruppo I e II) Andrea Romanino SISSA e INFN TS Giornata di Seminari, INFN TS, 07.07.09 The Standard

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information