The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the

Size: px
Start display at page:

Download "The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the"

Transcription

1 The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the literature and finding recent related results in the existing literature. Original research is not required. A PhD project requires, of course, original research and the projects listed below may be the starting point for a PhD thesis. The projects cover topics in Nonlinear Dynamics and Statistical Physics. The description of the projects is rather brief and uses sometimes specialised terms. For further details, for instance the required prerequisites, please contact: Wolfram Just, Room 315, w.just@qmul.ac.uk. 1

2 A: Lyapunov exponents in systems with many degrees of freedom 1. Dynamics with large time delay It is quite well established that dynamics including time delay yields high dimensional phase spaces. Within the project such a topic is addressed on the basis of simple one dimensional map. For that purpose the time discrete dynamics given by x n+1 = (1 ε)f(x n )+εf(x n τ ) will be studied, with a special emphasis on Lyapunov exponents, fractal dimensions of the attractor, and corresponding entropies [25]. Analytical computations for large delay time τ can be performed for maps with constant slope, f(x) = ax mod1, while the universal character of such results can be confirmed by numerical simulations for a larger class of systems. In particular, the project will focus on how the features of the dynamical systems change qualitatively when the delay parameter ε increases. 2. Co-moving Lyapunov exponents and Lyapunov spectra Chaotic systems with spatial degrees of freedom, like for instance partial differential equations or coupled map lattices, can be used to describe transport in random media. In simple cases such transport properties can be quantified by appropriate Lyapunov exponents which describe the sensitivity on initial conditions in a comoving frame [26]. Such co-moving Lyapunov exponents can be evaluated for maps with constant slope, e.g. Bernoulli shift maps, by analytical means. The relation between co-moving Lyapunov exponents and the whole Lyapunov spectrum should be uncovered in this project [27]. 2

3 B: Linear stability of systems with time delay 1. Quasiperiodically driven linear delay systems Time-delayed feedback control of periodic orbits, in particular the corresponding linear stability analysis, may result in dynamical systems driven by a quasiperiodic force. Using results for quasiperiodically driven linear differential equations [10] simple linear differential-difference equations with quasiperiodic coefficients will be analysed. Results will be compared with resonant cases where Floquet theory and numerical tools can be applied [11, 12]. 2. Linear stability of oscillators subjected to time delay Stability analysis of time-delay dynamics yields transcendental characteristic equations, for instance z exp(z) = c, for the corresponding eigenvalues z C. The analysis of such an equation, i.e. the dependence of z on the parameter c C can be found in the literature [13, 14]. The more advanced tools described in the appendix of [15] will be applied to analyse more complicated characteristic equations, like (z 2 + az + b) exp(z) = c, which govern the stability of a harmonic oscillator subjected to time delayed feedback control ẍ t + γẋ t + ω 2 x t = K(x t x t τ ). 3. Bifurcation analysis of time-delayed feedback control Bifurcation analysis and numerical continuation tools for differentialdifference equations [12] are used to study the properties of simple oscillators, like the driven Toda equation, subjected to time-delayed feedback control [16]. Of particular interest is the impact of different coupling schemes of the control force, and the analysis of different control methods, like unstable control loops [17], control in autonomous systems [18], or time-dependent modulations of the control loop [19]. 3

4 C: Phase transitions in dynamical systems 1. Renormalisation of the Ising map Piecewise linear Markov maps are simple dynamical systems. The dynamical properties, like expectation values, correlations functions, or invariant measures can be analysed in terms of the Statistical Mechanics of spin chains by analytical means [1]. A simple model which is equivalent to the nearest neighbour coupled Ising chain will be investigated [2]. The link between the renormalisation by spin decimation and higher iterates of the map will be investigated based on quantities like the magnetisation m or the corresponding generating function exp(qnm n ) (i.e. the topological pressure in formal terms [3]). A transfer of the spin decimation renormalisation group to the dynamical system, e.g., on suitable function spaces is one of the goals of the project. 2. Analytical solutions for one-dimensional probabilistic cellular automata Spatially one-dimensional probabilistic cellular automata are simple dynamical systems which can be analysed by analytical means [4]. Stationary distributions of models with nearest neighbour coupling will be determined, with special emphasis on asymmetric couplings and violation of detailed balance [24]. The possibility of phase transitions in models with long range coupling and the computation of the spectrum of the corresponding Master equation is of interest as well. Furthermore, the question of the equivalence between mean field theories and globally coupled models will be addressed. 4

5 D: Globally coupled dynamical systems 1. Globally coupled Ising maps Piecewise linear Markov maps with global coupling are investigated [2]. The model can be mapped to globally coupled spin models which can be analysed by analytical means and which show phase transitions [4]. Topics which are of interest for the project are: (i) Analysis of the critical behaviour using dynamical mean field equations for the magnetisation. Such equations are exact because of the global coupling and of the Markov property. (ii) Stability of the piecewise constant solution for the one particle density. (iii) Features of the dynamical system in the neighbourhood of the phase transition, e.g. the statistical weights and the number of space-time periodic patterns. Relations with microcanonical descriptions of equilibrium phase transitions may be relevant in such a context [5]. 2. Globally coupled Bernoulli maps Dynamical system with global coupling can be analysed in terms of the one-particle density [6]. A model of piecewise linear shift maps will be investigated. Simple solutions of the mean field equation will be compared with phase diagrams of short ranged coupled models [7]. Stability of such simple solutions may be studied by numerical means [8]. Phase transitions of the globally coupled model may be investigated as well with regards to changes in the structure of space-time periodic patters, e.g., pruning of such orbits [9]. 5

6 E: Critical behaviour in coupled map lattices 1. Finite-size scaling of coupled Bernoulli maps Spatially two-dimensional arrays of coupled shift maps display a variety of phase transitions [7]. The properties of the transition is quantified by critical exponents which govern the scaling behaviour of average values. Accurate estimates for such exponents are obtained by finitesize scaling procedures [20, 4]. The universality of ferromagnetic phase transitions in such a model will be investigated as well as the scaling behaviour with regards to dynamical critical behaviour and transitions which involve time-dependent phases. 2. Finite-size scaling of the Miller-Huse model Spatially tow-dimensional arrays of asymmetric tent maps display phase transitions of ferromagnetic type [22]. The properties of the transition is quantified by critical exponents which govern the scaling behaviour of average values. Accurate estimates for such exponents are obtained by finite-size scaling procedures [20]. But such results have been questioned recently since computations are corrupted by finite size corrections [21]. Accurate values of the critical exponents will be obtained by numerical analysis of systems of sufficient size. The influence of the underlying lattice structure, e.g. square lattice vs. honeycomb lattice, will be investigated as well [23]. 6

7 References [1] W. Just, On Symbolic Dynamics of Space-Time Chaotic Models, in Collective dynamics of nonlinear and disordered systems, G. Radons, P. Häussler, and W. Just (Eds.), (Springer, 2005), p [2] W. Just and F. Schmüser, On phase transitions in coupled map lattices, in Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Eds. J.-R. Chazottes and B. Fernandez, Lecture Notes in Physics 671 (Springer, 2005), p [3] W. Just and H. Fujisaka, Gibbs Measures and Power Spectra for Type I Intermittent Maps, Physica D 64 (1993) [4] W. Just, Phase transitions in coupled map lattices and in associated probabilistic cellular automata, Phys. Rev. E 74 (2006) [5] R. Franzosi and M. Pettini, Theorem on the Origin of Phase Transitions, Phys. Rev. Lett. 92 (2004) [6] W. Just, Bifurcations in Globally Coupled Map Lattices, J. Stat. Phys. 79 (1995) [7] W. Just, Critical exponents for coupled map lattices emulating Tooms probabilistic cellular automaton, (preprint, 2007), wj/wolfram publ.html. [8] S. Morita, Bifurcations in globally coupled chaotic maps, Phys. Lett. A 211 (1996) 258. [9] P. Cvitanović, G. H. Gunaratne, and I. Procaccia, Topological and metric properties of Henon-type strange attractors, Phys. Rev. A 38 (1988) [10] J. Puig, Reducibility of linear equations with quasi-periodic coefficients. A survey, (preprint, 2002), [11] M. E. Bleich and J. E. S. Socolar, Stability of periodic orbits controlled by time-delayed feedback, Phys. Lett. A 210 (1996) 87. 7

8 [12] K Engelborghs, DDE-BIFTOOL: a Mathlab package for bifurcation analysis of delay differential equations, [13] R. Bellmann and K. L. Cooke, Differential-Difference Equations, (Acad. Press, New York, 1963). [14] W. Just, E. Reibold, K. Kacperski, P. Fronczak, J. Holyst, and H. Benner,Influence of stable Floquet exponents on time-delayed feedback control, Phys. Rev. E 61 (2000) [15] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, (Springer, New York, 1993). [16] W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner, On the Mechanism of Time-Delayed Feedback Control, Phys. Rev. Lett. 78 (1997) [17] K. Pyragas, V. Pyragas, and H. Benner, Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation, Phys. Rev. E 70 (2004) [18] B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll, Refuting the odd number limitation of time-delayed feedback control, Phys. Rev. Lett. 98 (2007) [19] H. G. Schuster and M. B. Stemmler, Control of chaos by oscillating feedback, Phys. Rev. E 56 (1997) [20] P. Marcq, H. Chaté, and P. Manneville, Universality in Ising like phase transitions of coupled chaotic maps, Phys. Rev. E 55 (1997) [21] K. Takeuchi, Can the Ising critical behaviour survive in non-equilibrium synchronous cellular automata?, Physica D 223 (2006) 146. [22] J. Miller and D. A. Huse, Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled map lattice, Phys. Rev. E 48 (1993) [23] F. Sastre and G. Perez, Stochastic analog to phase transitions in chaotic coupled map lattices, Phys. Rev. E 64 (2001)

9 [24] F. Schmüser and W. Just, Non-equilibrium behaviour in unidirectionally coupled map lattices, J. Stat. Phys. 105 (2001) [25] E. Ferretti Manffra, H. Kantz, and W. Just, Periodic orbits and topological entropy of delayed maps, Phys. Rev. E 63 (2001) [26] H.G Schuster and W. Just, Deterministic Chaos, Wiley-VCH, [27] S. Lepri, A. Politi, and A. Torcini, Chronotopic Lyaponov analysis, J. Stat. Phys. 88 (1997) 31. c W.J

arxiv: v2 [nlin.cd] 8 Sep 2012

arxiv: v2 [nlin.cd] 8 Sep 2012 An analytical limitation for time-delayed feedback control in autonomous systems Edward W. Hooton 1 1, 2, and Andreas Amann 1 School of Mathematical Sciences, University College Cork, Ireland 2 Tyndall

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system arxiv:1712.06011v1 [nlin.cd] 16 Dec 2017 The influence of noise on two- and three-frequency quasi-periodicity in a simple model system A.P. Kuznetsov, S.P. Kuznetsov and Yu.V. Sedova December 19, 2017

More information

ECE 8803 Nonlinear Dynamics and Applications Spring Georgia Tech Lorraine

ECE 8803 Nonlinear Dynamics and Applications Spring Georgia Tech Lorraine ECE 8803 Nonlinear Dynamics and Applications Spring 2018 Georgia Tech Lorraine Brief Description Introduction to the nonlinear dynamics of continuous-time and discrete-time systems. Routes to chaos. Quantification

More information

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE INTRODUCTION TO CHAOS THEORY BY T.R.RAMAMOHAN C-MMACS BANGALORE -560037 SOME INTERESTING QUOTATIONS * PERHAPS THE NEXT GREAT ERA OF UNDERSTANDING WILL BE DETERMINING THE QUALITATIVE CONTENT OF EQUATIONS;

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998 PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 998 Synchronization of coupled time-delay systems: Analytical estimations K. Pyragas* Semiconductor Physics Institute, LT-26 Vilnius, Lithuania Received

More information

arxiv:chao-dyn/ v3 30 Jul 2004

arxiv:chao-dyn/ v3 30 Jul 2004 Improved control of delayed measured systems Jens Christian Claussen and Heinz Georg Schuster Institut für Theoretische Physik der Universität Kiel, 24098 Kiel, Germany (Revised: July 29, 2004) In this

More information

Delayed feedback control of chaos: Bifurcation analysis

Delayed feedback control of chaos: Bifurcation analysis Loughborough University Institutional Repository Delayed feedback control of chaos: Bifurcation analysis This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Delayed feedback control of three diusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation

Delayed feedback control of three diusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation Delayed feedback control of three diusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation Isabelle Schneider Freie Universität Berlin, Fachbereich Mathematik und Informatik,

More information

The pages 1 4 are title pages that will be provided by the publisher. Therefore, the table of contents starts on page V.

The pages 1 4 are title pages that will be provided by the publisher. Therefore, the table of contents starts on page V. The pages 1 4 are title pages that will be provided by the publisher. Therefore, the table of contents starts on page V. I II Beyond the odd-number limitation of time-delayed feedback control B. Fiedler,

More information

Stabilization of Hyperbolic Chaos by the Pyragas Method

Stabilization of Hyperbolic Chaos by the Pyragas Method Journal of Mathematics and System Science 4 (014) 755-76 D DAVID PUBLISHING Stabilization of Hyperbolic Chaos by the Pyragas Method Sergey Belyakin, Arsen Dzanoev, Sergey Kuznetsov Physics Faculty, Moscow

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

Additive resonances of a controlled van der Pol-Duffing oscillator

Additive resonances of a controlled van der Pol-Duffing oscillator Additive resonances of a controlled van der Pol-Duffing oscillator This paper has been published in Journal of Sound and Vibration vol. 5 issue - 8 pp.-. J.C. Ji N. Zhang Faculty of Engineering University

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

arxiv: v1 [nlin.ao] 9 Dec 2009

arxiv: v1 [nlin.ao] 9 Dec 2009 Transient behavior in systems with time-delayed feedback Robert C. Hinz, Philipp Hövel, and Eckehard Schöll Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany (e-mail:

More information

Cellular Automata as Models of Complexity

Cellular Automata as Models of Complexity Cellular Automata as Models of Complexity Stephen Wolfram, Nature 311 (5985): 419 424, 1984 Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The origins of

More information

Controlling the Period-Doubling Bifurcation of Logistic Model

Controlling the Period-Doubling Bifurcation of Logistic Model ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.20(2015) No.3,pp.174-178 Controlling the Period-Doubling Bifurcation of Logistic Model Zhiqian Wang 1, Jiashi Tang

More information

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE By Itishree Priyadarshini Under the Guidance of Prof. Biplab Ganguli Department of Physics National Institute of Technology, Rourkela CERTIFICATE This is to

More information

arxiv:chao-dyn/ v1 5 Mar 1996

arxiv:chao-dyn/ v1 5 Mar 1996 Turbulence in Globally Coupled Maps M. G. Cosenza and A. Parravano Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes, A. Postal 26 La Hechicera, Mérida 5251, Venezuela (To appear,

More information

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS International Journal of Bifurcation and Chaos, Vol 9, No 11 (1999) 19 4 c World Scientific Publishing Company STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS ZBIGNIEW

More information

Revista Economica 65:6 (2013)

Revista Economica 65:6 (2013) INDICATIONS OF CHAOTIC BEHAVIOUR IN USD/EUR EXCHANGE RATE CIOBANU Dumitru 1, VASILESCU Maria 2 1 Faculty of Economics and Business Administration, University of Craiova, Craiova, Romania 2 Faculty of Economics

More information

Control and synchronization of Julia sets of the complex dissipative standard system

Control and synchronization of Julia sets of the complex dissipative standard system Nonlinear Analysis: Modelling and Control, Vol. 21, No. 4, 465 476 ISSN 1392-5113 http://dx.doi.org/10.15388/na.2016.4.3 Control and synchronization of Julia sets of the complex dissipative standard system

More information

NONLINEAR DYNAMICS PHYS 471 & PHYS 571

NONLINEAR DYNAMICS PHYS 471 & PHYS 571 NONLINEAR DYNAMICS PHYS 471 & PHYS 571 Prof. R. Gilmore 12-918 X-2779 robert.gilmore@drexel.edu Office hours: 14:00 Quarter: Winter, 2014-2015 Course Schedule: Tuesday, Thursday, 11:00-12:20 Room: 12-919

More information

Stability and Projective Synchronization in Multiple Delay Rössler System

Stability and Projective Synchronization in Multiple Delay Rössler System ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(29) No.2,pp.27-214 Stability and Projective Synchronization in Multiple Delay Rössler System Dibakar Ghosh Department

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

The Behaviour of a Mobile Robot Is Chaotic

The Behaviour of a Mobile Robot Is Chaotic AISB Journal 1(4), c SSAISB, 2003 The Behaviour of a Mobile Robot Is Chaotic Ulrich Nehmzow and Keith Walker Department of Computer Science, University of Essex, Colchester CO4 3SQ Department of Physics

More information

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Nonlinear Dynamics Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Introduction: Dynamics of Simple Maps 3 Dynamical systems A dynamical

More information

Reconstruction Deconstruction:

Reconstruction Deconstruction: Reconstruction Deconstruction: A Brief History of Building Models of Nonlinear Dynamical Systems Jim Crutchfield Center for Computational Science & Engineering Physics Department University of California,

More information

Any live cell with less than 2 live neighbours dies. Any live cell with 2 or 3 live neighbours lives on to the next step.

Any live cell with less than 2 live neighbours dies. Any live cell with 2 or 3 live neighbours lives on to the next step. 2. Cellular automata, and the SIRS model In this Section we consider an important set of models used in computer simulations, which are called cellular automata (these are very similar to the so-called

More information

Chaos Control of the Chaotic Symmetric Gyroscope System

Chaos Control of the Chaotic Symmetric Gyroscope System 48 Chaos Control of the Chaotic Symmetric Gyroscope System * Barış CEVHER, Yılmaz UYAROĞLU and 3 Selçuk EMIROĞLU,,3 Faculty of Engineering, Department of Electrical and Electronics Engineering Sakarya

More information

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS Journal of Pure and Applied Mathematics: Advances and Applications Volume 0 Number 0 Pages 69-0 ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS HENA RANI BISWAS Department of Mathematics University of Barisal

More information

Antimonotonicity in Chua s Canonical Circuit with a Smooth Nonlinearity

Antimonotonicity in Chua s Canonical Circuit with a Smooth Nonlinearity Antimonotonicity in Chua s Canonical Circuit with a Smooth Nonlinearity IOANNIS Μ. KYPRIANIDIS & MARIA Ε. FOTIADOU Physics Department Aristotle University of Thessaloniki Thessaloniki, 54124 GREECE Abstract:

More information

Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation

Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation PHYSICAL REVIEW E 7, 06215 2006 Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation V. Pyragas and K. Pyragas* Semiconductor Physics Institute, LT-01108

More information

CONTROLLING HYPER CHAOS WITH FEEDBACK OF DYNAMICAL VARIABLES

CONTROLLING HYPER CHAOS WITH FEEDBACK OF DYNAMICAL VARIABLES International Journal of Modern Physics B Vol. 17, Nos. 22, 23 & 24 (2003) 4272 4277 c World Scientific Publishing Company CONTROLLING HYPER CHAOS WITH FEEDBACK OF DYNAMICAL VARIABLES XIAO-SHU LUO Department

More information

Chaotic Subsystem Come From Glider E 3 of CA Rule 110

Chaotic Subsystem Come From Glider E 3 of CA Rule 110 Chaotic Subsystem Come From Glider E 3 of CA Rule 110 Lingxiao Si, Fangyue Chen, Fang Wang, and Pingping Liu School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, P. R. China Abstract The

More information

Example Chaotic Maps (that you can analyze)

Example Chaotic Maps (that you can analyze) Example Chaotic Maps (that you can analyze) Reading for this lecture: NDAC, Sections.5-.7. Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 24); Jim Crutchfield Monday, January

More information

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 682 688 c International Academic Publishers Vol. 35, No. 6, June 15, 2001 Phase Desynchronization as a Mechanism for Transitions to High-Dimensional

More information

vii Contents 7.5 Mathematica Commands in Text Format 7.6 Exercises

vii Contents 7.5 Mathematica Commands in Text Format 7.6 Exercises Preface 0. A Tutorial Introduction to Mathematica 0.1 A Quick Tour of Mathematica 0.2 Tutorial 1: The Basics (One Hour) 0.3 Tutorial 2: Plots and Differential Equations (One Hour) 0.4 Mathematica Programs

More information

One dimensional Maps

One dimensional Maps Chapter 4 One dimensional Maps The ordinary differential equation studied in chapters 1-3 provide a close link to actual physical systems it is easy to believe these equations provide at least an approximate

More information

DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS Department of Physics 1 DEPARTMENT OF PHYSICS Office in Engineering Building, Room 124 (970) 491-6206 physics.colostate.edu (http://www.physics.colostate.edu) Professor Jacob Roberts, Chair Undergraduate

More information

High-Dimensional Dynamics in the Delayed Hénon Map

High-Dimensional Dynamics in the Delayed Hénon Map EJTP 3, No. 12 (2006) 19 35 Electronic Journal of Theoretical Physics High-Dimensional Dynamics in the Delayed Hénon Map J. C. Sprott Department of Physics, University of Wisconsin, Madison, WI 53706,

More information

Toward a Better Understanding of Complexity

Toward a Better Understanding of Complexity Toward a Better Understanding of Complexity Definitions of Complexity, Cellular Automata as Models of Complexity, Random Boolean Networks Christian Jacob jacob@cpsc.ucalgary.ca Department of Computer Science

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

Synchronization and control in small networks of chaotic electronic circuits

Synchronization and control in small networks of chaotic electronic circuits Synchronization and control in small networks of chaotic electronic circuits A. Iglesias Dept. of Applied Mathematics and Computational Sciences, Universi~ of Cantabria, Spain Abstract In this paper, a

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

Chapter 3. Gumowski-Mira Map. 3.1 Introduction

Chapter 3. Gumowski-Mira Map. 3.1 Introduction Chapter 3 Gumowski-Mira Map 3.1 Introduction Non linear recurrence relations model many real world systems and help in analysing their possible asymptotic behaviour as the parameters are varied [17]. Here

More information

WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

More information

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM International Journal of Bifurcation and Chaos, Vol. 23, No. 11 (2013) 1350188 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127413501885 SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

More information

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 197-210 COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL

More information

arxiv:nlin/ v1 [nlin.cd] 4 Oct 2005

arxiv:nlin/ v1 [nlin.cd] 4 Oct 2005 Synchronization of Coupled Chaotic Dynamics on Networks R. E. Amritkar and Sarika Jalan Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India. arxiv:nlin/0510008v1 [nlin.cd] 4 Oct 2005 Abstract

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

The Sine Map. Jory Griffin. May 1, 2013

The Sine Map. Jory Griffin. May 1, 2013 The Sine Map Jory Griffin May, 23 Introduction Unimodal maps on the unit interval are among the most studied dynamical systems. Perhaps the two most frequently mentioned are the logistic map and the tent

More information

Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography

Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography P. Sanoop Kumar Department of CSE, Gayatri Vidya Parishad College of Engineering(A), Madhurawada-530048,Visakhapatnam,

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Generating a Complex Form of Chaotic Pan System and its Behavior

Generating a Complex Form of Chaotic Pan System and its Behavior Appl. Math. Inf. Sci. 9, No. 5, 2553-2557 (2015) 2553 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090540 Generating a Complex Form of Chaotic Pan

More information

arxiv:nlin/ v2 [nlin.cd] 10 Apr 2007

arxiv:nlin/ v2 [nlin.cd] 10 Apr 2007 near a global bifurcation J. Hizanidis, R. Aust, and E. Schöll Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-623 Berlin, Germany arxiv:nlin/722v2 [nlin.cd] Apr

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay Difference Resonances in a controlled van der Pol-Duffing oscillator involving time delay This paper was published in the journal Chaos, Solitions & Fractals, vol.4, no., pp.975-98, Oct 9 J.C. Ji, N. Zhang,

More information

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS International Journal of Bifurcation and Chaos, Vol. 18, No. 5 (2008) 1567 1577 c World Scientific Publishing Company A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS ZERAOULIA ELHADJ Department

More information

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré

... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré Chapter 2 Dynamical Systems... it may happen that small differences in the initial conditions produce very great ones in the final phenomena. Henri Poincaré One of the exciting new fields to arise out

More information

CHUA'S CIRCUIT: A Paradigm for CHAOS. edited by. Rabinder IM. Madan Office of Naval Research Electronics Division Arlington, USA

CHUA'S CIRCUIT: A Paradigm for CHAOS. edited by. Rabinder IM. Madan Office of Naval Research Electronics Division Arlington, USA & WORLD SCIENTIFIC SERIES ON p «_, _... NONLINEAR SCIENCC % senes B vol. 1 Series Editor: Leon O. Chua CHUA'S CIRCUIT: A Paradigm for CHAOS edited by Rabinder IM. Madan Office of Naval Research Electronics

More information

2 Discrete growth models, logistic map (Murray, Chapter 2)

2 Discrete growth models, logistic map (Murray, Chapter 2) 2 Discrete growth models, logistic map (Murray, Chapter 2) As argued in Lecture 1 the population of non-overlapping generations can be modelled as a discrete dynamical system. This is an example of an

More information

An efficient parallel pseudorandom bit generator based on an asymmetric coupled chaotic map lattice

An efficient parallel pseudorandom bit generator based on an asymmetric coupled chaotic map lattice PRAMANA c Indian Academy of Sciences Vol. 85, No. 4 journal of October 215 physics pp. 617 627 An efficient parallel pseudorandom bit generator based on an asymmetric coupled chaotic map lattice RENFU

More information

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

More information

Topological Bifurcations of Knotted Tori in Quasiperiodically Driven Oscillators

Topological Bifurcations of Knotted Tori in Quasiperiodically Driven Oscillators Topological Bifurcations of Knotted Tori in Quasiperiodically Driven Oscillators Brian Spears with Andrew Szeri and Michael Hutchings University of California at Berkeley Caltech CDS Seminar October 24,

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

arxiv:nlin/ v1 [nlin.cd] 25 Apr 2001

arxiv:nlin/ v1 [nlin.cd] 25 Apr 2001 Anticipated synchronization in coupled chaotic maps with delays arxiv:nlin/0104061v1 [nlin.cd] 25 Apr 2001 Cristina Masoller a, Damián H. Zanette b a Instituto de Física, Facultad de Ciencias, Universidad

More information

From Glider to Chaos: A Transitive Subsystem Derived From Glider B of CA Rule 110

From Glider to Chaos: A Transitive Subsystem Derived From Glider B of CA Rule 110 From Glider to Chaos: A Transitive Subsystem Derived From Glider B of CA Rule 110 Pingping Liu, Fangyue Chen, Lingxiao Si, and Fang Wang School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang,

More information

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers Chaotic Vibrations An Introduction for Applied Scientists and Engineers FRANCIS C. MOON Theoretical and Applied Mechanics Cornell University Ithaca, New York A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY

More information

Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems

Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems PHYSICAL REVIEW E 87, 4291 (213) Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems Steffen Zeeb, 1,* Thomas Dahms, 2 Valentin Flunkert, 2,3 Eckehard Schöll,

More information

Strange Attractors and Chaotic Behavior of a Mathematical Model for a Centrifugal Filter with Feedback

Strange Attractors and Chaotic Behavior of a Mathematical Model for a Centrifugal Filter with Feedback Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 4, Number 2, pp. 179 194 (2009) http://campus.mst.edu/adsa Strange Attractors and Chaotic Behavior of a Mathematical Model for a Centrifugal

More information

The XY-Model. David-Alexander Robinson Sch th January 2012

The XY-Model. David-Alexander Robinson Sch th January 2012 The XY-Model David-Alexander Robinson Sch. 08332461 17th January 2012 Contents 1 Introduction & Theory 2 1.1 The XY-Model............................... 2 1.2 Markov Chains...............................

More information

On Riddled Sets and Bifurcations of Chaotic Attractors

On Riddled Sets and Bifurcations of Chaotic Attractors Applied Mathematical Sciences, Vol. 1, 2007, no. 13, 603-614 On Riddled Sets and Bifurcations of Chaotic Attractors I. Djellit Department of Mathematics University of Annaba B.P. 12, 23000 Annaba, Algeria

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

Dynamical Systems with Applications

Dynamical Systems with Applications Stephen Lynch Dynamical Systems with Applications using MATLAB Birkhauser Boston Basel Berlin Preface xi 0 A Tutorial Introduction to MATLAB and the Symbolic Math Toolbox 1 0.1 Tutorial One: The Basics

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture.1 Dynamic Behavior Richard M. Murray 6 October 8 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Complicated behavior of dynamical systems. Mathematical methods and computer experiments.

Complicated behavior of dynamical systems. Mathematical methods and computer experiments. Complicated behavior of dynamical systems. Mathematical methods and computer experiments. Kuznetsov N.V. 1, Leonov G.A. 1, and Seledzhi S.M. 1 St.Petersburg State University Universitetsky pr. 28 198504

More information

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon DONATO CAFAGNA, GIUSEPPE GRASSI Diparnto Ingegneria Innovazione Università di Lecce via Monteroni, 73 Lecce ITALY Abstract:

More information

Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System

Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System Abstract and Applied Analysis Volume, Article ID 3487, 6 pages doi:.55//3487 Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System Ranchao Wu and Xiang Li

More information

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats DONATO CAFAGNA, GIUSEPPE GRASSI Diparnto Ingegneria Innovazione Università di Lecce via Monteroni, 73 Lecce ITALY giuseppe.grassi}@unile.it

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Gautam C Sethia and Abhijit Sen Institute for Plasma Research, Bhat, Gandhinagar 382 428, INDIA Motivation Neural Excitability

More information

Bifurcation and chaos in simple jerk dynamical systems

Bifurcation and chaos in simple jerk dynamical systems PRAMANA c Indian Academy of Sciences Vol. 64, No. 1 journal of January 2005 physics pp. 75 93 Bifurcation and chaos in simple jerk dynamical systems VINOD PATIDAR and K K SUD Department of Physics, College

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps Chapter 4 Transition towards chaos In this chapter we will study how successive bifurcations can lead to chaos when a parameter is tuned. It is not an extensive review : there exists a lot of different

More information

Control of Chaos in Strongly Nonlinear Dynamic Systems

Control of Chaos in Strongly Nonlinear Dynamic Systems Control of Chaos in Strongly Nonlinear Dynamic Systems Lev F. Petrov Plekhanov Russian University of Economics Stremianniy per., 36, 115998, Moscow, Russia lfp@mail.ru Abstract We consider the dynamic

More information

dynamical zeta functions: what, why and what are the good for?

dynamical zeta functions: what, why and what are the good for? dynamical zeta functions: what, why and what are the good for? Predrag Cvitanović Georgia Institute of Technology November 2 2011 life is intractable in physics, no problem is tractable I accept chaos

More information

Cellular Automata. Jason Frank Mathematical Institute

Cellular Automata. Jason Frank Mathematical Institute Cellular Automata Jason Frank Mathematical Institute WISM484 Introduction to Complex Systems, Utrecht University, 2015 Cellular Automata Game of Life: Simulator: http://www.bitstorm.org/gameoflife/ Hawking:

More information

SIMULATED CHAOS IN BULLWHIP EFFECT

SIMULATED CHAOS IN BULLWHIP EFFECT Journal of Management, Marketing and Logistics (JMML), ISSN: 2148-6670 Year: 2015 Volume: 2 Issue: 1 SIMULATED CHAOS IN BULLWHIP EFFECT DOI: 10.17261/Pressacademia.2015111603 Tunay Aslan¹ ¹Sakarya University,

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Dynamical Systems with Applications using Mathematica

Dynamical Systems with Applications using Mathematica Stephen Lynch Dynamical Systems with Applications using Mathematica Birkhäuser Boston Basel Berlin Contents Preface xi 0 A Tutorial Introduction to Mathematica 1 0.1 A Quick Tour of Mathematica 2 0.2 Tutorial

More information

Are chaotic systems dynamically random?

Are chaotic systems dynamically random? Are chaotic systems dynamically random? Karl Svozil Institute for Theoretical Physics, Technical University Vienna, Karlsplatz 13, A 1040 Vienna, Austria. November 18, 2002 Abstract Physical systems can

More information

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of:

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Lecture 6 Chaos Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Chaos, Attractors and strange attractors Transient chaos Lorenz Equations

More information

Bifurcation control and chaos in a linear impulsive system

Bifurcation control and chaos in a linear impulsive system Vol 8 No 2, December 2009 c 2009 Chin. Phys. Soc. 674-056/2009/82)/5235-07 Chinese Physics B and IOP Publishing Ltd Bifurcation control and chaos in a linear impulsive system Jiang Gui-Rong 蒋贵荣 ) a)b),

More information

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM WITH UNKNOWN PARAMETERS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University

More information

Complex Shift Dynamics of Some Elementary Cellular Automaton Rules

Complex Shift Dynamics of Some Elementary Cellular Automaton Rules Complex Shift Dynamics of Some Elementary Cellular Automaton Rules Junbiao Guan School of Science, Hangzhou Dianzi University Hangzhou, Zhejiang 3008, P.R. China junbiaoguan@gmail.com Kaihua Wang School

More information

Synchronization and suppression of chaos in non-locally coupled map lattices

Synchronization and suppression of chaos in non-locally coupled map lattices PRAMANA c Indian Academy of Sciences Vol. 73, No. 6 journal of December 2009 physics pp. 999 1009 in non-locally coupled map lattices R M SZMOSKI 1, S E DE S PINTO 1, M T VAN KAN 2, A M BATISTA 2,, R L

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 08, 2018, at 08 30 12 30 Johanneberg Kristian

More information