Electroweak Effective Theory

Size: px
Start display at page:

Download "Electroweak Effective Theory"

Transcription

1 Electroweak Effective Theory Antonio Pich IFIC, Univ. Valencia - CSIC Schladming 2014, Styria, Austria, 1 8 March 2014

2 Coset Space Coordinates: G SU(2) L SU(2) R H SU(2) L+R H ξ(ϕ) g h ϕ ϕ G/H EWET A. Pich Schladming

3 Coset Space Coordinates: G SU(2) L SU(2) R H SU(2) L+R H ξ(ϕ) ξ(ϕ) (ξ L (ϕ),ξ R (ϕ)) G g h ξ L (ϕ) ξ R (ϕ) G g L ξ L (ϕ)h (ϕ,g) G g R ξ R (ϕ)h (ϕ,g) ϕ ϕ G/H EWET A. Pich Schladming

4 Coset Space Coordinates: G SU(2) L SU(2) R H SU(2) L+R H ξ(ϕ) ξ(ϕ) (ξ L (ϕ),ξ R (ϕ)) G g h ξ L (ϕ) ξ R (ϕ) G g L ξ L (ϕ)h (ϕ,g) G g R ξ R (ϕ)h (ϕ,g) ϕ ϕ G/H U(ϕ) ξ L (ϕ)ξ R (ϕ) G g L U(ϕ)g R EWET A. Pich Schladming

5 Coset Space Coordinates: G SU(2) L SU(2) R H SU(2) L+R H ξ(ϕ) ξ(ϕ) (ξ L (ϕ),ξ R (ϕ)) G g h ξ L (ϕ) ξ R (ϕ) G g L ξ L (ϕ)h (ϕ,g) G g R ξ R (ϕ)h (ϕ,g) ϕ ϕ G/H U(ϕ) ξ L (ϕ)ξ R (ϕ) G g L U(ϕ)g R Canonical choice: ξ L (ϕ) = ξ R (ϕ) G u(ϕ) g L u(ϕ)h (ϕ,g) = h(ϕ,g)u(ϕ)g R { U(ϕ) = u(ϕ) 2 } = exp i 2 f Φ EWET A. Pich Schladming

6 CCWZ Formalism: Callan Coleman Wess Zumino u(ϕ) G g L u(ϕ) h (ϕ,g) = h(ϕ,g) u(ϕ) g R SU(2) L+R triplets: X G h(ϕ,g) X h(ϕ,g) R 1 2 σ R, µ R = µ R +[Γ µ,r] u µ i ud µ U u = u µ, h µν = µ u ν + ν u µ Γ µ = 1 2 f µν ± = u Ŵ µν u ±u ˆB µν u { } u( µ i ˆB µ)u + u ( µ i Ŵ µ)u EWET A. Pich Schladming

7 CCWZ Formalism: Callan Coleman Wess Zumino u(ϕ) G g L u(ϕ) h (ϕ,g) = h(ϕ,g) u(ϕ) g R SU(2) L+R triplets: X G h(ϕ,g) X h(ϕ,g) R 1 2 σ R, µ R = µ R +[Γ µ,r] u µ i ud µ U u = u µ, h µν = µ u ν + ν u µ Γ µ = 1 2 f µν ± = u Ŵ µν u ±u ˆB µν u { } u( µ i ˆB µ)u + u ( µ i Ŵ µ)u L (2) EW = v2 4 uµ u µ EWET A. Pich Schladming

8 Resonance Effective Theory Towers of heavy states are usually present in strongly-coupled models of EWSB: Technicolour, Walking TC... The low-energy constants (LECs) of the Goldstone Lagrangian contain information on the heavier states. The lightest states not included in the Lagrangian dominate EWET A. Pich Schladming

9 Resonance Effective Theory Towers of heavy states are usually present in strongly-coupled models of EWSB: Technicolour, Walking TC... The low-energy constants (LECs) of the Goldstone Lagrangian contain information on the heavier states. The lightest states not included in the Lagrangian dominate 1 Build L eff (ϕ i,r k ) with the lightest R k coupled to the ϕ i 2 Require a good UV behaviour Low # of derivatives 3 Match the two effective Lagrangians LECs EWET A. Pich Schladming

10 Resonance Effective Theory Towers of heavy states are usually present in strongly-coupled models of EWSB: Technicolour, Walking TC... The low-energy constants (LECs) of the Goldstone Lagrangian contain information on the heavier states. The lightest states not included in the Lagrangian dominate 1 Build L eff (ϕ i,r k ) with the lightest R k coupled to the ϕ i 2 Require a good UV behaviour Low # of derivatives 3 Match the two effective Lagrangians LECs This program works in QCD: RχT (Ecker Gasser Leutwyler Pich de Rafael) Good dynamical understanding at large N C EWET A. Pich Schladming

11 LO Resonance EW Lagrangian Pich Rosell Sanz-Cillero L eff = L ϕ + R L R + R,R L RR + Triplets: V(1 ), A(1 ++ ) ; Singlet: S 1 (0 ++ ) L S1 +L A +L V = v 2 κ W S 1 u µ u µ + F A 2 2 A µνf µν L S1A = 2 λ SA 1 µ S 1 A µν u ν + F V 2 2 V µν f µν + + i G V 2 2 V µν [u µ u ν ] Antisymmetric V µν and A µν fields (better UV properties): L Kin = 1 λ R λµ νr νµ M2 R RµνRµν µ S 1 µs M2 S S R=V,A EWET A. Pich Schladming

12 Resonance Exchange G V V G V G V 2 2 M V V F V G V F V G V 2 q << 2 M V,A 2 M V V F 2 V 2 F V F V M V F A A F A F 2 A 2 M A a 1 = F2 V 4M 2 V + F2 A 4M 2 A, a 2 = a 3 = F VG V 4M 2 V, a 4 = a 5 = G2 V 4M 2 V EWET A. Pich Schladming

13 Left (Ŵ µ ) and Right (ˆB µ ) Sources: U(ϕ) g L U(ϕ)g R Ŵ µ g L Ŵ µ g L +i g L µ g L, ˆBµ g R ˆBµ g R +i g R µ g R Left / Right (Vector / Axial) Currents EWET A. Pich Schladming

14 Left (Ŵ µ ) and Right (ˆB µ ) Sources: U(ϕ) g L U(ϕ)g R Ŵ µ g L Ŵ µ g L +i g L µ g L, ˆBµ g R ˆBµ g R +i g R µ g R Left / Right (Vector / Axial) Currents Vector Form Factor: ϕ(p 1)ϕ(p 2) J µ V 0 = (p1 p2)µ F v ϕϕ(s) κ W F V V G V F v ϕϕ(s) = 1 + F V G V v 2 s M 2 V s EWET A. Pich Schladming

15 Left (Ŵ µ ) and Right (ˆB µ ) Sources: U(ϕ) g L U(ϕ)g R Ŵ µ g L Ŵ µ g L +i g L µ g L, ˆBµ g R ˆBµ g R +i g R µ g R Left / Right (Vector / Axial) Currents Vector Form Factor: ϕ(p 1)ϕ(p 2) J µ V 0 = (p1 p2)µ F v ϕϕ(s) κ W F V V G V F v ϕϕ(s) = 1 + F V G V v 2 s M 2 V s Short-distance constraint: lim F v s ϕϕ(s) = 0 F V G V = v 2 EWET A. Pich Schladming

16 Axial Form Factor: S 1(p 1)ϕ(p 2) J µ A 0 = (p1 p2)µ F a S 1 ϕ(s) κ W F A A λ 1 SA F a S 1 ϕ (s) = κ W (1 + F Aλ SA 1 κ W v 2 ) s MA 2 s EWET A. Pich Schladming

17 Axial Form Factor: S 1(p 1)ϕ(p 2) J µ A 0 = (p1 p2)µ F a S 1 ϕ(s) κ W F A A λ 1 SA F a S 1 ϕ (s) = κ W (1 + F Aλ SA 1 κ W v 2 ) s MA 2 s Short-distance constraint: lim F a s S 1 ϕ (s) = 0 F A λ SA 1 = κ W v 2 EWET A. Pich Schladming

18 Weinberg Sum Rules Chiral Symmetry: Π µν LR (q) d 4 x e iqx 0 T(J µ L (x)jν R (0) ) 0 = ( g µν q 2 +q µ q ν ) Π LR (q 2 ) = 0 EWET A. Pich Schladming

19 Weinberg Sum Rules Chiral Symmetry: Π µν LR (q) d 4 x e iqx 0 T(J µ L (x)jν R (0) ) 0 = ( g µν q 2 +q µ q ν ) Π LR (q 2 ) = 0 OPE: Π µν LR (q) 0 only through order parameters of EWSB (operators invariant under H but not under G) EWET A. Pich Schladming

20 Weinberg Sum Rules Chiral Symmetry: Π µν LR (q) d 4 x e iqx 0 T(J µ L (x)jν R (0) ) 0 = ( g µν q 2 +q µ q ν ) Π LR (q 2 ) = 0 OPE: Π µν LR (q) 0 only through order parameters of EWSB (operators invariant under H but not under G) Asymptotically-Free Theories: lim s s2 Π LR (s) = 0 (Bernard et al.) EWET A. Pich Schladming

21 Weinberg Sum Rules Chiral Symmetry: Π µν LR (q) d 4 x e iqx 0 T(J µ L (x)jν R (0) ) 0 = ( g µν q 2 +q µ q ν ) Π LR (q 2 ) = 0 OPE: Π µν LR (q) 0 only through order parameters of EWSB (operators invariant under H but not under G) Asymptotically-Free Theories: lim s s2 Π LR (s) = 0 (Bernard et al.) 1 π 1 π 0 0 ds [ImΠ VV (s) ImΠ AA (s)] = v 2 ds s [ImΠ VV (s) ImΠ AA (s)] = 0 (1 st WSR) (2 nd WSR) EWET A. Pich Schladming

22 LO V, A Π LR (s) = v2 s + F 2 V M 2 V s F 2 A M 2 A s 1 st WSR: F 2 V F2 A = v2 2 nd WSR: F 2 V M2 V F2 A M2 A = 0 EWET A. Pich Schladming

23 LO V, A Π LR (s) = v2 s + F 2 V M 2 V s F 2 A M 2 A s 1 st WSR: F 2 V F2 A = v2 2 nd WSR: F 2 V M2 V F2 A M2 A = 0 M 2 A FV 2 = v2 MA 2 M2 V, F 2 A = v2 M 2 V M 2 A M2 V, M A > M V EWET A. Pich Schladming

24 LO V, A Π LR (s) = v2 s + F 2 V M 2 V s F 2 A M 2 A s 1 st WSR: F 2 V F2 A = v2 2 nd WSR: F 2 V M2 V F2 A M2 A = 0 M 2 A FV 2 = v2 MA 2 M2 V, F 2 A = v2 M 2 V M 2 A M2 V, M A > M V 1 st WSR likely valid also in gauge theories with non-trivial UV fixed points 2 nd WSR questionable (not valid) in walking (conformal) TC scenarios Appelquist Sannino, Orgogozo Rychkov EWET A. Pich Schladming

25 Gauge Boson Self-Energies: S, T q L = 1 2 W3 µ Πµν 33 (q2 )W 3 ν 1 2 Bµ Πµν 00 (q2 )B ν W 3 µ Πµν 30 (q2 )B ν W + µ Πµν WW (q2 )W ν ) Landau gauge (ξ = 0): Π µν ij (q 2 ) = ( g µν + qµ q ν q 2 Π ij (q 2 ) There is no mixing with the Goldstones T S 16π ( e3 g 2 e3 SM ) = 0.03±0.10 4π ( g 2 sin 2 e1 e SM ) 1 = 0.05±0.12 θ W e 3 = g g Π30(0) e 1 = Π33(0) Π WW(0) M 2 W Π 30(q 2 ) = g2 tanθ W 4 s [Π VV (s) Π AA (s)] = q 2 Π30(q 2 ) + g2 tanθ W 4 v 2 e SM 1,3 defined at M H = 126 GeV EWET A. Pich Schladming

26 Dispersive Representation S = 16 g 2 tanθ W 0 ds s [ Im Π 30 (s) Im Π SM 30 (s) ] (Peskin-Takeuchi) Im Π SM 30 (s) = g2 tanθ W 192π 2 [ θ(s) ( 1 M2 H s ) 3 ( θ s MH) ] 2 (1 loop) EWET A. Pich Schladming

27 Dispersive Representation S = 16 g 2 tanθ W 0 ds s [ Im Π 30 (s) Im Π SM 30 (s) ] (Peskin-Takeuchi) Im Π SM 30 (s) = g2 tanθ W 192π 2 [ θ(s) ( 1 M2 H s ) 3 ( θ s MH) ] 2 (1 loop) T = 4π g 2 cos 2 θ W 0 ds s 2 [ ρt (s) ρ SM T (s)] (Pich Rosell Sanz-Cillero) ρ T (s) = 1 π Im[Σ(0) (s) Σ (+) (s)] (Goldstone self-energies) ρ SM T (s) = 3g 2 s 64π 2 [ θ(s) + ( 1 M4 H s 2 )θ(s M 2H ) ] (1 loop) SM contribution defined at M H = 126 GeV EWET A. Pich Schladming

28 Gauge Boson LO V, A S LO = 4π( F 2 V M 2 V ) F2 A MA 2, T LO = 0 Sensitive to vector and axial states M A > M V > 1.5 TeV MA TeV 4 SLO MV TeV MV TeV σ bounds AP Rosell Sanz-Cillero ( ) 1 st +2 nd WSR: S LO = 4πv2 MV 2 1+ M2 V MA 2 1 st { ( WSR (M A > M V ): v 2 S LO = 4π M V 2 + FA 2 1 M V 2 1 )} M A 2 > 4πv2 M V 2 > 4πv2 M A 2 EWET A. Pich Schladming

29 Gauge Boson NLO Sensitive to the light scalar S 1 (125) AP, Rosell, Sanz-Cillero V V V V S A A A A S S S 0.4 M V [1.5, 6.0] TeV 0 κ W V V V V M V T 0.0 A A A A S S S S 0.2 Κ W 0.4 κ W g SWW g SM HWW = M2 V M 2 A [0.94, 1] S M A M V > 4 TeV (95% CL) 1 st +2 nd WSRs EWET A. Pich Schladming

30 Gauge Boson NLO Weaker assumptions: 1 st WSR only, M A > M V > 0.4 TeV AP, Rosell, Sanz-Cillero ΚW M V TeV 0.2 < M V M A < < M V M A < 0.2 κ W g SWW /g SM very different from one HWW requires large (unnatural) mass splittings EWET A. Pich Schladming

31 Linear Realization: SU(2) L U(1) Y Assumes that H(126) and ϕ combine into an SU(2) L doublet: Φ = ( Φ + Φ 0 ) = 1 2 (v +H) U( ϕ) ( 0 1 ) The SM Lagrangian is the low-energy effective theory with D = 4 L eff = L SM + D>4 i c (D) i O(D) D 4 i Λ 1 operator with D = 5: O (5) = L L Φ Φ T L c L 59 independent O (6) i 5 independent O (6) i (violates L by 2 units) preserving B and L (for 1 generation) Weinberg Buchmuller Wyler, Grzadkowski Iskrzynski Misiak Rosiek violating B and L (for 1 generation) Weinberg, Wilczek Zee, Abbott Wise, EWET A. Pich Schladming

32 O G O G O W O W D = 6 Operators (other than 4-fermion ones) Grzadkowski Iskrzynski Misiak Rosiek X 3 Φ 6 and Φ 4 D 2 ψ 2 Φ 3 f ABC Gµ AνGBρ ν Gρ Cµ O Φ (Φ Φ) 3 O eφ (Φ Φ)( l pe rφ) f ABC G Aν µ Gν Bρ Gρ Cµ O Φ (Φ Φ) (Φ Φ) O uφ (Φ Φ)( q pu r Φ) ε IJK Wµ IνWJρ ν Wρ Kµ O ΦD ( Φ D µ Φ ) ( Φ D ) µφ O dφ (Φ Φ)( q pd rφ) εijk W Iν µ Wν Jρ Wρ Kµ X 2 Φ 2 ψ 2 XΦ ψ 2 Φ 2 D O ΦG Φ Φ G A µν GAµν O ew ( l pσ µν e r) τ I ΦW I µν O (1) Φl (Φ i D µφ)( l pγ µ l r) O Φ G Φ Φ G A µνg Aµν O eb ( l pσ µν e r) ΦB µν O (3) Φl (Φ i D I µ Φ)( l pτ I γ µ l r) O ΦW Φ Φ W I µν WIµν O ug ( q pσ µν T A u r) ΦG A µν O Φe (Φ i D µφ)(ē pγ µ e r) O Φ W Φ Φ W µνw I Iµν O uw ( q pσ µν u r) τ I ΦW µν I O (1) Φq (Φ i D µφ)( q pγ µ q r) O ΦB Φ Φ B µνb µν O ub ( q pσ µν u r) ΦB µν O (3) Φq (Φ i Dµ I Φ)( qpτi γ µ q r) O Φ B Φ Φ B µνb µν O dg ( q pσ µν T A d r) ΦG A µν O Φu (Φ i D µφ)(ū pγ µ u r) O ΦWB Φ τ I Φ W I µν Bµν O dw ( q pσ µν d r) τ I ΦW I µν O Φd (Φ i D µφ)( d pγ µ d r) O Φ WB Φ τ I Φ W I µν Bµν O db ( q pσ µν d r) ΦB µν O Φud i( Φ D µφ)(ū pγ µ d r) q = q L, l = l L, u = u R, d = d R, e = e R, p,r = generation indices EWET A. Pich Schladming

33 D = 6 Four-Fermion Operators Grzadkowski Iskrzynski Misiak Rosiek ( LL)( LL) ( RR)( RR) ( LL)( RR) O ll ( l pγ µl r)( l sγ µ l t) O ee (ē pγ µe r)(ē sγ µ e t) O le ( l pγ µl r)(ē sγ µ e t) O (1) qq ( q pγ µq r)( q sγ µ q t) O uu (ū pγ µu r)(ū sγ µ u t) O lu ( l pγ µl r)(ū sγ µ u t) O (3) qq ( q pγ µτ I q r)( q sγ µ τ I q t) O dd ( d pγ µd r)( d sγ µ d t) O ld ( l pγ µl r)( d sγ µ d t) O (1) lq ( l pγ µl r)( q sγ µ q t) O eu (ē pγ µe r)(ū sγ µ u t) O qe ( q pγ µq r)(ē sγ µ e t) O (3) lq ( l pγ µτ I l r)( q sγ µ τ I q t) O ed (ē pγ µe r)( d sγ µ d t) O (1) qu ( q pγ µq r)(ū sγ µ u t) O (1) ud (ū pγ µu r)( d sγ µ d t) O (8) qu ( q pγ µt A q r)(ū sγ µ T A u t) O (8) ud (ū pγ µt A u r)( d sγ µ T A d t) O (1) qd ( q pγ µq r)( d sγ µ d t) O (8) qd ( q pγ µt A q r)( d sγ µ T A d t) ( LR)( RL) and ( LR)( LR) B-violating O ledq ( l p j er)( d sq j t ) O [ duq ε αβγ ε jk (d α p ) T ][ Cur β (q γj s ) T Clt k ] O (1) ( q j quqd p ur)ε jk ( q s k dt) [ Oqqu εαβγ ε jk (q αj p )T Cqr βk ][ (u γ s ) T ] Ce t O (8) quqd ( q p j TA u r)ε jk ( q s k [ TA d t) O qqq (1) ε αβγ ε jk ε mn (q αj p )T Cqr βk ][ (q γm s ) T Clt n ] O (1) lequ ( l p j er)ε jk ( q s k ut) O(3) qqq ε αβγ (τ I ε) jk (τ I [ ε) mn (q αj p )T Cqr βk ][ (q γm s ) T Clt n ] O (3) lequ ( l p j σµνer)ε jk ( q s k σµν u t) O duu ε [ ][ αβγ (dp α )T Cur β (u γ s ) T ] Ce t q = q L, l = l L, u = u R, d = d R, e = e R, p,r,s,t = generation indices EWET A. Pich Schladming

34 Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 EWET A. Pich Schladming

35 Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 ( Canonical Normalization: H ch kin H, ch kin = C Φ 1 ) v 2 4 C ΦD Λ 2 EWET A. Pich Schladming

36 Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 ( Canonical Normalization: H ch kin H, ch kin = C Φ 1 ) v 2 4 C ΦD Λ 2 M 2 H = 2λv 2 T ( 1 3C Φ 2λ ) v 2 Λ 2 +2ckin H EWET A. Pich Schladming

37 Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 ( Canonical Normalization: H ch kin H, ch kin = C Φ 1 ) v 2 4 C ΦD Λ 2 M 2 H = 2λv 2 T ( 1 3C Φ 2λ ) v 2 Λ 2 +2ckin H Flavour: Y f M f L = Q r L[Y d ] rs Φd s R + [M f ] rs = v ( ) T [Y ψ ] rs v2 2 2Λ [C fφ] 2 rs [Y f ] rs = 1 v T [M f ] rs ( 1+cH kin ) v2 Λ 2 [C fφ] rs EWET A. Pich Schladming

38 Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 ( Canonical Normalization: H ch kin H, ch kin = C Φ 1 ) v 2 4 C ΦD Λ 2 Flavour: Y f M f L = Q r L[Y d ] rs Φd s R + 4G F 2 = 2 v 2 T M 2 H = 2λv 2 T ( 1 3C Φ 2λ ) v 2 Λ 2 +2ckin H [M f ] rs = v ( ) T [Y ψ ] rs v2 2 2Λ [C fφ] 2 rs [Y f ] rs = 1 v T [M f ] rs ( 1+cH kin + 1 ( 2 [ C (3) Λ ]ee +2[ C (3) ]µµ [ C 2 ll ]µe,eµ [ ] C ll Φl Φl ) v2 Λ 2 [C fφ] rs eµ,µe EWET A. Pich Schladming )

39 Gauge Fields: L (D=6) eff = i C i Λ 2 O i Alonso et al ḡ = g ( 1+C ΦB v 2 T Λ 2 ), ḡ = g ( 1+C ΦW v 2 T Λ 2 ), ḡ s = g s ( 1+C ΦG v 2 T Λ 2 ) tan θ W = ḡ ḡ + v2 T 2Λ 2 ) (1 ḡ 2 ḡ 2 C ΦWB MW 2 = v2 T 4 ḡ2, MZ 2 = v2 T (ḡ2 +ḡ 2) + v4 T {(ḡ2 4 8Λ 2 +ḡ 2) C ΦD +4ḡ ḡ } C ΦWB ē = ḡ sin θ W { 1 cot θ W v 2 T 2Λ 2 C ΦWB }, ḡ Z = ē sin θ W cos θ W { 1+ ḡ2 +ḡ 2 2ḡḡ v 2 T Λ 2 C ΦWB } ρ ḡ2 M 2 Z ḡ 2 Z M2 W = 1+ v2 T 2Λ 2 C ΦD EWET A. Pich Schladming

40 Equivalent Bases of CP-even Operators (EW bosons only) BW HISZ GGPR Willenbrock Zhang O W = ǫ IJK W Iν µ WJρ ν WKµ ρ O WWW = Tr[ŴµνŴνρ Ŵ µ ρ ] O 3W = 1 3! g ǫ abcw aν µ Wb νρ Wcρµ O ΦW = Φ Φ W I µν WIµν O WW = Φ Ŵ µν Ŵ µν Φ O ΦB = Φ Φ B µνb µν O BB = Φ ˆBµν ˆBµν Φ O BB = g 2 H 2 B µνb µν O ΦWB = Φ σ I Φ W I µν Bµν O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O HW = ig (D µ H) σ a (D ν H)W a µν O B = (D µφ) ˆBµν (D νφ) ( ) O HB = ig (D µ H) (D ν H)B µν O DW = Tr [D µ,ŵνρ][dµ,ŵνρ ] O 2W = 1 2 (Dµ W a µν )2 O DB = g 2 2 ( µb νρ)( µ B νρ ) O 2B = 1 2 ( µ B µν) 2 O W = ig 2 (H σ a D µ H)D ν W a µν O B = ig 2 (H D µ H) ν B µν O ΦD = (Φ D µ Φ) (Φ D µφ) O Φ,1 = (D µφ) ΦΦ (D µ Φ) O T = 1 2 (H D µ H) 2 O Φ = (Φ Φ) (Φ Φ) O Φ,2 = 1 2 µ(φ Φ) µ (Φ Φ) O H = 1 2 ( µ H 2 ) 2 O Φ = (Φ Φ) 3 O Φ,3 = 1 3 (Φ Φ) 3 O 6 = λ H 6 O Φ,4 = (D µφ) (D µ Φ)(Φ Φ) BW = Buchmuller Wyler, Grzadkowski et al. HISZ = Hagiwara et al. GGPR = Giudice et al. EWET A. Pich Schladming

41 Anomalous Triple Gauge Couplings L WWV = i g WWV {g V 1 ( W + µν W µ V ν W + µ W µν V ν ) +κ V W + µ W ν V µν + λ V M 2 W } W µνw + νρ V ρ µ g WWγ = e = g cosθ W, g WWZ = g cosθ W, κ V = 1+ κ V, g V 1 = 1+ gv 1 Relevant operators: O W, O ΦWB, O (3) φl (BW) O WWW, O W, O B, O BW, O DW O 3W, O HW, O HB, O 2W, O W, O B (HISZ) (GGPR) D = 6 Relations: λ γ = λ Z, g Z 1 = κ Z +tan2 θ W κ γ EWET A. Pich Schladming

42 Anomalous Triple Gauge Couplings HISZ basis: L eff = n f n Λ 2 O n Corbett Eboli González-Fraile González-García λ γ = λ Z = 3g2 M 2 W 2Λ 2 f WWW, κ γ = g2 v 2 8Λ 2 (f W +f B ) κ Z = g2 v 2 8Λ 2 ( f W tan 2 θ W f B ), g Z 1 = g 2 v 2 8cos 2 θ W Λ 2 f W (95% CL) Higgs data: (90% CL) g Z , 0.19 κγ κ Z Combined: (90% CL) g Z , κγ κ Z LEP, D0, ATLAS assume λγ = λ Z = 0 EWET A. Pich Schladming

43 Global Fit to L (D=6) eff Pomarol Riva GGPR basis: O H = 1 2 ( µ H 2 ) 2 O T = 1 2 (H D µh) 2 O 6 = λ H 6 O W = ig 2 (H σ a D µh)d νw aµν O B = ig 2 (H D µh) νb µν O BB = g 2 H 2 B µνb µν O GG = g 2 s H 2 G A µνg Aµν O HW = ig (D µ H) σ a (D ν H)W a µν O HB = ig (D µ H) (D ν H)B µν O 3W = 1 3! g ǫ abcwµ aνwb νρwc ρµ O yu = y u H 2 Q L HuR + h.c. O yd = y d H 2 Q L Hd R + h.c. O ye = y e H 2 L L He R + h.c. O u R = i (H D µh)(ū R γ µ u R ) O d R = i (H D µh)( d R γ µ d R ) O e R = i (H D µh)(ē R γ µ e R ) O q L = i (H D µh)( Q L γ µ Q L ) O (3)q L = i (H σ a D µh)( Q L σ a γ µ Q L ) O (3)ql LL = ( Q L σ a γ µq L )( L L σ a γ µ L L ) O (3)l LL = ( L L σ a γ µ L L )( L L σ a γ µl L ) EWET A. Pich Schladming

44 LEP-I + SLC + KLOE (CKM univ) + pp l ν (LHC) Pomarol Riva c T (95% CL) c L q c R e c L 3 q c V c R u c LL 3 l c R d c LL 3 ql c L q3 c L 3 q3 All ; --- without KLOE ; include O t L + O(3)t L ; All other O i set to zero L = c T v 2 O T + c+ V M 2 W + cq L v 2 Oq L + c (3) q L O (3)q v 2 L (O W + O B ) + c(3)l LL O (3)l v 2 LL + ce R v 2 Oe R + cu R v 2 Ou R + cd R v 2 Od R + c (3) ql LL v 2 O (3)ql LL c ± V = 1 2 (c W ± c B ) EWET A. Pich Schladming

45 Pomarol Riva LEP-II + H Zγ (LHC) H VV,f f (LHC) c V Κ HV (95% CL) Κ GG Κ HV Κ BB All ; All other O i set to zero ; c H and c yf effects constrained to be below 50% of SM L TGC = κ+ HV m 2 W L Higgs = c H v 2 O H + (O HW + O HB ) + c V + κ HV 2m 2 W f=t,b,τ O + + κ 3W mw 2 O 3W c yf v 2 Oy + c6 f v 2 O6 + κ BB MW 2 O BB + κ GG MW 2 O GG + c V κ HV 2MW 2 O O ± (O W O B ) ± (O HW O HB ), O WW = 4O + O BB, κ ± HV = 1 2 (κ HW ± κ HB ) EWET A. Pich Schladming

46 Renormalization Group Equations L (D=6) eff = i C i (µ) Λ 2 O i (µ) Loop Corrections µ dci dµ = j γ ij 16π 2 Cj Ci(µ) = Ci(Λ) j ( ) γ ij Λ Cj(Λ) log 16π2 µ Anomalous Dimensions: γ ij EWET A. Pich Schladming

47 Anomalous Dimensions γ ij Complete matrix computed in the BW basis: Jenkins et al. γ O ( 1,g 2,λ,y 2,g 4,g 2 λ,g 2 y 2,λ 2,λy 2,y 4,g 6,g 4 λ,g 6 λ ) g 3 X 3 H 6 H 4 D 2 g 2 X 2 H 2 yψ 2 H 3 gyψ 2 XH ψ 2 H 2 D ψ 4 g 3 X 3 g H 6 g 6 λ λ,g 2,y 2 g 4,g 2 λ,λ 2 g 6,g 4 λ λy 2,y 4 0 λy 2,y 4 0 H 4 D 2 g 6 0 g 2,λ,y 2 g 4 y 2 g 2 y 2 g 2,y 2 0 g 2 X 2 H 2 g g 2,λ,y 2 0 y yψ 2 H 3 g 6 0 g 2,λ,y 2 g 4 g 2,λ,y 2 g 2 λ,g 4,g 2 y 2 g 2,λ,y 2 λ,y 2 gyψ 2 XH g g 2 1 g 2,y ψ 2 H 2 D g 6 0 g 2,y 2 g 4 y 2 g 2 y 2 g 2,λ,y 2 y 2 ψ 4 g g 2 y 2 g 2,y 2 g 2,y 2 (X 2 H 2,X 2 H 2 ) submatrix computed in the HISZ basis Chen Dawson Zhang A submatrix computed in the GGPR basis J. Elias-Miro et al. EWET A. Pich Schladming

48 Oblique Corrections (NLO) g 2 16π S M2 W Λ 2 [ ] {C [ ( )]} BW (µ)+ g2 M C 32π 2 WW +tan 2 2 θ W C BB 1 2 log H µ 2 g 2 sin 2 θ W 4π T v2 2Λ 2 C Φ,1 (HISZ basis) Mebane et al., Chen Dawson Zhang c,1 2 TeV Tree-level Bounds c BW 2 TeV 2 EWET A. Pich Schladming

49 OUTLOOK Effective Field Theory: powerful low-energy tool Mass Gap: E,m light Λ NP Assumption: relevant symmetries (breakings) & light fields Most general L eff (φ light ) allowed by symmetry Short-distance dynamics encoded in LECs LECs constrained phenomenologically Goal: get hints on the underlying fundamental dynamics New Physics EWET A. Pich Schladming

50 Learning from QCD experience. EW problem more difficult Fundamental Underlying Theory unknown QCD? χpt Standard Model Additional dynamical input (fresh ideas!) needed EWET A. Pich Schladming

51 A new boson discovered It behaves as the SM Higgs particle The SM appears to be the right theory at the EW scale New physics needed to explain many pending questions Flavour, CP, baryogenesis, cosmology... How far is the Scale of New-Physics Λ NP? Which symmetry keeps Å À away from Λ NP? Supersymmetry, scale/conformal symmetry... Eagerly awaiting more LHC data... EWET A. Pich Schladming

5. Fingerprints of Heavy Scales

5. Fingerprints of Heavy Scales 5. Fingerprints of Heavy Scales Electroweak Resonance Effective Theory Integration of Heavy States Short-Distance Constraints Low-Energy Constants Outlook EFT. Pich 017 1 Higher-Order Goldstone Interactions

More information

RGE of d = 6 Operators in SM EFT

RGE of d = 6 Operators in SM EFT RGE of d = 6 Operators in SM EFT Elizabeth Jenkins Department of Physics University of California, San Diego Madrid HEFT2014, September 29, 2014 Papers C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott,

More information

Effective Lagrangian Approach. Ansgar Denner, University of Würzburg

Effective Lagrangian Approach. Ansgar Denner, University of Würzburg Effective Lagrangian Approach Ansgar Denner, University of Würzburg Hamburg Workshop on Higgs Physics Preparing for Higgs Boson Studies with Future LHC Data DESY Hamburg, October 22, 2014 Introduction

More information

The Standard Model Effective Field Theory and Dimension 6 Operators

The Standard Model Effective Field Theory and Dimension 6 Operators The Standard Model Effective Field Theory and Dimension 6 Operators Aneesh Manohar University of California, San Diego 17 Mar 2015 / Vienna A Manohar (UCSD) 17 Mar 2015 / Vienna 1 / 46 Outline The SMEFT

More information

Viability of strongly coupled scenarios with a light Higgs like boson

Viability of strongly coupled scenarios with a light Higgs like boson Beijing IHEP, January 8 th 2013 Viability of strongly coupled scenarios with a light Higgs like boson J.J. Sanz Cillero (PKU visitor) A. Pich, I. Rosell and JJ SC [arxiv:1212.6769 [hep ph]] OUTLINE 1)

More information

Effective Lagrangians for Higgs Physics

Effective Lagrangians for Higgs Physics Effective Lagrangians for Higgs Physics Tyler Corbett YITP, SUNY Stony Brook arxiv:1311.1823 (JHEP) 1304.1151 (PRL) 1211.4580 (PRD) 1207.1344 (PRD) T.C., O.J.P. Éboli, J. Gonzalez Fraile, M.C. Gonzalez

More information

EWSB by strongly-coupled dynamics: an EFT approach

EWSB by strongly-coupled dynamics: an EFT approach EWSB by strongly-coupled dynamics: an EFT approach EWSB by strongly-coupled dynamics: an EFT approach (page 1) Outline Motivation Linear vs non-linear realization of EWSB Organizing the expansion: Power-counting

More information

Top quark effects in composite vector pair production at the LHC

Top quark effects in composite vector pair production at the LHC Top quark effects in composite vector pair production at the LHC Antonio Enrique Cárcamo Hernández. Universidad Tecnica Federico Santa Maria. SILAFAE 01, 10th-14th of December of 01. Based on: A. E. Cárcamo

More information

arxiv: v1 [hep-ph] 18 Oct 2017

arxiv: v1 [hep-ph] 18 Oct 2017 Tracks of resonances in electroweak effective Lagrangians arxiv:1710.06622v1 [hep-ph] 18 Oct 2017 Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities,

More information

Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective

Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective Tyler Corbett Melbourne Node arxiv:1705.02551, with Aniket Joglekar (Chicago), Hao-Lin Li (Amherst), Jiang-Hao Yu (Amherst).

More information

Beyond the Higgs. new ideas on electroweak symmetry breaking

Beyond the Higgs. new ideas on electroweak symmetry breaking E = mc 2 Beyond the Higgs new ideas on electroweak symmetry breaking Higgs mechanism. The Higgs as a UV moderator of EW interactions. Needs for New Physics beyond the Higgs. Dynamics of EW symmetry breaking

More information

Oblique corrections from Light Composite Higgs

Oblique corrections from Light Composite Higgs Oblique corrections from Light Composite Higgs Slava Rychkov (ENS Paris & CERN) with Axel Orgogozo 1111.3534 & work in progress EWPT in Standard Model M H 0.0 M W -1.2 % W 0.2 M Z 0.2 % Z 0.1 0! had 0

More information

Kinematics in Higgs Fits

Kinematics in Higgs Fits Kinematics in Higgs Fits Universität Heidelberg LHCHXS Meeting, November 2015 Higgs Couplings Standard Model operators [SFitter: Gonzalez-Fraile, Klute, TP, Rauch, Zerwas] Lagrangian [in terms of non-linear

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Triple Gauge Couplings and Quartic Gauge Couplings

Triple Gauge Couplings and Quartic Gauge Couplings Triple Gauge Couplings and Quartic Gauge Couplings Particle Physics at the LHC Gernot Knippen Faculty of Mathematics and Physics University of Freiburg June 17, 2014 Gernot Knippen TGC and QGC June 17,

More information

linear Colliders Sayipjamal Dulat, Kaoru Hagiwara and Yu Matsumoto Xinjiang University, China and KEK, Tsukuba, Japan

linear Colliders Sayipjamal Dulat, Kaoru Hagiwara and Yu Matsumoto Xinjiang University, China and KEK, Tsukuba, Japan Measuring Triple Gauge Boson Couplings at e + e linear Colliders Sayipjamal Dulat, Kaoru Hagiwara and Yu Matsumoto Xinjiang University, China and KEK, Tsukuba, Japan Measuring Triple Gauge Boson Couplings

More information

at the LHC OUTLINE Vector bosons self-couplings and the symmetry breaking connection

at the LHC OUTLINE Vector bosons self-couplings and the symmetry breaking connection Trilinear and Quartic Gauge Boson Couplings at the LHC Fawzi BOUDJEMA OUTLINE LAPTH-Annecy, France Vector bosons self-couplings and the symmetry breaking connection Gauge Invariance and the Hierarchy of

More information

Effective Higgs-Gauge Analyses

Effective Higgs-Gauge Analyses Effective Higgs-Gauge Analyses Tilman Plehn Universität Heidelberg CERN, July 017 Higgs Couplings t W,Z Standard Model operators assume: narrow CP-even scalar Standard Model operators fundamental physics

More information

arxiv: v1 [hep-ph] 25 Nov 2015

arxiv: v1 [hep-ph] 25 Nov 2015 The Non-Linear Higgs Legacy of the LHC Run I Tyler Corbett, 1, Oscar J. P. Éboli,3 Dorival Gonçalves, 4 J. Gonzalez Fraile, 5 Tilman Plehn, 5 and Michael Rauch 6 1 C.N. Yang Institute for Theoretical Physics,

More information

Dimension-Six Terms in the Standard Model Lagrangian

Dimension-Six Terms in the Standard Model Lagrangian IFT-9/2010 TTP10-35 Dimension-Six Terms in the Standard Model Lagrangian B. Grzadkowski 1, M. Iskrzyński 1, M. Misiak 1,2 and J. Rosiek 1 1 Institute of Theoretical Physics, University of Warsaw, Hoża

More information

Lectures on Standard Model Effective Field Theory

Lectures on Standard Model Effective Field Theory Lectures on Standard Model Effective Field Theory Yi Liao Nankai Univ SYS Univ, July 24-28, 2017 Page 1 Outline 1 Lecture 4: Standard Model EFT: Dimension-six Operators SYS Univ, July 24-28, 2017 Page

More information

arxiv: v1 [hep-ph] 4 May 2015

arxiv: v1 [hep-ph] 4 May 2015 Higgs physics beyond the SM: the non-linear EFT approach arxiv:1505.00637v1 [hep-ph] 4 May 2015 I. Brivio Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Universidad Autónoma de

More information

Overview of low energy NN interaction and few nucleon systems

Overview of low energy NN interaction and few nucleon systems 1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT Chiral effective field

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Effective Field Theory and EDMs

Effective Field Theory and EDMs ACFI EDM School November 2016 Effective Field Theory and EDMs Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture III outline EFT approach to physics beyond the Standard Model Standard Model EFT

More information

Constraining BSM physics in effective Higgs interactions

Constraining BSM physics in effective Higgs interactions Constraining BSM physics in effective Higgs interactions Theory Seminar Liverpool Alexander K Knochel RWTH Aachen 26.02.2014 In collaboration with the Fittino Group (Bonn) M.Krämer, B. Heller, A. Biekötter

More information

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Model Antonio Pich IFIC, CSIC Univ. Valencia Gauge Invariance: QED, QCD Electroweak Uniication: Symmetry reaking: Higgs Mechanism Electroweak Phenomenology Flavour

More information

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza The Higgs boson as a window to Beyond the Standard Model Physics Roberto Contino Università di Roma La Sapienza 1. what have we discovered so far...... and why we need an EWSB sector The physics discovered

More information

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

Antonio Pich. IFIC, CSIC Univ. Valencia.

Antonio Pich. IFIC, CSIC Univ. Valencia. Antonio Pich IFIC, CSIC Univ. alencia Antonio.Pich@cern.ch Fermion Masses Fermion Generations Quark Mixing Lepton Mixing Standard Model Parameters CP iolation Quarks Leptons Bosons up down electron neutrino

More information

Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators.

Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators. Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators. Janusz Rosiek based on JHEP 1404 (2014) 167, A. Crivellin, S. Najjari, JR Qui Nhon, 1 Aug 2014 Lepton Flavor Violation

More information

Higgs EFTs and signatures of a nonstandard Higgs from flavor physics

Higgs EFTs and signatures of a nonstandard Higgs from flavor physics Higgs EFTs and signatures of a nonstandard Higgs from flavor physics Oscar Catà LMU Munich INT Workshop, September 17, 2015 (based on collaborations with G. Buchalla, A. Celis, M. Jung and C. Krause) Outline

More information

General Composite Higgs Models

General Composite Higgs Models General Composite Higgs Models Marco Serone, SISSA, Trieste In collaboration with David Marzocca and Jing Shu, based on 1205.0770 1 The Higgs hunt at the LHC is quickly coming to an end A SM Higgs is ruled

More information

arxiv: v1 [hep-ph] 13 May 2013

arxiv: v1 [hep-ph] 13 May 2013 arxiv:1305.785v1 [hep-ph] 13 May 013 Searches for strong dynamics signals in gauge boson pair production Ludwig-Maximilians-Universität München, Fakultät für Physik, Arnold Sommerfeld Center for Theoretical

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN The Higgs as a composite pseudo-goldstone boson Roberto Contino - CERN Part I: The need for an EWSB sector...... and how this could be strongly interacting The physics discovered so far: L = L 0 + L mass

More information

Bin Yan Peking University

Bin Yan Peking University Determining V tb at e + e Colliders Bin Yan Peking University Aug. 08, 2015 @10th TeV Physics Workshop In collaboration with Qing-Hong Cao, arxiv: 1507.06204 V tb measurements V tb 1 R V tb 2 Vtq 2 q=d,s,b

More information

Bachelor s Degree thesis

Bachelor s Degree thesis Department of theoretical physics University of science, Hochiminh National University Theoretical physics group Institute For Interdisciplinary Research in Science and Education, ICISE, Quy Nhon, Vietnam

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

Andreas Crivellin Effective Field Theory, Higgs-quark couplings and Dark Matter Direct Detection in the MSSM

Andreas Crivellin Effective Field Theory, Higgs-quark couplings and Dark Matter Direct Detection in the MSSM Andreas Crivellin Effective Field Theory, Higgs-quark couplings and Dark Matter Direct Detection in the MSSM Supported by a Marie Curie Intra-European Fellowship of the European Community's 7th Framework

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

PAPER 305 THE STANDARD MODEL

PAPER 305 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Tuesday, 6 June, 017 9:00 am to 1:00 pm PAPER 305 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Tilman Plehn. Mainz, July 2015

Tilman Plehn. Mainz, July 2015 Testing the Universität Heidelberg Mainz, July 2015 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Composite Higgs/ Extra Dimensions

Composite Higgs/ Extra Dimensions Composite Higgs/ Extra Dimensions Eduardo Pontón Instituto de Física Teórica -UNESP & ICTP-SAIFR Snowmass on the Pacific, KITP May 30, 2013 Fundamental Question raised by the SM How and why is the Electroweak

More information

S = 2 decay in Warped Extra Dimensions

S = 2 decay in Warped Extra Dimensions S = 2 decay in Warped Extra Dimensions Faisal Munir IHEP, Beijing Supervisor: Cai-Dian Lü HFCPV CCNU, Wuhan October 28, 2017 based on: Chin. Phys. C41 (2017) 053106 [arxiv:1607.07713] F. Munir (IHEP) New

More information

Higgs couplings in the Composite Higgs Models

Higgs couplings in the Composite Higgs Models Higgs couplings in the Composite Higgs Models Aleksandr Azatov Dipartimento di Fisica, Università di Roma La Sapienza and INFN Sezione di Roma University of Padova 6/12/2012 Composite Higgs setup Models

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

The Rise of Effective Lagrangians at the LHC

The Rise of Effective Lagrangians at the LHC The Rise of Effective Lagrangians at the LHC Universität Heidelberg Brookhaven, May 2016 750 GeV the finger to particle theory taste not true taste wide X γγ impossible spin-0 actual model X aa 4γ NMSSM

More information

Higgs Couplings. Tilman Plehn. Standard 4/2013. Higgs Couplings. Tilman Plehn. Results. Channels. Higgs couplings.

Higgs Couplings. Tilman Plehn. Standard 4/2013. Higgs Couplings. Tilman Plehn. Results. Channels. Higgs couplings. Higgs Couplings Universität Heidelberg Standard Model@LHC, 4/213 Higgs physics 213-2XX Fundamental questions 1 What is the Higgs Lagrangian? [Maggie s talk] Higgs physics 213-2XX Fundamental questions

More information

arxiv: v1 [hep-ph] 20 Oct 2017

arxiv: v1 [hep-ph] 20 Oct 2017 Resonances and loops: scale interplay in the Higgs effective field theory Departamento de Física Teórica and UPARCOS, Universidad Complutense de Madrid, E-28040 Madrid, Spain E-mail: jjsanzcillero@ucm.es

More information

Higgs Physics for the LHC

Higgs Physics for the LHC Higgs Physics for the LHC Universität Heidelberg Brookhaven, 9/2013 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem

More information

Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges

Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges Publised for SISSA by Springer Received: May 3, 017 Accepted: June 10, 017 Publised: June 7, 017 Feynman rules for te Standard Model Effective Field Teory in R ξ -gauges A. Dedes, a W. Materkowska, b M.

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics, 06.07.06 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The

More information

Lepton Flavor Violation

Lepton Flavor Violation Lepton Flavor Violation I. The (Extended) Standard Model Flavor Puzzle SSI 2010 : Neutrinos Nature s mysterious messengers SLAC, 9 August 2010 Yossi Nir (Weizmann Institute of Science) LFV 1/39 Lepton

More information

arxiv: v1 [hep-ph] 27 Nov 2014

arxiv: v1 [hep-ph] 27 Nov 2014 Top couplings and new physics: theoretical overview and developments arxiv:1411.7685v1 [hep-ph] 27 Nov 2014 Cen Zhang Department of Physics, Brookhaven National Laboratory, Upton, N.Y., 11973, U.S.A. E-mail:

More information

(Non-degenerate) light generation compositeness in composite Higgs models

(Non-degenerate) light generation compositeness in composite Higgs models (Non-degenerate) light generation compositeness in composite Higgs models Seung J. Lee In collaboration with C. Delaunay, T. Flacke, J. Fraile, G. Panico, G. Perez (to appear soon; arxiv:1208.xxxx) 1 Outline

More information

Optimal-Observable Analysis of Top Production/Decay at Photon-Photon Colliders

Optimal-Observable Analysis of Top Production/Decay at Photon-Photon Colliders Optimal-Observable Analysis of Top Production/Decay at Photon-Photon Colliders Univ. of Tokushima Zenrō HIOKI 1. Introduction 2. Basic Framework 3. Optimal-Observable Analyses 4. Summary 1. Introduction

More information

Higgs-charm Couplings

Higgs-charm Couplings Higgs-charm Couplings Wai Kin Lai TUM December 21, 2017 MLL Colloquium, TUM OUTLINE Higgs physics at the LHC OUTLINE Higgs physics at the LHC H J/ψ + γ as a key channel to measure Hc c coupling CHRISTMAS

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Dipole operator constraints on composite Higgs models

Dipole operator constraints on composite Higgs models Matthias König May 27th, 2014 Dipole operators: emerge from one-loop correction to fermion-photon coupling f i R f j L γ/g. Various observables are governed by dipole operatores such as electric dipole

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Baryon and Lepton Number Violation at the TeV Scale

Baryon and Lepton Number Violation at the TeV Scale Baryon and Lepton Number Violation at the TeV Scale S. Nandi Oklahoma State University and Oklahoma Center for High Energy Physics : S. Chakdar, T. Li, S. Nandi and S. K. Rai, arxiv:1206.0409[hep-ph] (Phys.

More information

Aspetti della fisica oltre il Modello Standard all LHC

Aspetti della fisica oltre il Modello Standard all LHC Aspetti della fisica oltre il Modello Standard all LHC (con enfasi sulla verificabilità sperimentale in gruppo I e II) Andrea Romanino SISSA e INFN TS Giornata di Seminari, INFN TS, 07.07.09 The Standard

More information

Discovering Technicolor

Discovering Technicolor Discovering Technicolor Stefano Di Chiara Origin of Mass 2011, Odense Outline Standard Model (Extended) Technicolor Minimal Walking Technicolor Beyond MWT Outlook and Conclusions 2 Main References Discovering

More information

Flavour Physics Lecture 1

Flavour Physics Lecture 1 Flavour Physics Lecture 1 Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK New Horizons in Lattice Field Theory, Natal, Rio Grande do Norte, Brazil March

More information

Effective field theory approach to the Higgs boson phenomenology

Effective field theory approach to the Higgs boson phenomenology Effective field theory approach to the Higgs boson phenoenology Supervisor: Dr. Roberto Contino Roa, October 8th, 013 Introduction After the discovery of the Higgs boson, we are looking for New Physics

More information

Scalar leptoquarks from GUT to accommodate the B-physics anomalies

Scalar leptoquarks from GUT to accommodate the B-physics anomalies Scalar leptoquarks from GUT to accommodate the B-physics anomalies Nejc Košnik Nejc Košnik (JSI, Univ. of Ljubljana) Corfu Summer Institute 018.9.018 1 / 18 Lepton universality violation in charged and

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Origins of the Electroweak Theory Gauge Theories The Standard Model Lagrangian Spontaneous Symmetry Breaking The Gauge Interactions Problems With the Standard Model (

More information

Higgs Boson Physics, Part II

Higgs Boson Physics, Part II Higgs Boson Physics, Part II Laura Reina TASI 004, Boulder Outline of Part II What do we know about the Standard Model Higgs boson? indirect bounds on M H from the theoretical consistency of the Standard

More information

Modification of Higgs Couplings in Minimal Composite Models

Modification of Higgs Couplings in Minimal Composite Models Modification of Higgs Couplings in Minimal Composite Models Da Liu Argonne National Laboratory With Ian Low, Carlos E. M. Wagner, arxiv:173.xxxx Motivation LHC data prefer κ t > κ g! Composite Higgs model

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

Constraints on Multi-Higgs-Doublet Models: Flavour Alignment

Constraints on Multi-Higgs-Doublet Models: Flavour Alignment Constraints on Multi-Higgs-Doublet Models: Flavour Alignment Antonio Pich IFIC, Univ. Valencia - CSIC A. Pich, P. Tuzón, Phys. Rev. D80 (009) 09170 M. Jung, A. Pich, P. Tuzón, JHEP 1011 (010) 003 M. Jung,

More information

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

LHC Higgs Signatures from Extended Electroweak Guage Symmetry LHC Higgs Signatures from Extended Electroweak Guage Symmetry Tomohiro Abe Tsinghua U. based on JHEP 1301 (013) 08 In collabollations with Ning Chen, Hong-Jian He Tsinghua U. HPNP013, February 15th 1.

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

S, T and U parameters

S, T and U parameters S, T and U parameters Karamitros Dimitrios Physics Department, Division of Theoretical Physics, University of Ioannina, GR-45110, Greece 19/04/2013, Crete Motivation For light external fermions we only

More information

HIGGS COMPOSITENESS: CURRENT STATUS (AND FUTURE STRATEGIES) Roberto Contino Università di Roma La Sapienza & INFN Roma

HIGGS COMPOSITENESS: CURRENT STATUS (AND FUTURE STRATEGIES) Roberto Contino Università di Roma La Sapienza & INFN Roma HIGGS COMPOSITENESS: CURRENT STATUS (AND FUTURE STRATEGIES) Roberto Contino Università di Roma La Sapienza & INFN Roma SUSY 013 - ICTP, Trieste 6-31 August, 013 Outline Strong vs Weak EWSB Current Status

More information

Physics at TeV Energy Scale

Physics at TeV Energy Scale Physics at TeV Energy Scale Yu-Ping Kuang (Tsinghua University) HEP Society Conference, April 26, 2008, Nanjing I. Why TeV Scale Is Specially Important? SM is SU(3) c SU(2) U(1) gauge theory. M g, M γ

More information

Strongly-Coupled Signatures through WW Scattering

Strongly-Coupled Signatures through WW Scattering Strongly-Coupled Signatures through WW Scattering Presented by Michael I. Buchoff Lawrence Livermore National Lab With the LSD Collaboration Based on work from Phys. Rev. D85 (2012) 074505 This work performed

More information

New Physics Scales to be Lepton Colliders (CEPC)

New Physics Scales to be Lepton Colliders (CEPC) New Physics Scales to be Probed @ Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 2016-1-11 Contribution to CEPC precdr & CDR Collaboration

More information

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours VIII: 29 février f 2008 The Flavour Sector Particle Physics in one page L SM = 1 4 Fa µνf

More information

arxiv:hep-ph/ v1 8 Apr 1993

arxiv:hep-ph/ v1 8 Apr 1993 THE ELECTROWEAK CHIRAL LAGRANGIAN AND NEW PRECISION MEASUREMENTS arxiv:hep-ph/9304240v1 8 Apr 1993 Thomas Appelquist and Guo-Hong Wu Department of Physics, Yale University, New Haven, CT 06520 September

More information

Electroweak Theory: 3

Electroweak Theory: 3 Electroweak Theory: 3 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS January, 2011 Paul Langacker IAS 55 References Slides

More information

WZ di-boson production at CMS

WZ di-boson production at CMS WZ di-boson production at CMS 1 Outline Physics motivations Existing results (Tevatron s = 1.96TeV) Existing prospects for CMS at s = 14TeV Preliminary prospects for CMS at s = 7TeV 2 WZ Physics motivation

More information

Constraints on new physics from rare (semi-)leptonic B decays

Constraints on new physics from rare (semi-)leptonic B decays Rencontres de Moriond, QCD and High Energy Interactions, 12 March 2013 Constraints on new physics from rare (semi-)leptonic B decays David M. Straub Johannes Gutenberg University Mainz Introduction Magnetic

More information

Electroweak Theory, SSB, and the Higgs: Lecture 2

Electroweak Theory, SSB, and the Higgs: Lecture 2 1 Electroweak Theory, SSB, and the iggs: Lecture Spontaneous symmetry breaking (iggs mechanism) - Gauge invariance implies massless gauge bosons and fermions - Weak interactions short ranged spontaneous

More information

DEGENERATE BESS AT FUTURE e + e COLLIDERS

DEGENERATE BESS AT FUTURE e + e COLLIDERS DEGENERATE BESS AT FUTURE e + e COLLIDERS DANIELE DOMINICI Dip. di Fisica, Univ. di Firenze, Sezione I.N.F.N. Firenze Lgo E. Fermi 2, 50125 Firenze, Italy E-mail: dominici@fi.infn.it ABSTRACT arxiv:hep-ph/9512403v1

More information

Particle Physics Today, Tomorrow and Beyond. John Ellis

Particle Physics Today, Tomorrow and Beyond. John Ellis Particle Physics Today, Tomorrow and Beyond John Ellis Summary of the Standard Model Particles and SU(3) SU(2) U(1) quantum numbers: Lagrangian: gauge interactions matter fermions Yukawa interactions Higgs

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012 How to tell apart non-standard EWSB mechanisms Veronica Sanz CERN and YORK Moriond 2012 In this talk What is standard? EWSB by elementary scalar(s) includes SM and SUSY What is non-standard? EWSB by -composite

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

Strongly coupled gauge theories: What can lattice calculations teach us?

Strongly coupled gauge theories: What can lattice calculations teach us? Strongly coupled gauge theories: What can lattice calculations teach us? Anna Hasenfratz University of Colorado Boulder Rencontres de Moriond, March 21 216 Higgs era of particle physics The 212 discovery

More information

Light Pseudoscalar Higgs boson in NMSSM

Light Pseudoscalar Higgs boson in NMSSM K. Cheung 1 Light Pseudoscalar Higgs boson in NMSSM Kingman Cheung NTHU, December 2006 (with Abdesslam Arhrib, Tie-Jiun Hou, Kok-Wee Song, hep-ph/0606114 K. Cheung 2 Outline Motivations for NMSSM The scenario

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information