Sjoerd Verduyn Lunel (Utrecht University)

Size: px
Start display at page:

Download "Sjoerd Verduyn Lunel (Utrecht University)"

Transcription

1 Universiteit Utrecht, February 9, 016 Wasserstein distances in the analysis of time series and dynamical systems Sjoerd Verduyn Lunel (Utrecht University)

2 Abstract A new approach based on Wasserstein distances, which are numerical costs of an optimal transportation problem, allows to analyze nonlinear phenomena in a robust manner. The long-term behavior is reconstructed from time series, resulting in a probability distribution over phase space. Each pair of probability distributions is then assigned a numerical distance that quantifies the differences in their dynamical properties. From the totality of all these distances a low-dimensional representation in a Euclidean space is derived. This representation shows the functional relationships between the dynamical systems under study. It allows to assess synchronization properties and also offers a new way of numerical bifurcation analysis.

3 Discrete Dynamical Systems Let X R d en f : X X and consider the discrete dynamical system starting from a given initial point x 0. x n+1 = f(x n ) A set A is called attracting with respect to U if for every neighborhood V of A, there exists a K = K(V ) such that f k (U) V for all k K. The basin of attraction of A is defined by B(A) = k 0 f k (U). If B(A) = X, then we call A a (global) attractor. A trajectory x = (x 1,..., x N ) generated by the dynamical system modeled by f can be viewed as a time series. In this talk we consider time series generated by f as well as generated directly from measurements.

4 Intermezzo Consider the iterative process x n+1 = x n + 1 x n. This process more than 4000 years old and nowadays is known as an application of Newton s method. Suppose that we start with x 0 = 1 then x 1 = x x 0 = 3. And the next step x = x x 1 = = Continuing this procedure yields the following table

5 Intermezzo II n x n approximation / / / / Notice that according to your calculator: = n x n approximation /

6 Intermezzo III Let a a number greater than zero and consider the iterative process x n+1 = x n a + a 1 x n. Choose your favorite a, start with x 0 = 1, and compute x, x 3 and x 4. There are also other interesting iterating systems. Let r be a number between 1 en 4 and consider the iterative process x n+1 = rx n (1 x n ). Choose your favorite r, start with x 0 between 0 and 1, for example, x 0 = 1/, and compute x, x 3 and x 4.

7 The Hénon map The this talk the running example in case the underlying dynamical system is known will be the Hénon map. The Hénon map is defined by ( ) xn+1 y n+1 = H ( xn ), n 0, y n where x 0 en y 0 are given initial conditions and H : R R is given by ( ( ) x 1 + y ax. y) bx Here a en b are parameters. This map was introduced in 1976 by Hénon to study (strange) attractors. If a = 1.4 and b = 0.3 the system exhibits chaotic behavior. Time series data from a real world system implicitly defines a dynamical system given by the information contained in repeated measurements, and delay coordinate reconstruction allows to represent these trajectories in Euclidean space.

8 Intermezzo IV The aim is to apply our algorithm directly to data, i.e., measurements as time series. But we can also use a model to produce a time series. Such a time series we call a synthetic time series, and allows us to test our algorithm theoretical. Consider the Hénon map H. Start with x 0 = 1 en y 0 = 1 and a = 1.4 and b = 0.3. Compute x 1 and y 1 by ( x1 y 1 ) ( ) (1) = = 0.3 ( ) and x en y by ( x y ) = ( ) (0.6) 0.18 = ( ) We can plot the points ( x0 ), y 0 ( x1 ), y 1 ( x ),... y in the plane. As in the example, this sequence approaches a geometrical object: the attractor.

9 Intermezzo V We can plot the attractor by plotting the tails of a long time series. From the theory, it however follows that we can reconstruct the attractor also from a piece of the tail of time series given by only by the x coordinate of the points (x, y). This method, plotting blocks of the tail of a time series, we can also do if we only have time series from measurements. This approach will be explained next.

10 Attractor reconstruction I Given a time series x = (x 1,..., x N ) of N measurements of a single observable X, a trajectory of a dynamical system is reconstructed by mapping each consecutive block x [i] = (x i, x i+q,..., x i+(k 1)q ) of k values, sampled at discrete time intervals q, into a single point x [i] in a Euclidean space Ω = R k. This map defines the delay-coordinate map F into the reconstructed phase space Ω. Sauer, Yorke and Casdagli (1991) extending work by Takens (1981) showed, under mild assumptions, that almost every delay-coordinate map F : R N R k is one-to-one on A provided that the embedding dimension k is larger than twice the box counting dimension of A. Also, any manifold structure within A will be preserved in F (A). The optimal value of the lag q and of the embedding dimension k is a priori unknown but can be estimated from the data.

11 Attractor reconstruction II This methodology of attractor reconstruction by delay embedding

12 Attractor reconstruction III The result of the embedding process is a discrete trajectory in reconstructed phase space Ω = R k. This trajectory can be interpreted as a probability measure µ on Ω, where µ[a] = 1 N N i=1 δ x[i] [A], A Ω, is the time average of the characteristic function of the points in phase space visited. In the limit N the measure µ is invariant under the dynamics and under mild assumptions the invariant measure is unique and its support contains an attractor (Lasota and Mackey, 004). If a dynamical system underlying the time series is available, subdivision methods allow to approximate the attractor and its natural measure with arbitrary precision. We shall illustrate this for the Hénon map.

13 The Hénon map - a time series For the parameters a = 1.0 en b = 0.54 and the initial condition x 0 = 0.1 en y 0 = 0.0 the time series for the x-coordinate is given by Henon system: Time series #1 Henon system: Time series #1 (detail) x Value x Value Time Time Figuur 1: Time series of the x-coördinate with x 0 = 0.1 en y 0 = 0.0 The time series consists of 3000 iterations and is relatively short - this is the situation one often encounters in practice.

14 The Hénon map reconstruction of the attractor Reconstruction of the attractor using the generated time series Henon system: Reconstructed attractor #1 x[n+1] x[n] Figuur : The attractor corresponding to the parameters a = 1.0 en b = The first 1000 entries of the time series are considered transient and the delay reconstruction is based on the entries [ ]. Zie Kant/Schreiber, Nonlinear time series analysis, Cambridge.

15 The Hénon map - reconstruction of the attractor Here are some reconstructed attractors for different parameter values. Henon system: Reconstructed attractor #3 Henon system: Reconstructed attractor #4 x[n+1] x[n+1] x[n] x[n] Figuur 3: The reconstructed attractor for, respectively, a = 1.0,b = 0.5 en a = 1.0, b = Note that the chaotic behavior disappears for last set of parameter values and that we have periodic behavior.

16 The Hénon map - the subdivision algorithm Subdivision #4 of Henon attractor Subdivision #6 of Henon attractor Subdivision #8 of Henon attractor Subdivision #10 of Henon attractor y 0 y 0 y y x x x x Student Version of MATLAB Student Version of MATLAB Student Version of MATLAB Student Version of MATLAB 3 Subdivision #14 of Henon attractor 3 Subdivision #16 of Henon attractor 3 Subdivision #18 of Henon attractor 3 Subdivision #18 of Henon attractor y 0 y 0 y 0 y x x x x Student Version of MATLAB Student Version of MATLAB Student Version of MATLAB Student Version of MATLAB

17 Calculation of Wasserstein distances in the discrete case An example of an optimal transportation problem in the discrete case Figuur 4: Open circles correspond to the first measure, filled circles correspond to the second measure. Left panel: Initial configuration. Numbers indicate probability mass at each point. Right panel: An optimal transportation plan with Wasserstein distance W 3.1. The numbers next to the arrows indicate how much probability mass is transported from the first measure to the second measure. Since the algorithms for the transportation problem have at least a quadratic dependence on sample size. A practical solution is to resample smaller subseries from the reconstructed trajectory and to estimate the Wasserstein distances multiple times, bootstrapping its expected value. This reduces the computational load.

18 Distance matrices We assume that the distance information is presented in the form of a single matrix M whose entries M ij = W (µ i, µ j ) represent the distances between the family of dynamical systems under consideration. Multidimensional scaling (MDS) techniques are used to model distance data as points in a geometric (usually Euclidean) space. In our present application to dynamical systems, each point in this space represents a single dynamical system and the space can be interpreted as the space of (the totality of)their possible dynamical behavior. We call this space the behavior space. Principle 1. The reconstructed behavior space, i.e., the MDS coordinates derived from a distance matrix, is the object at which all (statistical) analysis starts.

19 Methodology A summary of the methodology Dynamical systems Measurement / Projection Time series Delay reconstruction Probability distributions Distance matrix Wasserstein distances Multidimensional scaling Behavior representation Statistical analysis Parameter changes? Clustering Classification Coupling strength? Permutation tests Cross-validation Significance? Accuracy?

20 Visualization of parameter changes One of the most interesting aspects of the distance based analysis that we have introduced is the possibility to visualize changes in dynamical behavior with respect to parameter changes, similar to a bifurcation analysis. The parameters a, b of the Hénon map were varied, with a ranging from 1.4 to 0.7 in fourteen steps of 0.05, and b ranging from 0.3 to 0.0 in steps of 0.0. The invariant measures of the x-variable, corresponding to a trivial embedding dimension k = 1, are shown density of x density of x a b = b a = 1.4 Figuur 5: Left panel: Variation in parameter a with constant b = 0.3. Right panel: Variation in parameter b with constant a = 1.4. Darker shade indicates large time averages, and lighter shade smaller time averages.

21 Hénon map: Visualization of parameter changes II The left panel shows a two-dimensional projection of behavior space, i.e., of the Wasserstein distances of the respective dynamical systems. The distinct behavior of these systems, with respect to parameter changes, is clearly visible. Larger deviations of the parameters from (a 0, b 0 ) = (1.4, 0.3) result in points that are farther away from the point Figuur 6: Two-dimensional MDS representation of Wasserstein distances. Squares correspond to variation in the first parameter a, Triangles to variation in the second parameter b. The circles around the points corresponding to a = 1.4, b = 0.3 have radius and which are the mean self-distances.

22 Lung diseases - Background Both asthma and the condition known as chronic obstructive pulmonary disease (COPD) are obstructive lung diseases that in the early stages they show similar symptoms, rendering correct diagnosis difficult. As different treatments are needed, this is of considerable concern. An important diagnostics tool is the forced oscillation technique (FOT), as it allows to assess lung function non-invasive. By superimposing a range of pressure oscillations on the ambient air and analyzing the response of the airway systems, a number of parameters can be estimated that describe the mechanical properties of airway tissue. In particular, for each forcing frequency ω, a complex input impedance Z(ω) is available as time series, discretely sampled during a short period of tidal breathing. The real part R(ω) represents the airway resistance and the imaginary part Xω) the airway reactance.

23 Lung diseases - The data Clinicians usually only use the mean values R(ω) and X(ω) of these parameters, averaged over the measurement period. Clearly there is a lot more (dynamical) information contained in the time series as the example time series of R(ω) and X(ω) show cmh O L s cmh O L s time [s] time [s] Figuur 7: Example time series of respiratory resistance R(8) (upper curves) and respiratory reactance X(8) (lower curves) by forced oscillation technique during thirty seconds of tidal breathing. Left panel: A patient with mild asthma. Right panel: A patient with mild to severe COPD. The horizontal lines indicate the mean values used routinely in clinical assessment.

24 Lung diseases - Discrimination by Wasserstein distances I The motivation for the application of Wasserstein distances to this dataset is the assumption that the two lung diseases affect the temporal dynamics of input impedance in distinct ways. Considering asthma and COPD as dynamical diseases, we assume an underlying dynamical systems with different parameters for the different diseases. Although these parameters are not accessible, it is then possible to discriminate the two diseases using the Wasserstein distances between the data to quantify the differences in dynamics. For simplicity, we only consider here a two-dimensional reconstructing here, where the time series of R(8) and X(8) were combined into a series of two-dimensional vectors with trivial embedding dimension k = 1, trivial lag q = 1, and a length of about 1000 values (recorded at 16 Hz, the Nyquist frequency for the 8 Hz forced oscillation, concatenating all 1 measurements into one long series per patient). We consider the distribution of these points in Ω = R as an approximation of the invariant measure of the underlying dynamical system.

25 Lung diseases - Discrimination by Wasserstein distances II For reference we show the results for the squared sum of differences d ij = ( ( X i (8) X j (8)) + ( R i (8) R j (8)) ) 1/ in means (not the Wasserstein distances) A B C P= Figuur 8: Panel A: Two dimensional MDS reconstruction for patients suffering from asthma (open circles) and COPD (filled squares). Panel B: Strain values against reconstruction dimension. Panel C: Some statistics for the two classes.

26 Lung diseases - Discrimination by Wasserstein distances III The results using the Wasserstein distances are shown below A B C P=3e Figuur 9: Panel A: Two dimensional MDS reconstruction for patients suffering from asthma (open circles) and COPD (filled squares). Panel B: Strain values against reconstruction dimension. Panel C: Some statistics for the two classes. The classification by Wasserstein distances is noticeable better. From this we conclude that the dynamical information contained in the fluctuations of respiratory impedance contains valuable clinical information.

27 Lung diseases - Summary The results presented for asthma and COPD patients show that the Wasserstein distances are able to capture differences of shape of the long-term behavior of real-world time series. Even for the trivial embedding shown and a low number of bootstrap samples, the Wasserstein distances allow to classify a large proportion of the lung diseases correctly. In fact, these result are the best known classification results (at single FOT frequency) of these two lung diseases known in the literature.

28 Conclusion Uit Mackey, M.C.; Milton, J.G.: Dynamical Diseases, Ann. N.Y. Acad. Sci. 504 (1987), 16-3: A dynamical disease is defined as a disease that occurs in an intact physiological control system operating in a range of control parameters that leads to abnormal dynamics. The signature of a dynamical disease is a change in the qualitative dynamics of some observable nature as one or more parameters are changed. This is precisely the situation that we discussed in this talk and showed that Wasserstein distances can potentially be effectively used even in noisy environment to detect the signature of a dynamical disease. Muskulus-VL, J Applied Physiology (010) Muskulus-VL, Physica D (011) Muskulus-VL, In progress Please contact me for further information.

29 Nationale Wetenschapsagenda

Sjoerd Verduyn Lunel (Utrecht University)

Sjoerd Verduyn Lunel (Utrecht University) Lorentz Center Leiden, April 16 2013 Wasserstein distances in the analysis of time series and dynamical systems Sjoerd Verduyn Lunel (Utrecht University) Workshop Mathematics and Biology: a Roundtrip in

More information

xt+1 = 1 ax 2 t + y t y t+1 = bx t (1)

xt+1 = 1 ax 2 t + y t y t+1 = bx t (1) Exercise 2.2: Hénon map In Numerical study of quadratic area-preserving mappings (Commun. Math. Phys. 50, 69-77, 1976), the French astronomer Michel Hénon proposed the following map as a model of the Poincaré

More information

Is the Hénon map chaotic

Is the Hénon map chaotic Is the Hénon map chaotic Zbigniew Galias Department of Electrical Engineering AGH University of Science and Technology, Poland, galias@agh.edu.pl International Workshop on Complex Networks and Applications

More information

Dynamical systems and time series

Dynamical systems and time series Chapter 2 Dynamical systems and time series Abstract A new approach based on Wasserstein distances, which are numerical costs of an optimal transportation problem, allows to analyze nonlinear phenomena

More information

Delay Coordinate Embedding

Delay Coordinate Embedding Chapter 7 Delay Coordinate Embedding Up to this point, we have known our state space explicitly. But what if we do not know it? How can we then study the dynamics is phase space? A typical case is when

More information

PHONEME CLASSIFICATION OVER THE RECONSTRUCTED PHASE SPACE USING PRINCIPAL COMPONENT ANALYSIS

PHONEME CLASSIFICATION OVER THE RECONSTRUCTED PHASE SPACE USING PRINCIPAL COMPONENT ANALYSIS PHONEME CLASSIFICATION OVER THE RECONSTRUCTED PHASE SPACE USING PRINCIPAL COMPONENT ANALYSIS Jinjin Ye jinjin.ye@mu.edu Michael T. Johnson mike.johnson@mu.edu Richard J. Povinelli richard.povinelli@mu.edu

More information

Detection of Nonlinearity and Stochastic Nature in Time Series by Delay Vector Variance Method

Detection of Nonlinearity and Stochastic Nature in Time Series by Delay Vector Variance Method International Journal of Engineering & Technology IJET-IJENS Vol:10 No:02 11 Detection of Nonlinearity and Stochastic Nature in Time Series by Delay Vector Variance Method Imtiaz Ahmed Abstract-- This

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

Are numerical studies of long term dynamics conclusive: the case of the Hénon map

Are numerical studies of long term dynamics conclusive: the case of the Hénon map Journal of Physics: Conference Series PAPER OPEN ACCESS Are numerical studies of long term dynamics conclusive: the case of the Hénon map To cite this article: Zbigniew Galias 2016 J. Phys.: Conf. Ser.

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 08, 2018, at 08 30 12 30 Johanneberg Kristian

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps Chapter 4 Transition towards chaos In this chapter we will study how successive bifurcations can lead to chaos when a parameter is tuned. It is not an extensive review : there exists a lot of different

More information

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS International Journal of Bifurcation and Chaos, Vol. 18, No. 5 (2008) 1567 1577 c World Scientific Publishing Company A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS ZERAOULIA ELHADJ Department

More information

Modeling and Predicting Chaotic Time Series

Modeling and Predicting Chaotic Time Series Chapter 14 Modeling and Predicting Chaotic Time Series To understand the behavior of a dynamical system in terms of some meaningful parameters we seek the appropriate mathematical model that captures the

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998 PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 998 Synchronization of coupled time-delay systems: Analytical estimations K. Pyragas* Semiconductor Physics Institute, LT-26 Vilnius, Lithuania Received

More information

Unit Ten Summary Introduction to Dynamical Systems and Chaos

Unit Ten Summary Introduction to Dynamical Systems and Chaos Unit Ten Summary Introduction to Dynamical Systems Dynamical Systems A dynamical system is a system that evolves in time according to a well-defined, unchanging rule. The study of dynamical systems is

More information

Fractals in Physiology

Fractals in Physiology Fractals in Physiology A Biomedical Engineering Perspective J.P. Marques de Sá jmsa@fe.up.pt INEB Instituto de Engenharia Biomédica Faculdade de Engenharia da Universidade do Porto 999-2 J.P. Marques de

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL SYSTEMS

ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL SYSTEMS International Journal of Bifurcation and Chaos, Vol. 23, No. 12 (2013) 1350197 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127413501976 ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL

More information

Dynamics of partial discharges involved in electrical tree growth in insulation and its relation with the fractal dimension

Dynamics of partial discharges involved in electrical tree growth in insulation and its relation with the fractal dimension Dynamics of partial discharges involved in electrical tree growth in insulation and its relation with the fractal dimension Daniela Contreras Departamento de Matemática Universidad Técnica Federico Santa

More information

Chapitre 4. Transition to chaos. 4.1 One-dimensional maps

Chapitre 4. Transition to chaos. 4.1 One-dimensional maps Chapitre 4 Transition to chaos In this chapter we will study how successive bifurcations can lead to chaos when a parameter is tuned. It is not an extensive review : there exists a lot of different manners

More information

Phase-Space Reconstruction. Gerrit Ansmann

Phase-Space Reconstruction. Gerrit Ansmann Phase-Space Reconstruction Gerrit Ansmann Reprise: The Need for Non-Linear Methods. Lorenz oscillator x = 1(y x), y = x(28 z) y, z = xy 8z 3 Autoregressive process measured with non-linearity: y t =.8y

More information

Prentice Hall Mathematics, Algebra Correlated to: Achieve American Diploma Project Algebra II End-of-Course Exam Content Standards

Prentice Hall Mathematics, Algebra Correlated to: Achieve American Diploma Project Algebra II End-of-Course Exam Content Standards Core: Operations on Numbers and Expressions Priority: 15% Successful students will be able to perform operations with rational, real, and complex numbers, using both numeric and algebraic expressions,

More information

Distance-based analysis of dynamical systems and time series

Distance-based analysis of dynamical systems and time series 0.2 0.05 0.2 0.05 0.1 0.15 0.2 0.05 Distance-based analysis of dynamical systems and time series by optimal transport Michael Muskulus True positive rate 0.0 0.2 0.4 0.6 0.8 1.0 Accuracy = 0.800 0.0 0.2

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Sreelakshmi Manjunath Department of Electrical Engineering Indian Institute of Technology Madras (IITM), India JTG Summer

More information

Analysis of Electroencephologram Data Using Time-Delay Embeddings to Reconstruct Phase Space

Analysis of Electroencephologram Data Using Time-Delay Embeddings to Reconstruct Phase Space Dynamics at the Horsetooth Volume 1, 2009. Analysis of Electroencephologram Data Using Time-Delay Embeddings to Reconstruct Phase Space Department of Mathematics Colorado State University Report submitted

More information

Lesson 4: Non-fading Memory Nonlinearities

Lesson 4: Non-fading Memory Nonlinearities Lesson 4: Non-fading Memory Nonlinearities Nonlinear Signal Processing SS 2017 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 22, 2017 NLSP SS

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

Nonlinear Coordinate Transformations for Unconstrained Optimization I. Basic Transformations

Nonlinear Coordinate Transformations for Unconstrained Optimization I. Basic Transformations Nonlinear Coordinate Transformations for Unconstrained Optimization I. Basic Transformations TIBOR CSENDES Kalmár Laboratory, József Attila University, Szeged, Hungary and TAMÁS RAPCSÁK Computer and Automation

More information

Discrete Time Coupled Logistic Equations with Symmetric Dispersal

Discrete Time Coupled Logistic Equations with Symmetric Dispersal Discrete Time Coupled Logistic Equations with Symmetric Dispersal Tasia Raymer Department of Mathematics araymer@math.ucdavis.edu Abstract: A simple two patch logistic model with symmetric dispersal between

More information

Two Decades of Search for Chaos in Brain.

Two Decades of Search for Chaos in Brain. Two Decades of Search for Chaos in Brain. A. Krakovská Inst. of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic, Email: krakovska@savba.sk Abstract. A short review of applications

More information

L26: Advanced dimensionality reduction

L26: Advanced dimensionality reduction L26: Advanced dimensionality reduction The snapshot CA approach Oriented rincipal Components Analysis Non-linear dimensionality reduction (manifold learning) ISOMA Locally Linear Embedding CSCE 666 attern

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017 A short introduction with a view toward examples Center of Research and Applications of Nonlinear (CRANS) Department of Mathematics University of Patras Greece sanastassiou@gmail.com Short presentation

More information

The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the

The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the literature and finding recent related results in the existing

More information

Reconstruction Deconstruction:

Reconstruction Deconstruction: Reconstruction Deconstruction: A Brief History of Building Models of Nonlinear Dynamical Systems Jim Crutchfield Center for Computational Science & Engineering Physics Department University of California,

More information

The Pattern Recognition System Using the Fractal Dimension of Chaos Theory

The Pattern Recognition System Using the Fractal Dimension of Chaos Theory Original Article International Journal of Fuzzy Logic and Intelligent Systems Vol. 15, No. 2, June 2015, pp. 121-125 http://dx.doi.org/10.5391/ijfis.2015.15.2.121 ISSN(Print) 1598-2645 ISSN(Online) 2093-744X

More information

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n.

More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. More Details Fixed point of mapping is point that maps into itself, i.e., x n+1 = x n. If there are points which, after many iterations of map then fixed point called an attractor. fixed point, If λ

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 7 Interpolation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Mechanisms of Chaos: Stable Instability

Mechanisms of Chaos: Stable Instability Mechanisms of Chaos: Stable Instability Reading for this lecture: NDAC, Sec. 2.-2.3, 9.3, and.5. Unpredictability: Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory

An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory INA TARALOVA-ROUX AND ORLA FEELY Department of Electronic and Electrical Engineering University

More information

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Nonlinear Dynamics Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Introduction: Dynamics of Simple Maps 3 Dynamical systems A dynamical

More information

Clearly the passage of an eigenvalue through to the positive real half plane leads to a qualitative change in the phase portrait, i.e.

Clearly the passage of an eigenvalue through to the positive real half plane leads to a qualitative change in the phase portrait, i.e. Bifurcations We have already seen how the loss of stiffness in a linear oscillator leads to instability. In a practical situation the stiffness may not degrade in a linear fashion, and instability may

More information

Removing the Noise from Chaos Plus Noise

Removing the Noise from Chaos Plus Noise Removing the Noise from Chaos Plus Noise Steven P. Lalley Department of Statistics University of Chicago November 5, 2 Abstract The problem of extracting a signal x n generated by a dynamical system from

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor

Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor Chaotic Modeling and Simulation (CMSIM) 4: 243-252, 25 Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor Olga E. Dick Pavlov Institute of Physiology of Russian Academy of Science, nab.

More information

Analysis of Bifurcations in a Power System Model with Excitation Limits

Analysis of Bifurcations in a Power System Model with Excitation Limits Analysis of Bifurcations in a Power System Model with Excitation Limits Rajesh G. Kavasseri and K. R. Padiyar Department of Electrical Engineering Indian Institute of Science, Bangalore, India Abstract

More information

CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY

CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY 157 CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY 10.1 INTRODUCTION Complexity parameters for time series are produced based on

More information

NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE

NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE José María Amigó Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Spain) J.M. Amigó (CIO) Nonlinear time series analysis

More information

A Localized Linearized ROF Model for Surface Denoising

A Localized Linearized ROF Model for Surface Denoising 1 2 3 4 A Localized Linearized ROF Model for Surface Denoising Shingyu Leung August 7, 2008 5 Abstract 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 1 Introduction CT/MRI scan becomes a very

More information

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE INTRODUCTION TO CHAOS THEORY BY T.R.RAMAMOHAN C-MMACS BANGALORE -560037 SOME INTERESTING QUOTATIONS * PERHAPS THE NEXT GREAT ERA OF UNDERSTANDING WILL BE DETERMINING THE QUALITATIVE CONTENT OF EQUATIONS;

More information

Intelligent Fault Classification of Rolling Bearing at Variable Speed Based on Reconstructed Phase Space

Intelligent Fault Classification of Rolling Bearing at Variable Speed Based on Reconstructed Phase Space Journal of Robotics, Networking and Artificial Life, Vol., No. (June 24), 97-2 Intelligent Fault Classification of Rolling Bearing at Variable Speed Based on Reconstructed Phase Space Weigang Wen School

More information

Abstract: Complex responses observed in an experimental, nonlinear, moored structural

Abstract: Complex responses observed in an experimental, nonlinear, moored structural AN INDEPENDENT-FLOW-FIELD MODEL FOR A SDOF NONLINEAR STRUCTURAL SYSTEM, PART II: ANALYSIS OF COMPLEX RESPONSES Huan Lin e-mail: linh@engr.orst.edu Solomon C.S. Yim e-mail: solomon.yim@oregonstate.edu Ocean

More information

Vulnerability of economic systems

Vulnerability of economic systems Vulnerability of economic systems Quantitative description of U.S. business cycles using multivariate singular spectrum analysis Andreas Groth* Michael Ghil, Stéphane Hallegatte, Patrice Dumas * Laboratoire

More information

Handout 2: Invariant Sets and Stability

Handout 2: Invariant Sets and Stability Engineering Tripos Part IIB Nonlinear Systems and Control Module 4F2 1 Invariant Sets Handout 2: Invariant Sets and Stability Consider again the autonomous dynamical system ẋ = f(x), x() = x (1) with state

More information

Uncovering the Lagrangian from observations of trajectories

Uncovering the Lagrangian from observations of trajectories Uncovering the Lagrangian from observations of trajectories Yakov Berchenko-Kogan June, Abstract We approach the problem of automatically modeling a mechanical system from data about its dynamics, using

More information

8. The approach for complexity analysis of multivariate time series

8. The approach for complexity analysis of multivariate time series 8. The approach for complexity analysis of multivariate time series Kazimieras Pukenas Lithuanian Sports University, Kaunas, Lithuania E-mail: kazimieras.pukenas@lsu.lt (Received 15 June 2015; received

More information

Ensembles of Nearest Neighbor Forecasts

Ensembles of Nearest Neighbor Forecasts Ensembles of Nearest Neighbor Forecasts Dragomir Yankov 1, Dennis DeCoste 2, and Eamonn Keogh 1 1 University of California, Riverside CA 92507, USA, {dyankov,eamonn}@cs.ucr.edu, 2 Yahoo! Research, 3333

More information

WHEELSET BEARING VIBRATION ANALYSIS BASED ON NONLINEAR DYNAMICAL METHOD

WHEELSET BEARING VIBRATION ANALYSIS BASED ON NONLINEAR DYNAMICAL METHOD 15 th November 212. Vol. 45 No.1 25-212 JATIT & LLS. All rights reserved. WHEELSET BEARING VIBRATION ANALYSIS BASED ON NONLINEAR DYNAMICAL METHOD 1,2 ZHAO ZHIHONG, 2 LIU YONGQIANG 1 School of Computing

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:13 No:05 55 Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting K. Saleh Department of Mathematics, King Fahd

More information

Igor A. Khovanov,Vadim S. Anishchenko, Astrakhanskaya str. 83, Saratov, Russia

Igor A. Khovanov,Vadim S. Anishchenko, Astrakhanskaya str. 83, Saratov, Russia Noise Induced Escape from Dierent Types of Chaotic Attractor Igor A. Khovanov,Vadim S. Anishchenko, Dmitri G. Luchinsky y,andpeter V.E. McClintock y Department of Physics, Saratov State University, Astrakhanskaya

More information

Ordinal Analysis of Time Series

Ordinal Analysis of Time Series Ordinal Analysis of Time Series K. Keller, M. Sinn Mathematical Institute, Wallstraße 0, 2552 Lübeck Abstract In order to develop fast and robust methods for extracting qualitative information from non-linear

More information

Chapter 2 Chaos theory and its relationship to complexity

Chapter 2 Chaos theory and its relationship to complexity Chapter 2 Chaos theory and its relationship to complexity David Kernick This chapter introduces chaos theory and the concept of non-linearity. It highlights the importance of reiteration and the system

More information

No. 6 Determining the input dimension of a To model a nonlinear time series with the widely used feed-forward neural network means to fit the a

No. 6 Determining the input dimension of a To model a nonlinear time series with the widely used feed-forward neural network means to fit the a Vol 12 No 6, June 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(06)/0594-05 Chinese Physics and IOP Publishing Ltd Determining the input dimension of a neural network for nonlinear time series prediction

More information

INTERVAL METHODS FOR RIGOROUS INVESTIGATIONS OF PERIODIC ORBITS

INTERVAL METHODS FOR RIGOROUS INVESTIGATIONS OF PERIODIC ORBITS International Journal of Bifurcation and Chaos, Vol. 11, No. 9 (2001) 2427 2450 c World Scientific Publishing Company INTERVAL METHODS FOR RIGOROUS INVESTIGATIONS OF PERIODIC ORBITS ZBIGNIEW GALIAS Institute

More information

A Two-dimensional Mapping with a Strange Attractor

A Two-dimensional Mapping with a Strange Attractor Commun. math. Phys. 50, 69 77 (1976) Communications in Mathematical Physics by Springer-Verlag 1976 A Two-dimensional Mapping with a Strange Attractor M. Henon Observatoire de Nice, F-06300 Nice, France

More information

CHAOS -SOME BASIC CONCEPTS

CHAOS -SOME BASIC CONCEPTS CHAOS -SOME BASIC CONCEPTS Anders Ekberg INTRODUCTION This report is my exam of the "Chaos-part" of the course STOCHASTIC VIBRATIONS. I m by no means any expert in the area and may well have misunderstood

More information

A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors

A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors EJTP 5, No. 17 (2008) 111 124 Electronic Journal of Theoretical Physics A Two-dimensional Discrete Mapping with C Multifold Chaotic Attractors Zeraoulia Elhadj a, J. C. Sprott b a Department of Mathematics,

More information

Shape Outlier Detection Using Pose Preserving Dynamic Shape Models

Shape Outlier Detection Using Pose Preserving Dynamic Shape Models Shape Outlier Detection Using Pose Preserving Dynamic Shape Models Chan-Su Lee and Ahmed Elgammal Rutgers, The State University of New Jersey Department of Computer Science Outline Introduction Shape Outlier

More information

Predicting Phase Synchronization for Homoclinic Chaos in a CO 2 Laser

Predicting Phase Synchronization for Homoclinic Chaos in a CO 2 Laser Predicting Phase Synchronization for Homoclinic Chaos in a CO 2 Laser Isao Tokuda, Jürgen Kurths, Enrico Allaria, Riccardo Meucci, Stefano Boccaletti and F. Tito Arecchi Nonlinear Dynamics, Institute of

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Extracting Qualitative Dynamics from Numerical Experiments 1. Extended Abstract

Extracting Qualitative Dynamics from Numerical Experiments 1. Extended Abstract Extracting Qualitative Dynamics from Numerical Experiments 1 KENNETH MAN-KAM YIP MIT Artificial Intelligence Laboratory iwf -to - 438 545 Technology Square, Cambridge, MA 02139. yip@ oz. ai. mit. edu February

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models

Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 7, No. 2, pp. 284 310 c 2008 Society for Industrial and Applied Mathematics Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models Abdul-Aziz

More information

Old and New Methods in the Age of Big Data

Old and New Methods in the Age of Big Data Old and New Methods in the Age of Big Data Zoltán Somogyvári1,2 1Department of Theory Wigner Research Center for Physics of the Hungarian Academy of Sciences 2National Institute for Clinical Neuroscience

More information

Siegel disk for complexified Hénon map

Siegel disk for complexified Hénon map Siegel disk for complexified Hénon map O.B. Isaeva, S.P. Kuznetsov arxiv:0804.4238v1 [nlin.cd] 26 Apr 2008 Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelenaya 38, Saratov, 410019,

More information

11 Chaos in Continuous Dynamical Systems.

11 Chaos in Continuous Dynamical Systems. 11 CHAOS IN CONTINUOUS DYNAMICAL SYSTEMS. 47 11 Chaos in Continuous Dynamical Systems. Let s consider a system of differential equations given by where x(t) : R R and f : R R. ẋ = f(x), The linearization

More information

Supplemental Figures A Nonlinear Dynamical Theory of Cell Injury

Supplemental Figures A Nonlinear Dynamical Theory of Cell Injury upplementary Figures, A Nonlinear ynamical Theory of Cell Injury - upplemental Figures A Nonlinear ynamical Theory of Cell Injury onald J. egracia, Zhi-Feng Huang, ui Huang A. f ( X ) = a Θ n n Θ + X n

More information

y(n) Time Series Data

y(n) Time Series Data Recurrent SOM with Local Linear Models in Time Series Prediction Timo Koskela, Markus Varsta, Jukka Heikkonen, and Kimmo Kaski Helsinki University of Technology Laboratory of Computational Engineering

More information

Multiplex network inference

Multiplex network inference (using hidden Markov models) University of Cambridge Bioinformatics Group Meeting 11 February 2016 Words of warning Disclaimer These slides have been produced by combining & translating two of my previous

More information

arxiv: v3 [physics.data-an] 3 Sep 2008

arxiv: v3 [physics.data-an] 3 Sep 2008 Electronic version of an article published as: International Journal of Bifurcation and Chaos, 7(), 27, 3493 3497. doi:.42/s282747925 c World Scientific Publishing Company http://www.worldscinet.com/ijbc/

More information

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

More information

arxiv: v1 [nlin.cg] 23 Sep 2010

arxiv: v1 [nlin.cg] 23 Sep 2010 Complex networks derived from cellular automata Yoshihiko Kayama Department of Media and Information, BAIKA Women s University, 2-9-5, Shukuno-sho, Ibaraki-city, Osaka-pref., Japan arxiv:009.4509v [nlin.cg]

More information

Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA Experimental Characterization of Chua s Circuit Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (Dated:

More information

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Mason A. Porter 15/05/2010 1 Question 1 i. (6 points) Define a saddle-node bifurcation and show that the first order system dx dt = r x e x

More information

What is Chaos? Implications of Chaos 4/12/2010

What is Chaos? Implications of Chaos 4/12/2010 Joseph Engler Adaptive Systems Rockwell Collins, Inc & Intelligent Systems Laboratory The University of Iowa When we see irregularity we cling to randomness and disorder for explanations. Why should this

More information

ESTIMATING THE ATTRACTOR DIMENSION OF THE EQUATORIAL WEATHER SYSTEM M. Leok B.T.

ESTIMATING THE ATTRACTOR DIMENSION OF THE EQUATORIAL WEATHER SYSTEM M. Leok B.T. This paper was awarded in the I International Competition (99/9) First Step to Nobel Prize in Physics and published in the competition proceedings (Acta Phys. Pol. A 8 Supplement, S- (99)). The paper is

More information

AN ELECTRIC circuit containing a switch controlled by

AN ELECTRIC circuit containing a switch controlled by 878 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 7, JULY 1999 Bifurcation of Switched Nonlinear Dynamical Systems Takuji Kousaka, Member, IEEE, Tetsushi

More information

Simple conservative, autonomous, second-order chaotic complex variable systems.

Simple conservative, autonomous, second-order chaotic complex variable systems. Simple conservative, autonomous, second-order chaotic complex variable systems. Delmar Marshall 1 (Physics Department, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, Kerala 690-525, India) and J. C.

More information

Nonsmooth systems: synchronization, sliding and other open problems

Nonsmooth systems: synchronization, sliding and other open problems John Hogan Bristol Centre for Applied Nonlinear Mathematics, University of Bristol, England Nonsmooth systems: synchronization, sliding and other open problems 2 Nonsmooth Systems 3 What is a nonsmooth

More information

A Dynamical Systems Approach to Modeling Input-Output Systems

A Dynamical Systems Approach to Modeling Input-Output Systems A Dynamical Systems Approach to Modeling Input-Output Systems Martin Casdagli Santa Fe Institute, 1120 Canyon Road Santa Fe, New Mexico 87501 Abstract Motivated by practical applications, we generalize

More information

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai CONTROLLING CHAOS Sudeshna Sinha The Institute of Mathematical Sciences Chennai Sinha, Ramswamy and Subba Rao: Physica D, vol. 43, p. 118 Sinha, Physics Letts. A vol. 156, p. 475 Ramswamy, Sinha, Gupte:

More information

HS Algebra IIB Mathematics CC

HS Algebra IIB Mathematics CC Scope And Sequence Timeframe Unit Instructional Topics 1 Week(s) 1 Week(s) 1 Week(s) 1 Week(s) 2 Week(s) 1 Week(s) 2 Week(s) 1 Week(s) Unit 1: Linear and Absolute Value Equations and Inequalities Unit

More information

16 Period doubling route to chaos

16 Period doubling route to chaos 16 Period doubling route to chaos We now study the routes or scenarios towards chaos. We ask: How does the transition from periodic to strange attractor occur? The question is analogous to the study of

More information

Fast and Accurate HARDI and its Application to Neurological Diagnosis

Fast and Accurate HARDI and its Application to Neurological Diagnosis Fast and Accurate HARDI and its Application to Neurological Diagnosis Dr. Oleg Michailovich Department of Electrical and Computer Engineering University of Waterloo June 21, 2011 Outline 1 Diffusion imaging

More information

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v. April 3, 005 - Hyperbolic Sets We now extend the structure of the horseshoe to more general kinds of invariant sets. Let r, and let f D r (M) where M is a Riemannian manifold. A compact f invariant set

More information