# A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017

Save this PDF as:

Size: px
Start display at page:

Download "A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017"

## Transcription

1 A short introduction with a view toward examples Center of Research and Applications of Nonlinear (CRANS) Department of Mathematics University of Patras Greece Short presentation for the students of: Dynamical and Complexity Summer School Volos, 2017

2 Outline

3 The giants Jacques S Hadamard ( ) Henri Poincare ( ) Dmitri V Anosov ( ) Stephen Smale ( )

4 of A rather incomplete list Global Stability Hartman Grobman Theorem, Stable Manifold Theorem, Closing Lemma, Shadowing, Genericity, Ω Stability Theorem, Structural Stability Theorem Geometry and Dynamics hyperbolic actions, hyperbolic geometry, geodesic flow, Anosov diffeomorphisms and flows, billiards, recurrence Construction of guiding examples conditions for hyperbolicity, Shilnikov s theorem, calculation of invariant sets, verification of hyperbolicity in concrete examples, asymptotic behavior of the system Ergodic Theory equidistribution and recurrences, SRB-measures, zeta functions, topological entropy

5 Definition Let A M(n n, R). We shall call A hyperbolic if no eigenvalue of A has norm equal to 1. The linear map corresponding to A, that is, T : R n R n, T (x) = Ax is also called hyperbolic. Example [ ] 2 1 A = 1 1 with eigenvalues λ 1 = > 1, λ 2 = λ 1 1 < 1 and eigenvectors e 1 = ( , 1) and e 2 = ( 1 5 2, 1). e 1, e 2 form a basis of R 2 or R 2 = e 1 e 2 For T : R 2 R 2, T (x, y) = (2x + y, x + y) we have that T e1 is a dilation and T e2 a contraction.

6 Definition Let f : R n R n, of class C r, r 1, and Λ a smooth subset of R n, invariant under f (i.e. f (Λ) = Λ). We say that Λ is hyperbolic for f if: T x R n = E s (x) E u (x), x Λ. d x f (E s (x)) E s (f (x)) and d x f (E u (x)) E u (f (x)) d x f n E s (x), d x f n E u (x) Cτ n, C > 0, 0 < τ < 1, n N. Example For f : R 2 R 2, f (x, y) = (2x + y 2, x y), the origin is a (trivial) hyperbolic set. We can study the behavior of f in a neighborhood of it using the Hartman-Grobman theorem.

7 The 2 dimensional torus Or, how to construct a pretzel If (x 1, y 1 ), (x 2, y 2 ) R 2, define (x 1, y 1 ) (x 2, y 2 ) iff x 1 x 2 Z and y 1 y 2 Z. The set of all points of R 2 equivallent to (x, y) will be denoted as [(x, y)]. The set of all equivallence classes will be denoted as R 2 /Z 2. R 2 /Z 2 T 2.

8 automorphim We return to T : R 2 R 2, T (x, y) = (2x + y, x + y). It s easy to show that if (x 1, y 1 ) (x 2, y 2 ) then T (x 1, y 1 ) T (x 2, y 2 ). We have thus defined a mapping L : T 2 T 2. Theorem T 2 is a hyperbolic set for L. Periodic orbits of L are dense in T 2, L has a dence orbit which is not periodic and P n (F L ) = λ n 1 + λ n 1 2. Proof. Points with rational coordinates, and only these, are periodic orbits of L. Actually one can find a special relation between L and the Bernoulli shift. Note that arbitrarily close points may have quite different future! One can easily generalize the example above in any dimension.

9 Simple chaos Let us here recall the definition of chaos. Definition Let f : M M and N M a compact subset, invariant under f. We say that f presents chaotic behavior in N if: The set of periodic orbits of f is dense in N. N contains a dense, non periodic, orbit of f. Since T 2 is compact, we conclude that: Theorem Mapping L : T 2 T 2 defined above is chaotic. Proof. Actually, this is a corollary of the previous theorem.

10 Things to remember Hyperbolic theory provides us with simple examples of chaotic behavior, which are amenable to analytical study. Anything else?

11 Stability When do two dynamical systems have the same behavior? Definition Let f, g : X X be two continuous mappings of the topological space X. We shall call them topologically conjugate if a homeomorphism h : X X exists, such that g h = h f. X f X h h X g X

12 Theorem Every C 1 diffeomorphism g : T 2 T 2 which is sufficiently close to L : T 2 T 2, in the C 1 topology, is topologically conjugate to L. Proof. We have to solve equation g h = h L, with respect to h Hom(T 2 ). Passing to the lift of T 2, that is R 2, we rewrite last equation as g (Id + h) = h L L h. Define L( h) = h L L h. Last equation becomes g (Id + h) = L( h). Define T ( h) = g (Id + h). Last equation becomes T ( h) = L( h) h = L 1 T ( h). Prove that when g is C 1 close to L, operator L 1 T is a contraction. Thus, it has a fixed point. Prove that the fixed point is what you were looking for.

13 Things to remember So: Hyperbolic theory provides us with simple examples of chaotic behavior, which are amenable to analytical study. It also proves that hyperbolic chaos is a stable property, thus we cannot sweep it under the carpet. Anything else?

14 Attractors Simple, hyperbolic, strange, chaotic... Definition Let f : X X be a continuous dynamical system of the topological space X. The subset A X is called an attractor for f if there exists an open set V A such that f (V ) V and A = n N f n (V ). A hyperbolic attractor is an attractor which is also a hyperbolic set. A chaotic attractor is an attractor which also fulfills the definition of chaos. A strange attractor is an attractor which has a fractal structure. Example The origin is a (simple) attractor for f : R 2 R 2, f (x, y) = ( 1 2 x, 1 2 y).

15 The DA attractor Derived from Anosov Let us return to the hyperbolic toral L : T 2 T 2 studied above. Denote by p 0 the fixed point corresponding to the origin. Let δ : R R be a smooth function such that 0 δ(x) 1, x R and δ(x) = 0 for x r 0 and δ(x) = 1 for x r 0 /2, where r 0 > 0 but small enough. Consider the differential equations u 1 = 0 u 2 = u 2 δ( (u 1, u 2 ) ) and denote by ϕ t (u 1, u 2 ) their flow. Define the DA diffeomorphism f : T 2 T 2 as f (u 1, u 2 ) = ϕ τ L(u 1, u 2 ) where τ > 0 any fixed number such that e τ λ 2 > 1.

16 Theorem The DA diffeomorphism has a non wondering set consisting of the repelling fixed point p 0 and a set Λ, which is a hyperbolic chaotic attractor for f. The DA attractor (in red).

17 Smale s horseshoe (What really happened at the beaches of Rio) Define a diffeomorpshism φ : R 2 { } R 2 { } as follows: The point at infinity (denoted by { }) is repelling. There exists a square S on which φ acts as shown on the figure bellow, by expanding vertical directions and contracting the horizontal ones.

18 Definition We define H = n Z φ n (S) and the mapping φ H : H H. This mapping is called the classical Smale s horseshoe. Theorem Smale s horseshoe is a hyperbolic chaotic set.

19 The solenoid attractor Or Smale Williams attractor Consider the solid torus S 1 D 2, equipped with coordinates φ S 1, (x, y) D 2. Define: f : S 1 D 2 S 1 D 2 f (φ, x, y) = (2φ, 1 10 x cosφ, 1 10 y sinφ).

20 It is really easy to prove that f is 1 1 and that f (S 1 D 2 ) S 1 D 2. Definition The solenoid attractor is defined to be S = n N f n (S 1 D 2 ), equipped with the dynamics f S : S S. Theorem S is a hyperbolic chaotic attractor for f. Proof. One easily verifies the so called cone conditions.

21 The Plykin attractor Consider the following differential equations on the S 2 R 3. Flow down along circles of latidude: Rotation around the z axis: ẋ = ɛxy 2, ẏ = ɛx 2 y, ż = 0. ẋ = π( 1 2 z )y, ẏ = π( 2 z )x, ż = 0. Flow down to the equator: Rotation around the x axis: ẋ = 0, ẏ = ɛyz 2, ż = ɛy 2 z. ẋ = 0, ẏ = π( 1 2 z )z, ż = π( 1 2 z )y. Following the flows of these o.d.e. s for time equal to 1 unit, and then repeating this procedure, we have (for ɛ = 0.77):

22

23 Things to remember So: Hyperbolic theory provides us with simple examples of chaotic behavior, which are amenable to analytical study. It also proves that hyperbolic chaos is a stable property, thus we cannot sweep it under the carpet. It teaches us that one can not escape chaos, since chaotic sets are usually attracting. The chaotic attractors provided by the theory are also ammenable to analytical study (and really beautiful!). Anything else?

24 The map of Hénon has a horseshoe Let us recall Hénon map: h s : R 2 R 2, h s (x, y) = (1 + y ax 2, bx), presented in: Hénon M, A two dimensional mapping with a strange attractor, Comm.Math.Phys., 50(1), 69-77,1976.

25 Nowadays its more common to study its topologically conjugate standard Hénon map: h : R 2 R 2, h(x, y) = (y, βx + a y 2 ). We consider the square S = {x, y R 2, x, y [ 3, 3]}

26 Let us calculate the set S h(s)

27 Thus, the standard Hénon map possesses a geometrical horseshoe. Is it however a true horseshoe, that is, a hyperbolic chaotic invariant set having the structure described by Smale? Yes, it is. Devaney R L, Nitecki Z, Shift s in the Hénon mapping, Comm.Math.Phys., 67, , 1979.

28 Leonid Pavlovich Shilnikov, Or how to prove that there is a horseshoe arround (and much much more...) Actually, since then, we have found horseshoes in many dynamical systems. To accomplish that, we usually employ Shilnikov s theorem.

29 Alternately excited van del Pol oscillators Let us consider the following system of differential equations: ẍ (A cos 2πt T x 2 )ẋ + ω 2 0x = ɛy cos(ω 0 t) ÿ ( A cos 2πt T y 2 )ẏ + 4ω 2 0y = ɛx 2, where T = 2πN ω 0 = 6, ω 0 = 2π, A = 5, ɛ = 0.5. It s extended phase space is 5 dimensional. We can define a 4 dimensional Poincaré section P. Poincaré map T : P P has a forward invariant set D S D 3. Let us draw (the 3 dimensional projection of) D and T (D).

30 Example of a physical system with an attractor of the Smale Williams type S P Kuznetsov Phys.Rev.Lett. (95), , 2005.

31 Kuznetsov gave us a detailed (numerical) study of: Construction of the Poincaré map. Existence of the forward invariant set D. Existence of a solenoid attractor. Numerical verification of its hyperbolicity (through cone conditions). All these were made completely rigorous in: Uniformly hyperbolic attractor of the Smale Williams type for a Poincaré map in a Kuznetsov system D Wilczak SIAM J.Appl.Dyn.Syst., 9(4), , 2010.

32 Non autonomous coupled oscillators Let a, b C and consider the following system of o.d.e. s. ȧ = iɛ(1 σ 2 s 2 )Im(a 2 b 2 )a iσπ( a 2 )a π 4 sb s2 (1 a 2 b 2 )a ḃ = iɛ(1 σ2 s 2 )Im(a 2 b 2 )b iσπ( b 2 )b + π 4 sa s2 (1 a 2 b 2 )b. In the sustained regime of self oscillations the relation a 2 + b 2 = 1 holds.

33 Plykin type of attractor in non autonomous coupled oscillators S P Kuznetsov Chaos (19), , Exercise: Verify rigorously his statements.

34 The list continues. Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor T J Hunt, R S MackKay Nonlinearity, 16, 4, Hyperbolic Plykin attractor can exist in neuron models Belykh V, Belykh I, Mosekilde E Int.J.Bif.Ch. 15(11), , Autonomous coupled oscillators with hyperbolic strange attractors Kuznetsov S, Pikovsky A Physica D, 232, , Robust chaos in autonomous time delay systems Arzhanukhina D S, Kuznetsov S to appear, 2017.

35 Things to remember So: Hyperbolic theory provides us with simple examples of chaotic behavior, which are amenable to analytical study. It also proves that hyperbolic chaos is a stable property, thus we cannot sweep it under the carpet. It teaches us that one can not escape chaos, since chaotic sets are usually attracting. The chaotic attractors provided by the theory are also ammenable to analytical study (and really beautiful!). In of all sorts we come across hyperbolic constructions.

36 Why won t go away It provides the mathematical framework to discuss concepts such as stability, genericity, equidistribution. It is present in everyday. Actually, it contains a famous branch of geometry (hyperbolic riemannian geometry). Dynamical systems that are not hyperbolic might be singular hyperbolic. To study Singular Hyperbolic Theory one should be familiar with... (try to guess).

37 For Further Reading I Clark Robinson Dynamical CRC Press, Anatole Katok, Boris Hasselblatt Introduction to the Modern Theory Cambridge University Press, Appendix For Further Reading Stephen Smale Differentiable dynamical systems Bull.Am.Math.Society, 73(6): , 1967.

### Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics

CHAPTER 2 Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics Luis Barreira Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal E-mail: barreira@math.ist.utl.pt url:

### Removing the Noise from Chaos Plus Noise

Removing the Noise from Chaos Plus Noise Steven P. Lalley Department of Statistics University of Chicago November 5, 2 Abstract The problem of extracting a signal x n generated by a dynamical system from

### APPPHYS217 Tuesday 25 May 2010

APPPHYS7 Tuesday 5 May Our aim today is to take a brief tour of some topics in nonlinear dynamics. Some good references include: [Perko] Lawrence Perko Differential Equations and Dynamical Systems (Springer-Verlag

### 8.1 Bifurcations of Equilibria

1 81 Bifurcations of Equilibria Bifurcation theory studies qualitative changes in solutions as a parameter varies In general one could study the bifurcation theory of ODEs PDEs integro-differential equations

### An Undergraduate s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems

An Undergraduate s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems Scott Zimmerman MATH181HM: Dynamical Systems Spring 2008 1 Introduction The Hartman-Grobman and Poincaré-Bendixon Theorems

### Lectures on Periodic Orbits

Lectures on Periodic Orbits 11 February 2009 Most of the contents of these notes can found in any typical text on dynamical systems, most notably Strogatz [1994], Perko [2001] and Verhulst [1996]. Complete

### Hyperbolic Sets That are Not Locally Maximal

Hyperbolic Sets That are Not Locally Maximal Todd Fisher December 6, 2004 Abstract This papers addresses the following topics relating to the structure of hyperbolic sets: First, hyperbolic sets that are

### Period-doubling cascades of a Silnikov equation

Period-doubling cascades of a Silnikov equation Keying Guan and Beiye Feng Science College, Beijing Jiaotong University, Email: keying.guan@gmail.com Institute of Applied Mathematics, Academia Sinica,

### LINEAR CHAOS? Nathan S. Feldman

LINEAR CHAOS? Nathan S. Feldman In this article we hope to convience the reader that the dynamics of linear operators can be fantastically complex and that linear dynamics exhibits the same beauty and

### SINAI S WORK ON MARKOV PARTITIONS AND SRB MEASURES

SINAI S WORK ON MARKOV PARTITIONS AND SRB MEASURES YAKOV PESIN Abstract. Some principal contributions of Ya. Sinai to hyperbolic theory of dynamical systems focused mainly constructions of Markov partitions

### 27. Topological classification of complex linear foliations

27. Topological classification of complex linear foliations 545 H. Find the expression of the corresponding element [Γ ε ] H 1 (L ε, Z) through [Γ 1 ε], [Γ 2 ε], [δ ε ]. Problem 26.24. Prove that for any

### Symbolic dynamics and non-uniform hyperbolicity

Symbolic dynamics and non-uniform hyperbolicity Yuri Lima UFC and Orsay June, 2017 Yuri Lima (UFC and Orsay) June, 2017 1 / 83 Lecture 1 Yuri Lima (UFC and Orsay) June, 2017 2 / 83 Part 1: Introduction

### PEKING UNIVERSITY DOCTORAL DISSERTATION

1 PEKING UNIVERSITY DOCTORAL DISSERTATION TITLE: Anosov Endomorphisms: Shift Equivalence And Shift Equivalence Classes NAME: ZHANG Meirong STUDENT NO.: 18601804 DEPARTMENT: Mathematics SPECIALITY: Pure

### One Dimensional Dynamical Systems

16 CHAPTER 2 One Dimensional Dynamical Systems We begin by analyzing some dynamical systems with one-dimensional phase spaces, and in particular their bifurcations. All equations in this Chapter are scalar

### Lozi-like maps. M. Misiurewicz and S. Štimac. May 13, 2017

Lozi-like maps M. Misiurewicz and S. Štimac May 13, 017 Abstract We define a broad class of piecewise smooth plane homeomorphisms which have properties similar to the properties of Lozi maps, including

### Unique equilibrium states for geodesic flows in nonpositive curvature

Unique equilibrium states for geodesic flows in nonpositive curvature Todd Fisher Department of Mathematics Brigham Young University Fractal Geometry, Hyperbolic Dynamics and Thermodynamical Formalism

### Lyapunov Stability Theory

Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

### Invariant Manifolds of Dynamical Systems and an application to Space Exploration

Invariant Manifolds of Dynamical Systems and an application to Space Exploration Mateo Wirth January 13, 2014 1 Abstract In this paper we go over the basics of stable and unstable manifolds associated

### Tiling Dynamical Systems as an Introduction to Smale Spaces

Tiling Dynamical Systems as an Introduction to Smale Spaces Michael Whittaker (University of Wollongong) University of Otago Dunedin, New Zealand February 15, 2011 A Penrose Tiling Sir Roger Penrose Penrose

### Symbolic dynamics for Lozi maps

Symbolic dynamics for Lozi maps M. Misiurewicz, S. Štimac Abstract We study the family of the Lozi maps L a,b : R 2 R 2, L a,b (x, y) = (1+y a x, bx), and their strange attractors Λ a,b. We introduce the

### arxiv: v1 [math.ds] 11 May 2017

On three types of dynamics, and the notion of attractor. arxiv:1705.04389v1 [math.ds] 11 May 2017 S.V.Gonchenko 1 and D.Turaev 1,2 1 Lobachevsky University of Nizhny Novgorod, Russia; E-mail: gonchenko@pochta.ru

### ON RIGIDITY OF ALGEBRAIC DYNAMICAL SYSTEMS

ON RIGIDITY OF ALGEBRAIC DYNAMICAL SYSTEMS ALEX CLARK AND ROBBERT FOKKINK Abstract. We study topological rigidity of algebraic dynamical systems. In the first part of this paper we give an algebraic condition

### DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS Morris W. Hirsch University of California, Berkeley Stephen Smale University of California, Berkeley Robert L. Devaney Boston University

### The Conley Index and Rigorous Numerics of Attracting Periodic Orbits

The Conley Index and Rigorous Numerics of Attracting Periodic Orbits Marian Mrozek Pawe l Pilarczyk Conference on Variational and Topological Methods in the Study of Nonlinear Phenomena (Pisa, 2000) 1

### 2 Qualitative theory of non-smooth dynamical systems

2 Qualitative theory of non-smooth dynamical systems In this chapter, we give an overview of the basic theory of both smooth and non-smooth dynamical systems, to be expanded upon in later chapters. In

### 3 Stability and Lyapunov Functions

CDS140a Nonlinear Systems: Local Theory 02/01/2011 3 Stability and Lyapunov Functions 3.1 Lyapunov Stability Denition: An equilibrium point x 0 of (1) is stable if for all ɛ > 0, there exists a δ > 0 such

### Fuchsian groups. 2.1 Definitions and discreteness

2 Fuchsian groups In the previous chapter we introduced and studied the elements of Mob(H), which are the real Moebius transformations. In this chapter we focus the attention of special subgroups of this

### A classification of explosions in dimension one

Ergod. Th. & Dynam. Sys. (29), 29, 715 731 doi:1.117/s143385788486 c 28 Cambridge University Press Printed in the United Kingdom A classification of explosions in dimension one E. SANDER and J. A. YORKE

### THE GEOMETRIC APPROACH FOR CONSTRUCTING SINAI-RUELLE-BOWEN MEASURES

THE GEOMETRIC APPROACH FOR CONSTRUCTING SINAI-RUELLE-BOWEN MEASURES VAUGHN CLIMENHAGA, STEFANO LUZZATTO, AND YAKOV PESIN Abstract. An important class of physically relevant measures for dynamical systems

### Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct

### Devil s Staircase Rotation Number of Outer Billiard with Polygonal Invariant Curves

Devil s Staircase Rotation Number of Outer Billiard with Polygonal Invariant Curves Zijian Yao February 10, 2014 Abstract In this paper, we discuss rotation number on the invariant curve of a one parameter

### On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to Wild Lorenz-Like Attractors

ISSN 1560-3547, Regular and Chaotic Dynamics, 2009, Vol. 14, No. 1, pp. 137 147. c Pleiades Publishing, Ltd., 2009. JÜRGEN MOSER 80 On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to

### Lipschitz shadowing implies structural stability

Lipschitz shadowing implies structural stability Sergei Yu. Pilyugin Sergei B. Tihomirov Abstract We show that the Lipschitz shadowing property of a diffeomorphism is equivalent to structural stability.

### THE CLASSIFICATION OF TILING SPACE FLOWS

UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 THE CLASSIFICATION OF TILING SPACE FLOWS by Alex Clark Abstract. We consider the conjugacy of the natural flows on one-dimensional tiling

### Dynamic Systems and Applications 11 (2002) TOWARDS A RIGOROUS NUMERICAL STUDY OF THE KOT SCHAFFER MODEL

Dynamic Systems and Applications (2002) 87-97 TOWARDS A RIGOROUS NUMERICAL STUDY OF THE KOT SCHAFFER MODEL SARAH DAY Georgia Institute of Technology, Department of Mathematics, Atlanta, GA 30332 090, USA.

### (x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively);

STABILITY OF EQUILIBRIA AND LIAPUNOV FUNCTIONS. By topological properties in general we mean qualitative geometric properties (of subsets of R n or of functions in R n ), that is, those that don t depend

### 1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

### A tutorial on numerical transfer operator methods. numerical analysis of dynamical systems

A tutorial on transfer operator methods for numerical analysis of dynamical systems Gary Froyland School of Mathematics and Statistics University of New South Wales, Sydney BIRS Workshop on Uncovering

### UNIQUE EQUILIBRIUM STATES FOR THE ROBUSTLY TRANSITIVE DIFFEOMORPHISMS OF

UNIQUE EQUILIBRIUM STATES FOR THE ROBUSTLY TRANSITIVE DIFFEOMORPHISMS OF MAÑÉ AND BONATTI VIANA VAUGHN CLIMENHAGA, TODD FISHER, AND DANIEL J. THOMPSON Abstract. We show that the families of robustly transitive

### CHUA S CIRCUIT AND THE QUALITATIVE THEORY OF DYNAMICAL SYSTEMS

Tutorials and Reviews International Journal of Bifurcation and Chaos, Vol. 7, No. 9 (1997) 1911 1916 Visions of Nonlinear Science: Festschrift dedicated to Leon O. Chua c World Scientific Publishing Company

### Evolution of the McMullen Domain for Singularly Perturbed Rational Maps

Volume 32, 2008 Pages 301 320 http://topology.auburn.edu/tp/ Evolution of the McMullen Domain for Singularly Perturbed Rational Maps by Robert L. Devaney and Sebastian M. Marotta Electronically published

### An introduction to cobordism

An introduction to cobordism Martin Vito Cruz 30 April 2004 1 Introduction Cobordism theory is the study of manifolds modulo the cobordism relation: two manifolds are considered the same if their disjoint

### Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

### 7 Planar systems of linear ODE

7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

### Periodic geodesics on translation surfaces

Periodic geodesics on translation surfaces Yaroslav Vorobets 1 Introduction Let M be a compact connected oriented surface. The surface M is called a translation surface if it is equipped with a translation

### The Ricci Flow Approach to 3-Manifold Topology. John Lott

The Ricci Flow Approach to 3-Manifold Topology John Lott Two-dimensional topology All of the compact surfaces that anyone has ever seen : These are all of the compact connected oriented surfaces without

### Orbital Motion in Schwarzschild Geometry

Physics 4 Lecture 29 Orbital Motion in Schwarzschild Geometry Lecture 29 Physics 4 Classical Mechanics II November 9th, 2007 We have seen, through the study of the weak field solutions of Einstein s equation

### REVERSALS ON SFT S. 1. Introduction and preliminaries

Trends in Mathematics Information Center for Mathematical Sciences Volume 7, Number 2, December, 2004, Pages 119 125 REVERSALS ON SFT S JUNGSEOB LEE Abstract. Reversals of topological dynamical systems

### ANOSOV FLOWS IN DIMENSION 3 PRELIMINARY VERSION

ANOSOV FLOWS IN DIMENSION 3 PRELIMINARY VERSION THOMAS BARTHELMÉ 1. Introduction These are lecture notes made for a mini-course given at the School on contemporary dynamical systems, held in Montréal,

### MATH 415, WEEKS 14 & 15: 1 Recurrence Relations / Difference Equations

MATH 415, WEEKS 14 & 15: Recurrence Relations / Difference Equations 1 Recurrence Relations / Difference Equations In many applications, the systems are updated in discrete jumps rather than continuous

### The UV -property of compact invariant sets

The UV -property of compact invariant sets Krystyna Kuperberg, Auburn University 6th European Congress of Mathematics Kraków Jagiellonian University July 2, 2012 Krystyna Kuperberg, Auburn University (

### On the dynamics of dominated splitting

Annals of Mathematics, 169 (2009), 675 740 On the dynamics of dominated splitting By Enrique R. Pujals and Martín Sambarino* To Jose Luis Massera, in memorian Abstract Let f : M M be a C 2 diffeomorphism

### FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE CHRISTOPHER HEIL 1. Weak and Weak* Convergence of Vectors Definition 1.1. Let X be a normed linear space, and let x n, x X. a. We say that

### Generating a Complex Form of Chaotic Pan System and its Behavior

Appl. Math. Inf. Sci. 9, No. 5, 2553-2557 (2015) 2553 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090540 Generating a Complex Form of Chaotic Pan

### LECTURE 22: THE CRITICAL POINT THEORY OF DISTANCE FUNCTIONS

LECTURE : THE CRITICAL POINT THEORY OF DISTANCE FUNCTIONS 1. Critical Point Theory of Distance Functions Morse theory is a basic tool in differential topology which also has many applications in Riemannian

### arxiv: v1 [math.ds] 20 Feb 2017

Homoclinic tangencies and singular hyperbolicity for three-dimensional vector fields Sylvain Crovisier Dawei Yang arxiv:1702.05994v1 [math.ds] 20 Feb 2017 February 2017 Abstract We prove that any vector

### 16 1 Basic Facts from Functional Analysis and Banach Lattices

16 1 Basic Facts from Functional Analysis and Banach Lattices 1.2.3 Banach Steinhaus Theorem Another fundamental theorem of functional analysis is the Banach Steinhaus theorem, or the Uniform Boundedness

### THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF

THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF D. D. LONG and A. W. REID Abstract We prove that the fundamental group of the double of the figure-eight knot exterior admits

### Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg

Quantum ergodicity Nalini Anantharaman Université de Strasbourg 22 août 2016 I. Quantum ergodicity on manifolds. II. QE on (discrete) graphs : regular graphs. III. QE on graphs : other models, perspectives.

### Perelman s proof of the Poincaré conjecture

University of California, Los Angeles Clay/Mahler Lecture Series In a series of three papers in 2002-2003, Grisha Perelman solved the famous Poincaré conjecture: Poincaré conjecture (1904) Every smooth,

### Dynamical Invariants of Foliations 1

Dynamical Invariants of Foliations 1 Steven Hurder University of Illinois at Chicago October 19, 2012 1 Colloquium GT3, IRMA, Université de Strasbourg Steven Hurder (University of Illinois at Chicago)

### Lecture 2. Smooth functions and maps

Lecture 2. Smooth functions and maps 2.1 Definition of smooth maps Given a differentiable manifold, all questions of differentiability are to be reduced to questions about functions between Euclidean spaces,

### WORKSHOP ON TOPOLOGICAL DYNAMICS AND ROTATION THEORY ON SURFACES ABSTRACTS

WORKSHOP ON TOPOLOGICAL DYNAMICS AND ROTATION THEORY ON SURFACES ABSTRACTS Salvador Addas-Zanata (Universidade de Sao Paulo, Brasil)) Title: A condition that implies full homotopical complexity of orbits

### Bifurcation control and chaos in a linear impulsive system

Vol 8 No 2, December 2009 c 2009 Chin. Phys. Soc. 674-056/2009/82)/5235-07 Chinese Physics B and IOP Publishing Ltd Bifurcation control and chaos in a linear impulsive system Jiang Gui-Rong 蒋贵荣 ) a)b),

### Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields Francisco Armando Carrillo Navarro, Fernando Verduzco G., Joaquín Delgado F. Programa de Doctorado en Ciencias (Matemáticas),

### Maps. A map is a dynamical system with discrete time. Such dynamical systems are defined by iterating a transformation φ of points x.

Encyclopedia of Nonlinear Science, Alwyn Scott, Editor, (Routledge, New York, 5) pp. 548-553. Maps Pierre Gaspard Center for Nonlinear Phenomena and Comple Systems, Université Libre de Bruelles, Code Postal

### In this paper we consider complex analytic rational maps of the form. F λ (z) = z 2 + c + λ z 2

Rabbits, Basilicas, and Other Julia Sets Wrapped in Sierpinski Carpets Paul Blanchard, Robert L. Devaney, Antonio Garijo, Sebastian M. Marotta, Elizabeth D. Russell 1 Introduction In this paper we consider

### ARITHMETIC CODING AND ENTROPY FOR THE POSITIVE GEODESIC FLOW ON THE MODULAR SURFACE

MOSCOW MATHEMATICAL JOURNAL Volume, Number 4, October December 200, Pages 569 582 ARITHMETIC CODING AND ENTROPY FOR THE POSITIVE GEODESIC FLOW ON THE MODULAR SURFACE BORIS GUREVICH AND SVETLANA KATOK This

### On non-reducible quasi-periodic linear skew-products

On non-reducible quasi-periodic linear skew-products March 17, 2014 1 Floquet theory 2 3 Recall: Floquet theory I Floquet theory named after Gaston Floquet (S.XIX). Concerns about linear equations with

### 121B: ALGEBRAIC TOPOLOGY. Contents. 6. Poincaré Duality

121B: ALGEBRAIC TOPOLOGY Contents 6. Poincaré Duality 1 6.1. Manifolds 2 6.2. Orientation 3 6.3. Orientation sheaf 9 6.4. Cap product 11 6.5. Proof for good coverings 15 6.6. Direct limit 18 6.7. Proof

### BACKGROUND IN SYMPLECTIC GEOMETRY

BACKGROUND IN SYMPLECTIC GEOMETRY NILAY KUMAR Today I want to introduce some of the symplectic structure underlying classical mechanics. The key idea is actually quite old and in its various formulations

### An introduction to Birkhoff normal form

An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

### 1. Classifying Spaces. Classifying Spaces

Classifying Spaces 1. Classifying Spaces. To make our lives much easier, all topological spaces from now on will be homeomorphic to CW complexes. Fact: All smooth manifolds are homeomorphic to CW complexes.

### Homoclinic Points and the Horseshoe Map - A Reprise

9 Chapter 2 Homoclinic Points and the Horseshoe Map - A Reprise As mentioned in the introduction, a central contribution of this thesis is the identification and visualization of homoclinic tangles and

### Changing sign solutions for the CR-Yamabe equation

Changing sign solutions for the CR-Yamabe equation Ali Maalaoui (1) & Vittorio Martino (2) Abstract In this paper we prove that the CR-Yamabe equation on the Heisenberg group has infinitely many changing

### M4P52 Manifolds, 2016 Problem Sheet 1

Problem Sheet. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union X Y is an n-dimensional topological manifold. Is S S 2 a topological manifold? 2. Recall that that the discrete

### 1 The Observability Canonical Form

NONLINEAR OBSERVERS AND SEPARATION PRINCIPLE 1 The Observability Canonical Form In this Chapter we discuss the design of observers for nonlinear systems modelled by equations of the form ẋ = f(x, u) (1)

### Cyclicity of common slow fast cycles

Available online at www.sciencedirect.com Indagationes Mathematicae 22 (2011) 165 206 www.elsevier.com/locate/indag Cyclicity of common slow fast cycles P. De Maesschalck a, F. Dumortier a,, R. Roussarie

### 1 Lyapunov theory of stability

M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

### PROGRAM. Sunday, September 7. Monday, September 8

16:00 21:00 Registration 08:45 09:45 Registration 09:45 10:00 Opening PROGRAM Sunday, September 7 Monday, September 8 10:00 10:20 D. Gronau György Targonski, 1928-1998 Tribute on the occasion of ECIT 2008

### Stratification of 3 3 Matrices

Stratification of 3 3 Matrices Meesue Yoo & Clay Shonkwiler March 2, 2006 1 Warmup with 2 2 Matrices { Best matrices of rank 2} = O(2) S 3 ( 2) { Best matrices of rank 1} S 3 (1) 1.1 Viewing O(2) S 3 (

### Qualitative Classification of Singular Points

QUALITATIVE THEORY OF DYNAMICAL SYSTEMS 6, 87 167 (2005) ARTICLE NO. 94 Qualitative Classification of Singular Points Qibao Jiang Department of Mathematics and Mechanics, Southeast University, Nanjing

### Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

### Oscillations in Damped Driven Pendulum: A Chaotic System

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 3, Issue 10, October 2015, PP 14-27 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Oscillations

### Universidade Técnica de Lisboa, Rua do Quelhas 6, Lisboa, Portugal

Chaos in the square billiard with a modified reflection law Gianluigi Del Magno, 1,a) João Lopes Dias, 2,b) Pedro Duarte, 3,c) José Pedro Gaivão, 1,d) and Diogo Pinheiro 1,e) 1) CEMAPRE, ISEG, Universidade

### 4 Film Extension of the Dynamics: Slowness as Stability

4 Film Extension of the Dynamics: Slowness as Stability 4.1 Equation for the Film Motion One of the difficulties in the problem of reducing the description is caused by the fact that there exists no commonly

### Diffeomorphic Warping. Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel)

Diffeomorphic Warping Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel) What Manifold Learning Isn t Common features of Manifold Learning Algorithms: 1-1 charting Dense sampling Geometric Assumptions

### TWELVE LIMIT CYCLES IN A CUBIC ORDER PLANAR SYSTEM WITH Z 2 -SYMMETRY. P. Yu 1,2 and M. Han 1

COMMUNICATIONS ON Website: http://aimsciences.org PURE AND APPLIED ANALYSIS Volume 3, Number 3, September 2004 pp. 515 526 TWELVE LIMIT CYCLES IN A CUBIC ORDER PLANAR SYSTEM WITH Z 2 -SYMMETRY P. Yu 1,2

### INVERSE LIMITS AND PROFINITE GROUPS

INVERSE LIMITS AND PROFINITE GROUPS BRIAN OSSERMAN We discuss the inverse limit construction, and consider the special case of inverse limits of finite groups, which should best be considered as topological

### THE POINCARE-HOPF THEOREM

THE POINCARE-HOPF THEOREM ALEX WRIGHT AND KAEL DIXON Abstract. Mapping degree, intersection number, and the index of a zero of a vector field are defined. The Poincare-Hopf theorem, which states that under

### EQUIVARIANT DYNAMICAL SYSTEMS

EQUIVARIANT DYNAMICAL SYSTEMS BY MIKE FIELD 1 Communicated by Stephen Smale, May 11, 1970 In this note we consider equivariant vector fields and diffeomorphisms and present results which generalise some

### 1 Introduction: connections and fiber bundles

[under construction] 1 Introduction: connections and fiber bundles Two main concepts of differential geometry are those of a covariant derivative and of a fiber bundle (in particular, a vector bundle).

### In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small x values.

Polynomial functions: End behavior Solutions NAME: In this lab, we are looking at the end behavior of polynomial graphs, i.e. what is happening to the y values at the (left and right) ends of the graph.

### ON THE PERIODIC ORBITS, SHADOWING AND STRONG TRANSITIVITY OF CONTINUOUS FLOWS

ON THE PERIODIC ORBITS, SHADOWING AND STRONG TRANSITIVITY OF CONTINUOUS FOWS MÁRIO BESSA, MARIA JOANA TORRES AND PAUO VARANDAS Abstract. We prove that chaotic flows (i.e. flows that satisfy the shadowing

### Lecture2 The implicit function theorem. Bifurcations.

Lecture2 The implicit function theorem. Bifurcations. 1 Review:Newton s method. The existence theorem - the assumptions. Basins of attraction. 2 The implicit function theorem. 3 Bifurcations of iterations.

### arxiv:chao-dyn/ v3 10 Sep 1993

Braid analysis of (low-dimensional) chaos Nicholas B. Tufillaro Departments of Mathematics and Physics Otago University, Dunedin, New Zealand (10 July 1993) arxiv:chao-dyn/9304008v3 10 Sep 1993 We show

### In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with

Appendix: Matrix Estimates and the Perron-Frobenius Theorem. This Appendix will first present some well known estimates. For any m n matrix A = [a ij ] over the real or complex numbers, it will be convenient

### REGULARITY OF FOLIATIONS AND LYAPUNOV EXPONENTS OF PARTIALLY HYPERBOLIC DYNAMICS ON 3 TORUS

REGULARITY OF FOLIATIONS AND LYAPUNOV EXPONENTS OF PARTIALLY HYPERBOLIC DYNAMICS ON 3 TORUS F. MICENA AND A. TAHZIBI Abstract. In this work we study relations between regularity of invariant foliations