April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

Size: px
Start display at page:

Download "April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v."

Transcription

1 April 3, Hyperbolic Sets We now extend the structure of the horseshoe to more general kinds of invariant sets. Let r, and let f D r (M) where M is a Riemannian manifold. A compact f invariant set is called hyperbolic if there are constants C > 0, λ > and a splitting T x M = E u x E s x for each x Λ such that. Df x (E σ x ) = E σ fx for σ = s, u,. for n 0 and v E u x, we have Df n x (v) λ n v, and 3. for n 0 and v E s x, we have Df n x (v) λ n v. It can be shown that the conditions above are independent of the choice of Riemannian norm on M, and that there is a special Riemannian norm so that the constant C =. That is, we have Df expansion by the factor λ for each vector in E u x and Df contraction by the factor λ for each vector in E s x. An example of a hyperbolic set is the set Λ = n f n (Q) in the horseshoe diffeomorphism. Another example is a single hyperbolic periodic orbit. Recall that we have defined the sets and W s (x, f) = {y M : d(f n y, f n x) 0 as n }, W u (x, f) = W s (x, f ). The first main theorem about hyperbolic sets is the following. Theorem 0. (Invariant manifold theorem for hyperbolic sets). Let r, and let Λ be a hyperbolic set for a C r diffeomorphism f with hyperbolic splitting T x M = Ex u Ex s for each x Λ. Then, the sets W u (x, f) and W s (x, f) are C r injectively immersed copies of Euclidean spaces which are tangent at x to Ex u and Ex, s respectively. We also have dim W u (x, f) = dim Ex u and dim W s (x, f) = dim Ex. s

2 April 3, The manifolds W u (x, f) and W s (x, f) are called the ustable and stable manifolds of x in M. If M = R and the subspaces E x and E u are one-dimensional, then these manifolds are C r injectively immersed curves. This is the case in the horseshoe diffeomorphism. Example. Consider the time-one map of the first order planar system associated to the pendulum equation ẍ + sin(x) = 0. ẋ = y ẏ = sin(x) Let p be a saddle critical point (for instance the point (0, π)). The stable and unstable manifolds of p are the orbits which are forward and backward asymptotic to p together with the point p itself. An invariant set Λ for a diffeomorphism f is called an isolated invariant set if there is a compact neighborhood U of Λ in M so that

3 April 3, n Z f n (U) = Λ. Such a neighborhood is called an adapted or isolating neighborhood of Λ. Again, the set Λ of bounded orbits in the horseshoe diffeomorphism is a hyperbolic isolated invariant set. One of the hall-marks of chaotic motion is the concept of sensitive dependence on initial conditions. One says that s map of diffeomorphism exhibits sensitive dependence on initial conditions on a set Λ if there is an ɛ > 0 such that for each x Λ, there are points y Λ arbitrarily close to x such that for some positive integer n > 0, we have d(f n x, f n y) > ɛ. Thus, some points y arbitrarily close to x have their iterates getting a fixed distance apart from the iterates of x. It turns out that any hyperbolic set with periodic points dense exhibits sensitive dependence on initial conditions at each of its points. We will call an invariant set exhibiting sensitive dependence on initial conditions a chaotic invariant set. There are certain hyperbolic chaotic invariant sets which have a describable structure. We define these next. Let Λ be a hyperbolic isolated invariant set for an f D (M). We say that Λ is a hyperbolic basic set if the periodic orbits are dense in Λ and f is topologically transitive on Λ. The next result states that hyperbolic basic sets are robust under perturbations of the underlying diffeomorphism f. Theorem 0. (Local Stability of Hyperbolic Basic Sets). Let f D r (M) with r, and let Λ be a hyperbolic basic set for f with adapted neighborhood U. Then, there is a neighborhood N r of f in D r (M) such that if g N r, then the set Λ g = n Z g n (U) is a hyperbolic basic set for g and there is a homeomorphism h : Λ Λ g such that gh(x) = hf(x) for all x Λ. Thus, the whole orbit structure of hyperbolic basic sets is preserved under small perturbations of f. This is a striking result. Let us see what it means for the horseshoe diffeomorphism f. We defined the map f to take Q into R with Λ = n f n (Q). Note that Q is not an adapted neighborhood of Λ. However, if we thicken Q slightly

4 April 3, to the compact set Q = βq with < β < + ɛ for small ɛ, then Q will be an adapted neighborhood of Λ. Thus, if g is C near f, the whole orbit structure of f on Λ is available (up to topological conjugacy) for g on the nearby set n g n (Q ). The robustness of hyperbolic basic sets makes them essential for understanding smooth systems. We now give some more examples of hyperbolic basic sets. Anosov diffeomorphisms When the whole manifold M is a hyperbolic set for the diffeomorphism f, one calls f an Anosov diffeomorphism. We now consider some examples of this. ( ) Consider the matrix A = as a linear automorphism of R. There are two real eigenvalues λ = 3+ 5, λ = 3 5. Note that for a matrix ( ) b b B =, b b ) with an eigenvalues λ, we can get an associated eigenvector the equation (λ b )v b v = 0. ( v v from Taking v =, we get v = λ b b. Applying this to the matrix A, and writing the eigenvalues and associated eigenvectors, we have λ = 3 + 5, λ = 3 5, ( λ ( λ ) ( = ) ( = ) ( ) 0.6 ) ( ).6 Observe that λ > > λ = λ. Let E u be the subspace of real multiples of ( + 5 ), and let E s = (E u ) be the orthogonal complement of E u. Then, E s is the set of real

5 April 3, multiples of ( 5 ). We may think of these as subspaces of T x R for any point x R. We write these as E u x, E s x, respectively. Let π : R T be the natural projection onto the two-torus. The map A has determinant, so it induces an automorphism Ã of T. The whole two-torus is a hyperbolic basic set for Ã with splitting the projections Ẽπx u = Dπ x (Ex), u Ẽπx s = Dπ x (Ex) s for every x R. The unstable manifold of the point π(x) T is the π image of line in R through x and parallel to E u. A similar statement holds for the stable manifold of πx. These lines have irrational slope in R, so for each y T, W u (y) and W s (y) are dense in T. The above map is called a linear hyperbolic toral automorphism. The same construction can be give on the n torus T n starting with an n n matrix A with integer entries, determinant, and eigenvalues of norm different from. These hyperbolic toral automorphisms are, in some sense, diffeomorphic analogs of the expanding maps of the circle. It follows from the above theorem

6 April 3, on local stability that they are structurally stable. In addition, they have dense orbits and a dense set of periodic orbits. The Solenoid Attractor Let f D r (M) for r. An attractor is a compact invariant topologically transitive set Λ such that there is a neighborhood U of Λ in M such that if x U, then ω(x) Λ. The next example is a hyperbolic attractor in R 3 known as the solenoid. Let C be complex two-space, and Consider the map F : C C defined by Let F (z, w) = (z, z + w 4 ). U = S D = {(z, w) : z = and w }. This may be thought of as a solid torus in R 3. The map F is a diffeomorphism taking U onto a compact subset U of its interior. The set U looks like a long thin torus winding twice around the central circle S {0} in U. The successive interates f n (U) wind around more and more times and approach a set Λ which is locally the product of a Cantor set and an interval. This set Λ is a hyperbolic attractor in R 3. See the figure on the next page.

7 April 3, 005-7

Robustly transitive diffeomorphisms

Robustly transitive diffeomorphisms Todd Fisher tfisher@math.byu.edu Department of Mathematics, Brigham Young University Summer School, Chengdu, China 2009 Dynamical systems The setting for a dynamical

DYNAMICAL SYSTEMS PROBLEMS. asgor/ (1) Which of the following maps are topologically transitive (minimal,

DYNAMICAL SYSTEMS PROBLEMS http://www.math.uci.edu/ asgor/ (1) Which of the following maps are topologically transitive (minimal, topologically mixing)? identity map on a circle; irrational rotation of

The Structure of Hyperbolic Sets

The Structure of Hyperbolic Sets p. 1/35 The Structure of Hyperbolic Sets Todd Fisher tfisher@math.umd.edu Department of Mathematics University of Maryland, College Park The Structure of Hyperbolic Sets

Hyperbolic Dynamics. Todd Fisher. Department of Mathematics University of Maryland, College Park. Hyperbolic Dynamics p.

Hyperbolic Dynamics p. 1/36 Hyperbolic Dynamics Todd Fisher tfisher@math.umd.edu Department of Mathematics University of Maryland, College Park Hyperbolic Dynamics p. 2/36 What is a dynamical system? Phase

HYPERBOLIC SETS WITH NONEMPTY INTERIOR

HYPERBOLIC SETS WITH NONEMPTY INTERIOR TODD FISHER, UNIVERSITY OF MARYLAND Abstract. In this paper we study hyperbolic sets with nonempty interior. We prove the folklore theorem that every transitive hyperbolic

MARKOV PARTITIONS FOR HYPERBOLIC SETS

MARKOV PARTITIONS FOR HYPERBOLIC SETS TODD FISHER, HIMAL RATHNAKUMARA Abstract. We show that if f is a diffeomorphism of a manifold to itself, Λ is a mixing (or transitive) hyperbolic set, and V is a neighborhood

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017

A short introduction with a view toward examples Center of Research and Applications of Nonlinear (CRANS) Department of Mathematics University of Patras Greece sanastassiou@gmail.com Short presentation

DYNAMICAL SYSTEMS. I Clark: Robinson. Stability, Symbolic Dynamics, and Chaos. CRC Press Boca Raton Ann Arbor London Tokyo

DYNAMICAL SYSTEMS Stability, Symbolic Dynamics, and Chaos I Clark: Robinson CRC Press Boca Raton Ann Arbor London Tokyo Contents Chapter I. Introduction 1 1.1 Population Growth Models, One Population 2

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

arxiv: v1 [math.ds] 20 Apr 2008

HYPERBOLIC DYNAMICAL SYSTEMS arxiv:0804.3192v1 [math.ds] 20 Apr 2008 VITOR ARAÚJO AND MARCELO VIANA CONTENTS Glossary 1 Definition 2 1. Introduction 3 2. Linear systems 3 3. Local theory 5 4. Hyperbolic

1 Introduction Definitons Markov... 2

Compact course notes Dynamic systems Fall 2011 Professor: Y. Kudryashov transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Introduction 2 1.1 Definitons...............................................

WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

Bredon, Introduction to compact transformation groups, Academic Press

1 Introduction Outline Section 3: Topology of 2-orbifolds: Compact group actions Compact group actions Orbit spaces. Tubes and slices. Path-lifting, covering homotopy Locally smooth actions Smooth actions

Dynamical Systems and Ergodic Theory PhD Exam Spring Topics: Topological Dynamics Definitions and basic results about the following for maps and

Dynamical Systems and Ergodic Theory PhD Exam Spring 2012 Introduction: This is the first year for the Dynamical Systems and Ergodic Theory PhD exam. As such the material on the exam will conform fairly

2.10 Saddles, Nodes, Foci and Centers

2.10 Saddles, Nodes, Foci and Centers In Section 1.5, a linear system (1 where x R 2 was said to have a saddle, node, focus or center at the origin if its phase portrait was linearly equivalent to one

Mapping Class Groups MSRI, Fall 2007 Day 2, September 6

Mapping Class Groups MSRI, Fall 7 Day, September 6 Lectures by Lee Mosher Notes by Yael Algom Kfir December 4, 7 Last time: Theorem (Conjugacy classification in MCG(T. Each conjugacy class of elements

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

arxiv: v1 [math.ds] 6 Jun 2016

The entropy of C 1 -diffeomorphisms without a dominated splitting Jérôme Buzzi, Sylvain Crovisier, Todd Fisher arxiv:1606.01765v1 [math.ds] 6 Jun 2016 Tuesday 7 th June, 2016 Abstract A classical construction

Differential Topology Solution Set #2

Differential Topology Solution Set #2 Select Solutions 1. Show that X compact implies that any smooth map f : X Y is proper. Recall that a space is called compact if, for every cover {U } by open sets

Changing coordinates to adapt to a map of constant rank

Introduction to Submanifolds Most manifolds of interest appear as submanifolds of others e.g. of R n. For instance S 2 is a submanifold of R 3. It can be obtained in two ways: 1 as the image of a map into

10. The ergodic theory of hyperbolic dynamical systems

10. The ergodic theory of hyperbolic dynamical systems 10.1 Introduction In Lecture 8 we studied thermodynamic formalism for shifts of finite type by defining a suitable transfer operator acting on a certain

11 Chaos in Continuous Dynamical Systems.

11 CHAOS IN CONTINUOUS DYNAMICAL SYSTEMS. 47 11 Chaos in Continuous Dynamical Systems. Let s consider a system of differential equations given by where x(t) : R R and f : R R. ẋ = f(x), The linearization

The Existence of Chaos in the Lorenz System

The Existence of Chaos in the Lorenz System Sheldon E. Newhouse Mathematics Department Michigan State University E. Lansing, MI 48864 joint with M. Berz, K. Makino, A. Wittig Physics, MSU Y. Zou, Math,

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

SHADOWING ORBITS FOR TRANSITION CHAINS OF INVARIANT TORI ALTERNATING WITH BIRKHOFF ZONES OF INSTABILITY

SHADOWING ORBITS FOR TRANSITION CHAINS OF INVARIANT TORI ALTERNATING WITH BIRKHOFF ZONES OF INSTABILITY MARIAN GIDEA AND CLARK ROBINSON Abstract. We consider a dynamical system that exhibits transition

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009.

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009. Solutions (1) Let Γ be a discrete group acting on a manifold M. (a) Define what it means for Γ to act freely. Solution: Γ acts

The dynamical zeta function

The dynamical zeta function JWR April 30, 2008 1. An invertible integer matrix A GL n (Z generates a toral automorphism f : T n T n via the formula f π = π A, π : R n T n := R n /Z n The set Fix(f := {x

Introduction to Continuous Dynamical Systems

Lecture Notes on Introduction to Continuous Dynamical Systems Fall, 2012 Lee, Keonhee Department of Mathematics Chungnam National Univeristy - 1 - Chap 0. Introduction What is a dynamical system? A dynamical

Problem: A class of dynamical systems characterized by a fast divergence of the orbits. A paradigmatic example: the Arnold cat.

À È Ê ÇÄÁ Ë ËÌ ÅË Problem: A class of dynamical systems characterized by a fast divergence of the orbits A paradigmatic example: the Arnold cat. The closure of a homoclinic orbit. The shadowing lemma.

Entropy production for a class of inverse SRB measures

Entropy production for a class of inverse SRB measures Eugen Mihailescu and Mariusz Urbański Keywords: Inverse SRB measures, folded repellers, Anosov endomorphisms, entropy production. Abstract We study

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

INVERSE FUNCTION THEOREM and SURFACES IN R n

INVERSE FUNCTION THEOREM and SURFACES IN R n Let f C k (U; R n ), with U R n open. Assume df(a) GL(R n ), where a U. The Inverse Function Theorem says there is an open neighborhood V U of a in R n so that

APPPHYS217 Tuesday 25 May 2010

APPPHYS7 Tuesday 5 May Our aim today is to take a brief tour of some topics in nonlinear dynamics. Some good references include: [Perko] Lawrence Perko Differential Equations and Dynamical Systems (Springer-Verlag

On Periodic points of area preserving torus homeomorphisms

On Periodic points of area preserving torus homeomorphisms Fábio Armando Tal and Salvador Addas-Zanata Instituto de Matemática e Estatística Universidade de São Paulo Rua do Matão 11, Cidade Universitária,

Dynamics of Group Actions and Minimal Sets

University of Illinois at Chicago www.math.uic.edu/ hurder First Joint Meeting of the Sociedad de Matemática de Chile American Mathematical Society Special Session on Group Actions: Probability and Dynamics

DIFFERENTIABLE CONJUGACY NEAR COMPACT INVARIANT MANIFOLDS

DIFFERENTIABLE CONJUGACY NEAR COMPACT INVARIANT MANIFOLDS CLARK ROBINSON 0. Introduction In this paper 1, we show how the differentiable linearization of a diffeomorphism near a hyperbolic fixed point

Topological Properties of Invariant Sets for Anosov Maps with Holes

Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-11-10 Topological Properties of Invariant Sets for Anosov Maps with Holes Skyler C. Simmons Brigham Young University - Provo

notes 5d. Details of the Construction of the Smale horseshoe map.

by 3940-07 notes 5d Details of the Construction of the Smale horseshoe map. Let f (x; y) = ( 4 x + 8 ; 5y ). Then f maps D onto the rectangle R de ned 8 x 3 8 y 9 : In particular, it squeezes D horizontally

Unique equilibrium states for geodesic flows in nonpositive curvature

Unique equilibrium states for geodesic flows in nonpositive curvature Todd Fisher Department of Mathematics Brigham Young University Fractal Geometry, Hyperbolic Dynamics and Thermodynamical Formalism

1 The Local-to-Global Lemma

Point-Set Topology Connectedness: Lecture 2 1 The Local-to-Global Lemma In the world of advanced mathematics, we are often interested in comparing the local properties of a space to its global properties.

Smooth Dynamics 2. Problem Set Nr. 1. Instructor: Submitted by: Prof. Wilkinson Clark Butler. University of Chicago Winter 2013

Smooth Dynamics 2 Problem Set Nr. 1 University of Chicago Winter 2013 Instructor: Submitted by: Prof. Wilkinson Clark Butler Problem 1 Let M be a Riemannian manifold with metric, and Levi-Civita connection.

Nonlocally Maximal Hyperbolic Sets for Flows

Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2015-06-01 Nonlocally Maximal Hyperbolic Sets for Flows Taylor Michael Petty Brigham Young University - Provo Follow this and additional

PEKING UNIVERSITY DOCTORAL DISSERTATION

1 PEKING UNIVERSITY DOCTORAL DISSERTATION TITLE: Anosov Endomorphisms: Shift Equivalence And Shift Equivalence Classes NAME: ZHANG Meirong STUDENT NO.: 18601804 DEPARTMENT: Mathematics SPECIALITY: Pure

Mathematische Annalen

Math. Ann. 334, 457 464 (2006) Mathematische Annalen DOI: 10.1007/s00208-005-0743-2 The Julia Set of Hénon Maps John Erik Fornæss Received:6 July 2005 / Published online: 9 January 2006 Springer-Verlag

On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I

IOP PUBLISHING Nonlinearity 2 (28) 923 972 NONLINEARITY doi:.88/95-775/2/5/3 On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I S V Gonchenko, L P Shilnikov and D V Turaev

Periodic Sinks and Observable Chaos

Periodic Sinks and Observable Chaos Systems of Study: Let M = S 1 R. T a,b,l : M M is a three-parameter family of maps defined by where θ S 1, r R. θ 1 = a+θ +Lsin2πθ +r r 1 = br +blsin2πθ Outline of Contents:

Essential hyperbolicity versus homoclinic bifurcations. Global dynamics beyond uniform hyperbolicity, Beijing 2009 Sylvain Crovisier - Enrique Pujals

Essential hyperbolicity versus homoclinic bifurcations Global dynamics beyond uniform hyperbolicity, Beijing 2009 Sylvain Crovisier - Enrique Pujals Generic dynamics Consider: M: compact boundaryless manifold,

Math 147, Homework 1 Solutions Due: April 10, 2012

1. For what values of a is the set: Math 147, Homework 1 Solutions Due: April 10, 2012 M a = { (x, y, z) : x 2 + y 2 z 2 = a } a smooth manifold? Give explicit parametrizations for open sets covering M

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM ARIEL HAFFTKA 1. Introduction In this paper we approach the topology of smooth manifolds using differential tools, as opposed to algebraic ones such

Chaotic transport through the solar system

The Interplanetary Superhighway Chaotic transport through the solar system Richard Taylor rtaylor@tru.ca TRU Math Seminar, April 12, 2006 p. 1 The N -Body Problem N masses interact via mutual gravitational

Differential Topology Final Exam With Solutions

Differential Topology Final Exam With Solutions Instructor: W. D. Gillam Date: Friday, May 20, 2016, 13:00 (1) Let X be a subset of R n, Y a subset of R m. Give the definitions of... (a) smooth function

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES MAGGIE MILLER September 25, 2015 1. 09/16/2015 1.1. Textbooks. Textbooks relevant to this class are Riemannian Geometry by do Carmo Riemannian Geometry

Nonlinear Autonomous Dynamical systems of two dimensions. Part A

Nonlinear Autonomous Dynamical systems of two dimensions Part A Nonlinear Autonomous Dynamical systems of two dimensions x f ( x, y), x(0) x vector field y g( xy, ), y(0) y F ( f, g) 0 0 f, g are continuous

Introduction Hyperbolic systems Beyond hyperbolicity Counter-examples. Physical measures. Marcelo Viana. IMPA - Rio de Janeiro

IMPA - Rio de Janeiro Asymptotic behavior General observations A special case General problem Let us consider smooth transformations f : M M on some (compact) manifold M. Analogous considerations apply

ON RIGIDITY OF ALGEBRAIC DYNAMICAL SYSTEMS

ON RIGIDITY OF ALGEBRAIC DYNAMICAL SYSTEMS ALEX CLARK AND ROBBERT FOKKINK Abstract. We study topological rigidity of algebraic dynamical systems. In the first part of this paper we give an algebraic condition

TRIVIAL CENTRALIZERS FOR AXIOM A DIFFEOMORPHISMS

TRIVIAL CENTRALIZERS FOR AXIOM A DIFFEOMORPHISMS TODD FISHER Abstract. We show there is a residual set of non-anosov C Axiom A diffeomorphisms with the no cycles property whose elements have trivial centralizer.

LINEAR CHAOS? Nathan S. Feldman

LINEAR CHAOS? Nathan S. Feldman In this article we hope to convience the reader that the dynamics of linear operators can be fantastically complex and that linear dynamics exhibits the same beauty and

A Comparison of Smale Spaces and Laminations via Inverse Limits

Minnesota State University, Mankato Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato Theses, Dissertations, and Other Capstone Projects 2013 A Comparison

p(r)=hmsup sup (r»),!! 1^ n >oo zeb

INVARIANT MANIFOLDS BY M. W. HIRSCH, C. C. PUGH AND M. SHUB Communicated by Stephen Smale, April 29, 1970 0. Introduction. Let M be a finite dimensional Riemann manifold without boundary. Kupka [5], Sacker

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

PATH CONNECTEDNESS AND ENTROPY DENSITY OF THE SPACE OF HYPERBOLIC ERGODIC MEASURES

PATH CONNECTEDNESS AND ENTROPY DENSITY OF THE SPACE OF HYPERBOLIC ERGODIC MEASURES ANTON GORODETSKI AND YAKOV PESIN Abstract. We show that the space of hyperbolic ergodic measures of a given index supported

Hyperbolic Sets That are Not Locally Maximal

Hyperbolic Sets That are Not Locally Maximal Todd Fisher December 6, 2004 Abstract This papers addresses the following topics relating to the structure of hyperbolic sets: First, hyperbolic sets that are

Linearization and Invariant Manifolds

CHAPTER 4 Linearization and Invariant Manifolds Coordinate transformations are often used to transform a dynamical system that is analytically intractable with respect to its native coordinates, into a

Discrete dynamics on the real line

Chapter 2 Discrete dynamics on the real line We consider the discrete time dynamical system x n+1 = f(x n ) for a continuous map f : R R. Definitions The forward orbit of x 0 is: O + (x 0 ) = {x 0, f(x

Solution to Homework #4 Roy Malka

1. Show that the map: Solution to Homework #4 Roy Malka F µ : x n+1 = x n + µ x 2 n x n R (1) undergoes a saddle-node bifurcation at (x, µ) = (0, 0); show that for µ < 0 it has no fixed points whereas

arxiv: v1 [math.ds] 25 Nov 2016

Observing Expansive Maps arxiv:1611.08488v1 [math.ds] 25 Nov 2016 M. Achigar, A. Artigue and I. Monteverde November, 2018 Abstract We consider the problem of the observability of positively expansive maps

MTG 5316/4302 FALL 2018 REVIEW FINAL

MTG 5316/4302 FALL 2018 REVIEW FINAL JAMES KEESLING Problem 1. Define open set in a metric space X. Define what it means for a set A X to be connected in a metric space X. Problem 2. Show that if a set

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) Each of the six questions is worth 10 points. 1) Let H be a (real or complex) Hilbert space. We say

MULTIDIMENSIONAL SINGULAR λ-lemma

Electronic Journal of Differential Equations, Vol. 23(23), No. 38, pp.1 9. ISSN: 172-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) MULTIDIMENSIONAL

1 The pendulum equation

Math 270 Honors ODE I Fall, 2008 Class notes # 5 A longer than usual homework assignment is at the end. The pendulum equation We now come to a particularly important example, the equation for an oscillating

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B =

CONNECTEDNESS-Notes Def. A topological space X is disconnected if it admits a non-trivial splitting: X = A B, A B =, A, B open in X, and non-empty. (We ll abbreviate disjoint union of two subsets A and

Hamiltonian Chaos and the standard map

Hamiltonian Chaos and the standard map Outline: What happens for small perturbation? Questions of long time stability? Poincare section and twist maps. Area preserving mappings. Standard map as time sections

Hamiltonian Dynamics

Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

Symbolic dynamics and chaos in plane Couette flow

Dynamics of PDE, Vol.14, No.1, 79-85, 2017 Symbolic dynamics and chaos in plane Couette flow Y. Charles Li Communicated by Y. Charles Li, received December 25, 2016. Abstract. According to a recent theory

BROUWER FIXED POINT THEOREM. Contents 1. Introduction 1 2. Preliminaries 1 3. Brouwer fixed point theorem 3 Acknowledgments 8 References 8

BROUWER FIXED POINT THEOREM DANIELE CARATELLI Abstract. This paper aims at proving the Brouwer fixed point theorem for smooth maps. The theorem states that any continuous (smooth in our proof) function

PARTIAL HYPERBOLICITY AND FOLIATIONS IN T 3

PARTIAL HYPERBOLICITY AND FOLIATIONS IN T 3 RAFAEL POTRIE Abstract. We prove that dynamical coherence is an open and closed property in the space of partially hyperbolic diffeomorphisms of T 3 isotopic

Lecture 11 Hyperbolicity.

Lecture 11 Hyperbolicity. 1 C 0 linearization near a hyperbolic point 2 invariant manifolds Hyperbolic linear maps. Let E be a Banach space. A linear map A : E E is called hyperbolic if we can find closed

Coexistence of Zero and Nonzero Lyapunov Exponents

Coexistence of Zero and Nonzero Lyapunov Exponents Jianyu Chen Pennsylvania State University July 13, 2011 Outline Notions and Background Hyperbolicity Coexistence Construction of M 5 Construction of the

8.1 Bifurcations of Equilibria

1 81 Bifurcations of Equilibria Bifurcation theory studies qualitative changes in solutions as a parameter varies In general one could study the bifurcation theory of ODEs PDEs integro-differential equations

Hyperbolicity of Renormalization for C r Unimodal Maps

Hyperbolicity of Renormalization for C r Unimodal Maps A guided tour Edson de Faria Department of Mathematics IME-USP December 13, 2010 (joint work with W. de Melo and A. Pinto) Ann. of Math. 164(2006),

Abundance of stable ergodicity

Abundance of stable ergodicity Christian Bonatti, Carlos atheus, arcelo Viana, Amie Wilkinson December 7, 2002 Abstract We consider the set PH ω () of volume preserving partially hyperbolic diffeomorphisms

On the Structure of Hyperbolic Sets

NORTHWESTERN UNIVERSITY On the Structure of Hyperbolic Sets A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree DOCTOR OF PHILOSOPHY Field of Mathematics

MET Workshop: Exercises

MET Workshop: Exercises Alex Blumenthal and Anthony Quas May 7, 206 Notation. R d is endowed with the standard inner product (, ) and Euclidean norm. M d d (R) denotes the space of n n real matrices. When

Renormalization for Lorenz maps

Renormalization for Lorenz maps Denis Gaidashev, Matematiska Institutionen, Uppsala Universitet Tieste, June 5, 2012 D. Gaidashev, Uppsala Universitet () Renormalization for Lorenz maps Tieste, June 5,

COARSE HYPERBOLICITY AND CLOSED ORBITS FOR QUASIGEODESIC FLOWS

COARSE HYPERBOLICITY AND CLOSED ORBITS FOR QUASIGEODESIC FLOWS STEVEN FRANKEL Abstract. We prove Calegari s conjecture that every quasigeodesic flow on a closed hyperbolic 3-manifold has closed orbits.

Physical measures of discretizations of generic diffeomorphisms

Ergod. Th. & Dynam. Sys. (2018), 38, 1422 1458 doi:10.1017/etds.2016.70 c Cambridge University Press, 2016 Physical measures of discretizations of generic diffeomorphisms PIERRE-ANTOINE GUIHÉNEUF Université

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011

NBA Lecture 1 Simplest bifurcations in n-dimensional ODEs Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 Contents 1. Solutions and orbits: equilibria cycles connecting orbits other invariant sets

SINGULAR HYPERBOLIC SYSTEMS

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 11, Pages 3393 3401 S 0002-9939(99)04936-9 Article electronically published on May 4, 1999 SINGULAR HYPERBOLIC SYSTEMS C. A. MORALES,

2000 Mathematics Subject Classification. Primary: 37D25, 37C40. Abstract. This book provides a systematic introduction to smooth ergodic theory, inclu

Lyapunov Exponents and Smooth Ergodic Theory Luis Barreira and Yakov B. Pesin 2000 Mathematics Subject Classification. Primary: 37D25, 37C40. Abstract. This book provides a systematic introduction to smooth

Tiling Dynamical Systems as an Introduction to Smale Spaces

Tiling Dynamical Systems as an Introduction to Smale Spaces Michael Whittaker (University of Wollongong) University of Otago Dunedin, New Zealand February 15, 2011 A Penrose Tiling Sir Roger Penrose Penrose

MAPPING CLASS ACTIONS ON MODULI SPACES. Int. J. Pure Appl. Math 9 (2003),

MAPPING CLASS ACTIONS ON MODULI SPACES RICHARD J. BROWN Abstract. It is known that the mapping class group of a compact surface S, MCG(S), acts ergodically with respect to symplectic measure on each symplectic

A Complex Gap Lemma. Sébastien Biebler

A Complex Gap Lemma Sébastien Biebler arxiv:80.0544v [math.ds] 5 Oct 08 Abstract Inspired by the work of Newhouse in one real variable, we introduce a relevant notion of thickness for dynamical Cantor

TOPOLOGICAL STRUCTURE OF PARTIALLY HYPERBOLIC ATTRACTORS. José F. Alves

TOPOLOGICAL STRUCTURE OF PARTIALLY HYPERBOLIC ATTRACTORS by José F. Alves Contents Introduction............................................................ 2 1. Partially hyperbolic sets..............................................

````` The Belt Trick

````` The Belt Trick Suppose that we keep top end of a belt fixed and rotate the bottom end in a circle around it. Suppose that we keep top end of a belt fixed and rotate the bottom end in a circle around

MORSE HOMOLOGY. Contents. Manifolds are closed. Fields are Z/2.

MORSE HOMOLOGY STUDENT GEOMETRY AND TOPOLOGY SEMINAR FEBRUARY 26, 2015 MORGAN WEILER 1. Morse Functions 1 Morse Lemma 3 Existence 3 Genericness 4 Topology 4 2. The Morse Chain Complex 4 Generators 5 Differential

Stratification of 3 3 Matrices

Stratification of 3 3 Matrices Meesue Yoo & Clay Shonkwiler March 2, 2006 1 Warmup with 2 2 Matrices { Best matrices of rank 2} = O(2) S 3 ( 2) { Best matrices of rank 1} S 3 (1) 1.1 Viewing O(2) S 3 (

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems:

Math 132 - Topology II: Smooth Manifolds. Spring 2017. Homework 2 Solution Submit solutions to the following problems: 1. Let H = {a + bi + cj + dk (a, b, c, d) R 4 }, where i 2 = j 2 = k 2 = 1, ij = k,

Finding numerically Newhouse sinks near a homoclinic tangency and investigation of their chaotic transients. Takayuki Yamaguchi

Hokkaido Mathematical Journal Vol. 44 (2015) p. 277 312 Finding numerically Newhouse sinks near a homoclinic tangency and investigation of their chaotic transients Takayuki Yamaguchi (Received March 13,