Computational Astrophysics

Size: px
Start display at page:

Download "Computational Astrophysics"

Transcription

1 Computational Astrophysics Lecture 1: Introduction to numerical methods Lecture 2: The SPH formulation Lecture 3: Construction of SPH smoothing functions Lecture 4: SPH for general dynamic flow Lecture 5: N-body techniques Lecture 6: Numerical Implementation Project Work (5-6 weeks) David Hobbs Lund Observatory ASTM22

2 Collapse of a Molecular Cloud Simulation & visualization by Matthew Bate, University of Exeter. Star cluster calculations showing the collapse and fragmentation of a 500 solar mass cloud. It is a simulation containing more than 1250 stars and brown dwarfs to allow comparison with clusters such as the Orion Trapezium Cluster.

3 N-body techniques The classical astrophysical N-body problem consists of each member of an aggregate of N (i=1,,n) point masses, having masses m i, experiencing an acceleration from the gravitational attractions of all the other bodies in the system. (1) The description of the problem is completed by specifying the initial positions (x i at t = 0) and velocities (v i at t=0) for the N particles. Solutions of this problem range from the orbit of the moon to the structure of the Kirkwood gaps in the asteroid belt and countless other phenomena. This richness arises from strong nonlinearity in the equation as a slight change in initial conditions can lead to very different outcomes chaos. The N-body problem involves calculating 1. the force on each particle at a given time 2. determining the new position of the particle at a future time

4 Methods for force calculation: Brute force Hierarchical tree method efficient methods to search for NN s Fast Fourier transforms use convolution theorem to avoid computing sums (not covered here) Methods for advancing particle positions are discussed: Euler the simplest possible approach Runge-Kutta standard for ordinary differential equation Bulirsch-Stoer accurate but limited to few bodies with Richardson extrapolation Symplectic map accurate for very long integrations (no close encounters) Predictor-corrector large numbers of particles with reasonable accuracy (Leapfrog) All these methods have problems with close encounters but this can be tackled by: Softening low accuracy Regularization high accuracy

5 Force Calculations hierarchical tree method (1/3) A simple solution of the N-body problem requires O(N 2 ) operations to solve equation (1). However close by particles have a strong interaction while distant ones have little effect. Drastic speed improvements can be obtained by retaining only closely neighbouring particles exactly while treating distant bodies as simpler aggregates. Tree algorithms work by tessellating the volume into a hierarchy of nested cubic cells, with at least 1 particle. The aggregate of cells is called a tree and the finest subdivisions are leaves. Gives an algorithm that requires O(Nlog(N)) operations to solve the N-body problem A big saving for large N!

6 Force Calculations hierarchical tree method (2/3) A large cube is first drawn around the simulated volume. This is subdivided into eight sub-volumes (in 3-D but only 4 in 2-D) Those containing no particles are discarded. Those with particles are further subdivided. As the tree is constructed the total mass, centre-of-mass, mono- and quadrupole moment of gravitational potential are stored. w Barnes and Hut, Nature 324, 1986 The tree is reconstructed after each time step. At each level in the tree, the width, W, of a box is compared to the distance R between the centre-of-mass and the particle p. R p p For long range interactions W < δ*r

7 Force Calculations hierarchical tree method (3/3) From the constructed tree the force on any particle p can be found recursively from the root cell. If W < δ*r (δ is an accuracy parameter ~1). compute force between the stored data for the box and the current particle else resolve the current cell into 8 sub-cells and recursively examine them - continue this until there is only 1 particle per cell. end The result is an algorithm with only NlogN computations for an N 2 problem. For a million particles this amounts to a factor of 166,000 improvement. Other advantages: Rigorous error analysis is possible.

8 The Bulirsch-Stoer method (1/3) Integrating small numbers of bodies for hundreds of millions of orbits often arises in astronomy. Numerical accuracy, flexibility and speed are required. The basic scheme in Burlirsch-Stoer is a simple modified midpoint for advancing over a full time step H=Nh by stringing together N equal sub-steps. x n are intermediate values at time t +nh. The error in estimating x(t +H) can be expressed as an even power series. This special property means that successive refined estimates of x(t +H) can be combined in a weighted average to form a final accurate estimate with little computational effort. The procedure is evaluate x(t +H), k times, with N=2,4,6,8, fit the results to a polynomial of order k-1 extrapolate to the value,, that would occur if the step size was zero This is known as Richardson extrapolation.

9 The polynomials are given by The Bulirsch-Stoer method (2/3) and the coefficients a 0 a k-1 can be extracted from Lagrange s formula that gives the unique polynomial of degree k-1 passing through points h 1 h k with values x t+h (h 1 ), x t+h (h 2 ),, x t+h (h k ) Once the coefficients are determined the polynomial is simply evaluated at h = 0 to obtain x t+h (0) Richardson extrapolation: a) function is integrated using 3 different subintervals h of H/4, H/8, H/16. b) Values of x(t+h) as a function of h and extrapolated to h = 0

10 The Bulirsch-Stoer method (3/3) The final step is to determine numerical convergence. The procedure is redone with a different value of k. The two estimates of are then compared and if the difference is less than, e.g , then its has converged. The convergence must be checked for every time step H, so each time step requires a large number of operations. However, for a give accuracy Burlirsch-Stoer integration is several times faster than a fourth-order Runge-Kutta method. In practice, Lagrange s formula can be replaced by a recursive formula, such as Neville s algorithm (see Press et al. 1992) It is preferred for high accuracy orbital integrations with few bodies and can handle close encounters reasonable well.

11 Problem For the Bulirsch-Stoer method work through by hand an example using Langrange s polynomial and Richardson extrapolation. Hint: Use a simple function like sine or cosine, etc.

12 The Symplectic map method (1/5) Symplectic map algorithms use the properties of Keplerian motion. The motion of a planet is divided into a Keplerian and a non-keplerian perturbation part resulting from the interaction of other bodies in the system. The Keplerian part has an analytical solution so much computer time can be saved. The algorithm uses the Hamiltonian formulation of Newton s laws. The time evolution of the positions r i and the momenta p i of the particles is written as a set of coupled first-order differential equations. v i = dr i dt = H p i where H is the Hamiltonian for the N-body problem f i = dp i dt = H r i as (3) p=mv H is the total energy and is conserved. The idea of the symplectic map is to separate the total Hamiltonian into parts

13 The Symplectic map method (2/5) A Keplerian Hamiltonian for two bodies is one that can be written in the form The momenta in the N-body Hamiltonian refer to the centre of mass, but for N >2 the particles are not executing Keplerian motion about the centre of mass. If the motion of the bodies is cast in Jacobi coordinates a set of Keplerian Hamiltonians can be extracted from H. The system consists of a heavy mass m 0 and N-1 light masses m i orbiting it. The centre of mass of the entire system is taken to be the first Jacobi coordinate. The second Jacobi coordinate is the separation vector between the first planet and the central mass. Subsequent coordinates are the separation vectors of the ith body relative to the centre of mass of the preceding i-1 bodies.

14 Cartesian coordinates Jacobi coordinates Simple expressions can be formed relating r and r-tilde in the two coordinate systems R i are the position vectors of the centers of mass Differentiating these expressions gives the corresponding momenta

15 The Symplectic map method (3/5) To first order, orbits in multi-planet systems are Keplerian in Jacobi coordinates. The full Nbody problem can then be written as (Murray and Dermott, 1999) where and where the tilde indicates Jacobi coordinates. The Hamiltonian represents a map that allows the system to step from an initial state at t=t0 to an evolved state at t=t0+δt.

16 The Symplectic map method (4/5) Solution - step 1 Firstly, the Jacobi coordinates of the planets are advanced through the Keplerian portion of their trajectories using Gauss f and g functions discovered by Gauss in 1801 while studying the asteroid Ceres. The positions and velocities are then obtained from The eccentric anomaly, E, is the solution of Kepler s equation solved with Newton-Raphson root finding algorithm

17 Solution step 2 The Symplectic map method (5/5) Secondly, the interaction Hamiltonian are used to update the Jacobian velocities using to correct for the interactions. This then completes the time step. The method can be made second order accurate by using Δt/2 for the first and last time steps and Δt for all other steps. The symplectic technique works well for near Keplerian orbits. It is 10 times faster than Bulirsch-Stoer. If the planets get too close the method becomes inaccurate and breaks down Regularization or Bulirsch-Stoer is then preferable.

18 Johann Carl Friedrich Gauss (Gauß) (30 April February 1855) was a German mathematician and scientist who contributed significantly to many fields, including number theory, statistics, analysis, differential geometry, geodesy, geophysics, electrostatics, astronomy and optics. Gauss had a remarkable influence in many fields of mathematics and science and is ranked as one of history's most influential mathematicians. He referred to mathematics as "the queen of sciences. Gauss was a child prodigy. There are many anecdotes pertaining to his precocity while a toddler, and he made his first ground-breaking mathematical discoveries while still a teenager. He completed Disquisitiones Arithmeticae, his magnum opus, in 1798 at the age of 21, though it would not be published until This work was fundamental in consolidating number theory as a discipline and has shaped the field to the present day.

19 The Predictor-corrector method (1/2) So far, methods suitable for a small number of bodies with high accuracy were discussed. In astronomy we often want to study large systems (e.g. a galaxy with >100G objects). It takes the Sun 250 Myr to orbit the Galaxy so it has only orbited ~18 times. Additionally, there are multiple time scales, e.g. star clusters need small time steps. One solution to these problems is to use a so called leapfrog method, which is a simple predictor-corrector method, with time step halving. The largest time step can be estimated from where a i is the acceleration of the ith particle and η is a small factor.

20 The Predictor-corrector method (2/2) The leapfrog method is a simple second-order integration to advance positions and velocities defined in intervals separated by Δt i /2. The integration can be initialized, preserving second order accuracy, by Here position is advanced at half time-steps and velocity at full time. Additionally, more sophisticated versions can be made. These are known more generally as as predictor corrector methods. Note: Leapfrog (above) and predictor-corrector (half-step corrections) are often mixed names

21 Close encounters softening (1/3) During close encounters between point masses the terms 1/r 2 ij can become arbitrarily large leading to large accelerations and small time steps which build up truncation error. The simplest but least accurate, useful way to overcome this is to include a softening term in the 1/r 2 ij dependence. Writing the force between i and j as then the gravitational acceleration saturates at a maximum which occurs when the particles reach a separation of This avoids the problem but will not give the correct motion of a tight binary. If ε is larger than the physical size of the particles then the details of the encounter will be wrong.

22 Close encounters regularization (2/3) For small clusters of stars encounters are common and one wants to trace the orbits accurately. Regularization introduces a coordinate transformation which replaces physical time with regularized time. Acceleration of two particles with separation R is where F 12 =F 1 -F 2 is the net external force per unit mass from other bodies. Regularization transforms both the time and space coordinates. Time transformation: regularized time, τ, is related to ordinary time, t, by so that See Galactic Dynamics 2 nd ed. P208 The equation of motion then becomes For n=1, the R -2 singularity is gone but R/R still diverges.

23

AM 205 Final Project The N-Body Problem

AM 205 Final Project The N-Body Problem AM 205 Final Project The N-Body Problem Leah Birch Elizabeth Finn Karen Yu December 14, 2012 Abstract The N-Body Problem can be solved using a variety of numeric integrators. Newton s Law of Universal

More information

Computational Astrophysics

Computational Astrophysics Computational Astrophysics Lecture 1: Introduction to numerical methods Lecture 2:The SPH formulation Lecture 3: Construction of SPH smoothing functions Lecture 4: SPH for general dynamic flow Lecture

More information

Geometric methods for orbit integration. PiTP 2009 Scott Tremaine

Geometric methods for orbit integration. PiTP 2009 Scott Tremaine Geometric methods for orbit integration PiTP 2009 Scott Tremaine spacecraft trajectories Cassini-Huygens trajectory around Saturn, 2004-2008 Planetary orbits lines = current orbits of the four inner planets

More information

Resonance In the Solar System

Resonance In the Solar System Resonance In the Solar System Steve Bache UNC Wilmington Dept. of Physics and Physical Oceanography Advisor : Dr. Russ Herman Spring 2012 Goal numerically investigate the dynamics of the asteroid belt

More information

X i t react. ~min i max i. R ij smallest. X j. Physical processes by characteristic timescale. largest. t diff ~ L2 D. t sound. ~ L a. t flow.

X i t react. ~min i max i. R ij smallest. X j. Physical processes by characteristic timescale. largest. t diff ~ L2 D. t sound. ~ L a. t flow. Physical processes by characteristic timescale Diffusive timescale t diff ~ L2 D largest Sound crossing timescale t sound ~ L a Flow timescale t flow ~ L u Free fall timescale Cooling timescale Reaction

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Astronomy 8824: Numerical Methods Notes 2 Ordinary Differential Equations

Astronomy 8824: Numerical Methods Notes 2 Ordinary Differential Equations Astronomy 8824: Numerical Methods Notes 2 Ordinary Differential Equations Reading: Numerical Recipes, chapter on Integration of Ordinary Differential Equations (which is ch. 15, 16, or 17 depending on

More information

3.4 Numerical orbit integration

3.4 Numerical orbit integration 196 Chapter 3: The Orbits of Stars about the center of the galaxy. For small-amplitude librations, the libration frequency is p, consistent with our assumption that the oscillation frequency is of order

More information

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

Structure of the Milky Way. Structure of the Milky Way. The Milky Way Key Concepts: Lecture 29: Our first steps into the Galaxy Exploration of the Galaxy: first attempts to measure its structure (Herschel, Shapley). Structure of the Milky Way Initially, star counting was

More information

NUMERICAL METHODS IN ASTROPHYSICS An Introduction

NUMERICAL METHODS IN ASTROPHYSICS An Introduction -1 Series in Astronomy and Astrophysics NUMERICAL METHODS IN ASTROPHYSICS An Introduction Peter Bodenheimer University of California Santa Cruz, USA Gregory P. Laughlin University of California Santa Cruz,

More information

Brad Gibson Centre for Astrophysics & Supercomputing Swinburne University

Brad Gibson Centre for Astrophysics & Supercomputing Swinburne University N-body Simulations: Tree and Mesh Approaches Brad Gibson Centre for Astrophysics & Supercomputing Swinburne University Demystifying the Jargon Trees Collisionless Boltzmann Equation Symplectic Time Integration

More information

Computational Astrophysics

Computational Astrophysics Computational Astrophysics Lecture 1: Introduction to numerical methods Lecture 2: The SPH formulation Lecture 3: Construction of SPH smoothing functions Lecture 4: SPH for general dynamic flow Lecture

More information

Kepler, Newton, and laws of motion

Kepler, Newton, and laws of motion Kepler, Newton, and laws of motion First: A Little History Geocentric vs. heliocentric model for solar system (sec. 2.2-2.4)! The only history in this course is this progression: Aristotle (~350 BC) Ptolemy

More information

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM Copyright FIST EDUCATION 011 0430 860 810 Nick Zhang Lecture 7 Gravity and satellites Newton's Law of Universal Gravitation Gravitation is a force of attraction that acts between any two masses. The gravitation

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

1 WHAT IS BIG HISTORY? WHY DO WE LOOK AT THINGS FROM FAR AWAY AND CLOSE UP?

1 WHAT IS BIG HISTORY? WHY DO WE LOOK AT THINGS FROM FAR AWAY AND CLOSE UP? 1 WHAT IS BIG HISTORY? WHY DO WE LOOK AT THINGS FROM FAR AWAY AND CLOSE UP? UNIT 1 WHAT IS BIG HISTORY? CONTENTS UNIT 1 BASICS 3 Unit 1 Overview 4 Unit 1 Learning Outcomes 5 Unit 1 Lessons 7 Unit 1 Key

More information

AM205: Assignment 3 (due 5 PM, October 20)

AM205: Assignment 3 (due 5 PM, October 20) AM25: Assignment 3 (due 5 PM, October 2) For this assignment, first complete problems 1, 2, 3, and 4, and then complete either problem 5 (on theory) or problem 6 (on an application). If you submit answers

More information

High performance computing and numerical modeling

High performance computing and numerical modeling High performance computing and numerical modeling Volker Springel Plan for my lectures Lecture 1: Collisional and collisionless N-body dynamics Lecture 2: Gravitational force calculation Lecture 3: Basic

More information

Astronomy 241: Review Questions #2 Distributed: November 7, 2013

Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Review the questions below, and be prepared to discuss them in class. For each question, list (a) the general topic, and (b) the key laws

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

1 Ordinary differential equations

1 Ordinary differential equations Numerical Analysis Seminar Frühjahrssemester 08 Lecturers: Prof. M. Torrilhon, Prof. D. Kressner The Störmer-Verlet method F. Crivelli (flcrivel@student.ethz.ch May 8, 2008 Introduction During this talk

More information

Theory of mean motion resonances.

Theory of mean motion resonances. Theory of mean motion resonances. Mean motion resonances are ubiquitous in space. They can be found between planets and asteroids, planets and rings in gaseous disks or satellites and planetary rings.

More information

Galaxies. CESAR s Booklet

Galaxies. CESAR s Booklet What is a galaxy? Figure 1: A typical galaxy: our Milky Way (artist s impression). (Credit: NASA) A galaxy is a huge collection of stars and interstellar matter isolated in space and bound together by

More information

Ay 1 Lecture 2. Starting the Exploration

Ay 1 Lecture 2. Starting the Exploration Ay 1 Lecture 2 Starting the Exploration 2.1 Distances and Scales Some Commonly Used Units Distance: Astronomical unit: the distance from the Earth to the Sun, 1 au = 1.496 10 13 cm ~ 1.5 10 13 cm Light

More information

The stability of planets in the Alpha Centauri system

The stability of planets in the Alpha Centauri system The stability of planets in the Alpha Centauri system Paul A. Wiegert 1, Matt Holman 2 1 Department of Astronomy, University of Toronto, Toronto, Canada 2 Canadian Institute for Theoretical Astrophysics,

More information

Galaxies & Introduction to Cosmology

Galaxies & Introduction to Cosmology Galaxies & Introduction to Cosmology Other Galaxies: How many are there? Hubble Deep Field Project 100 hour exposures over 10 days Covered an area of the sky about 1/100 the size of the full moon Probably

More information

Describing Motion. Newton Newton s Laws of Motion. Position Velocity. Acceleration. Key Concepts: Lecture 9

Describing Motion. Newton Newton s Laws of Motion. Position Velocity. Acceleration. Key Concepts: Lecture 9 Key Concepts: Lecture 9 Newton Newton s Laws of Motion More on Kepler s Laws Describing Motion Position Velocity Rate of change of position (speed & direction) 80 km/hr Acceleration 40 km/hr Rate of change

More information

UNIT 12B Continuous Time Simulations. Announcements

UNIT 12B Continuous Time Simulations. Announcements UNIT 12B Continuous Time Simulations 1 Announcements Nominate your CAs for a teaching award by sending email to gkesden@gmail.com by 11:59pm on April 19. If you have final exam conflicts or need a special

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 4 Stellar orbits and dark matter 1 Using Kepler s laws for stars orbiting the center of a galaxy We will now use Kepler s laws of gravitation on much larger scales. We will study

More information

Ruth Murray-Clay University of California, Santa Barbara

Ruth Murray-Clay University of California, Santa Barbara A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara Strange New Worlds. Slide credit: Scott Gaudi ~1500

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 5 The virial theorem 1 The virial theorem We have seen that we can solve the equation of motion for the two-body problem analytically and thus obtain expressions describing the future

More information

LESSON 1. Solar System

LESSON 1. Solar System Astronomy Notes LESSON 1 Solar System 11.1 Structure of the Solar System axis of rotation period of rotation period of revolution ellipse astronomical unit What is the solar system? 11.1 Structure of the

More information

Unit 16: Astronomy and space science. Learning aim A Understand the fundamental aspects of the solar system

Unit 16: Astronomy and space science. Learning aim A Understand the fundamental aspects of the solar system Unit 16: Astronomy and space science Learning aim A Understand the fundamental aspects of the solar system Contents page Note: anywhere you see a capital D means you MUST draw a diagram. Radiative zone

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Chaos and stability in the vicinity of a Jovian planet

Chaos and stability in the vicinity of a Jovian planet BEREA COLLEGE Chaos and stability in the vicinity of a Jovian planet by Shiblee Ratan Barua Berea College /22/28 It has been widely known that the influence of large bodies (the Sun, the terrestrial and

More information

What is the solar system?

What is the solar system? Notes Astronomy What is the solar system? 11.1 Structure of the Solar System Our solar system includes planets and dwarf planets, their moons, a star called the Sun, asteroids and comets. Planets, dwarf

More information

An Introduction to Celestial Mechanics

An Introduction to Celestial Mechanics An Introduction to Celestial Mechanics This accessible text on classical celestial mechanics the principles governing the motions of bodies in the solar system provides a clear and concise treatment of

More information

Dynamics of Galaxies: Basics. Frontiers in Numerical Gravitational Astrophysics July 3, 2008

Dynamics of Galaxies: Basics. Frontiers in Numerical Gravitational Astrophysics July 3, 2008 Dynamics of Galaxies: Basics Frontiers in Numerical Gravitational Astrophysics July 3, 2008 c = G = 1 h = 0 Outline (a) Galaxies as physical systems. (b) The Collisionless Boltzmann Equation. (c) N-body

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

MATHEMATICAL METHODS INTERPOLATION

MATHEMATICAL METHODS INTERPOLATION MATHEMATICAL METHODS INTERPOLATION I YEAR BTech By Mr Y Prabhaker Reddy Asst Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad SYLLABUS OF MATHEMATICAL METHODS (as per JNTU

More information

Structuring of the semi-major axis and eccentricity distributions of exoplanets

Structuring of the semi-major axis and eccentricity distributions of exoplanets Structuring of the semi-major axis and eccentricity distributions of exoplanets L. Nottale 1, P. Galopeau 2, D. Ceccolini 1, D. DaRocha 1, G. Schumacher 3 and N. Tran-Minh 4 1 LUTH, CNRS,Observatoire de

More information

Post-Newtonian N-body Codes. Sverre Aarseth. Institute of Astronomy, Cambridge

Post-Newtonian N-body Codes. Sverre Aarseth. Institute of Astronomy, Cambridge Post-Newtonian N-body Codes Sverre Aarseth Institute of Astronomy, Cambridge Introduction N-body tools Three-body formulation PN implementations Numerical examples Discussion Hermite Integration Taylor

More information

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves Chapter 23: Dark Matter, Dark Energy & Future of the Universe Galactic rotation curves Orbital speed as a function of distance from the center: rotation_of_spiral_galaxy.htm Use Kepler s Third Law to get

More information

THIRD-BODY PERTURBATION USING A SINGLE AVERAGED MODEL

THIRD-BODY PERTURBATION USING A SINGLE AVERAGED MODEL INPE-1183-PRE/67 THIRD-BODY PERTURBATION USING A SINGLE AVERAGED MODEL Carlos Renato Huaura Solórzano Antonio Fernando Bertachini de Almeida Prado ADVANCES IN SPACE DYNAMICS : CELESTIAL MECHANICS AND ASTRONAUTICS,

More information

GraspIT Questions AQA GCSE Physics Space physics

GraspIT Questions AQA GCSE Physics Space physics A. Solar system: stability of orbital motions; satellites (physics only) 1. Put these astronomical objects in order of size from largest to smallest. (3) Fill in the boxes in the correct order. the Moon

More information

The Formation of the Solar System

The Formation of the Solar System The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting

More information

Three objects; 2+1 problem

Three objects; 2+1 problem Three objects; 2+1 problem Having conquered the two-body problem, we now set our sights on more objects. In principle, we can treat the gravitational interactions of any number of objects by simply adding

More information

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) much in class, but read it there will probably be a question or a few on it. In following lecture outline, numbers

More information

Lecture V: The game-engine loop & Time Integration

Lecture V: The game-engine loop & Time Integration Lecture V: The game-engine loop & Time Integration The Basic Game-Engine Loop Previous state: " #, %(#) ( #, )(#) Forces -(#) Integrate velocities and positions Resolve Interpenetrations Per-body change

More information

Runga-Kutta Schemes. Exact evolution over a small time step: Expand both sides in a small time increment: d(δt) F (x(t + δt),t+ δt) Ft + FF x ( t)

Runga-Kutta Schemes. Exact evolution over a small time step: Expand both sides in a small time increment: d(δt) F (x(t + δt),t+ δt) Ft + FF x ( t) Runga-Kutta Schemes Exact evolution over a small time step: x(t + t) =x(t)+ t 0 d(δt) F (x(t + δt),t+ δt) Expand both sides in a small time increment: x(t + t) =x(t)+x (t) t + 1 2 x (t)( t) 2 + 1 6 x (t)+

More information

CELESTIAL MECHANICS. Part I. Mathematical Preambles

CELESTIAL MECHANICS. Part I. Mathematical Preambles Chapter 1. Numerical Methods CELESTIAL MECHANICS Part I. Mathematical Preambles 1.1 Introduction 1.2 Numerical Integration 1.3 Quadratic Equations 1.4 The Solution of f(x) = 0 1.5 The Solution of Polynomial

More information

Comparison of Numerical Ordinary Differential Equation Solvers

Comparison of Numerical Ordinary Differential Equation Solvers Adrienne Criss Due: October, 008 Comparison of Numerical Ordinary Differential Equation Solvers Many interesting physical systems can be modeled by ordinary differential equations (ODEs). Since it is always

More information

Michela Mapelli. N-body techniques for astrophysics: Lecture 1 General Introduction

Michela Mapelli. N-body techniques for astrophysics: Lecture 1 General Introduction Michela Mapelli N-body techniques for astrophysics: Lecture 1 General Introduction PhD School in Astrophysics, University of Padova November 3-12, 2015 A few words about the course: This course is NOT:

More information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information Contents Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information xi xiv xvii xix 1 Preliminaries 1 1.0 Introduction.............................

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

GraspIT Questions AQA GCSE Physics Space physics

GraspIT Questions AQA GCSE Physics Space physics A. Solar system: stability of orbital motions; satellites (physics only) 1. Put these astronomical objects in order of size from largest to smallest. (3) Fill in the boxes in the correct order. the Moon

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

How migrating geese and falling pens inspire planet formation

How migrating geese and falling pens inspire planet formation How migrating geese and falling pens inspire planet Common Seminar, Department of Astronomy and Theoretical Physics Lund University, November 2010 About me Biträdande universitetslektor (associate senior

More information

Numerical Methods with MATLAB

Numerical Methods with MATLAB Numerical Methods with MATLAB A Resource for Scientists and Engineers G. J. BÖRSE Lehigh University PWS Publishing Company I(T)P AN!NTERNATIONAL THOMSON PUBLISHING COMPANY Boston Albany Bonn Cincinnati

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Where do objects get their energy?

Where do objects get their energy? Where do objects get their energy? Energy makes matter move. Energy is always 'conserved' Conservation of Energy Energy can neither be created nor destroyed The total energy content of the universe was

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information

Symplectic Correctors for Canonical Heliocentric N-Body Maps

Symplectic Correctors for Canonical Heliocentric N-Body Maps Symplectic Correctors for Canonical Heliocentric N-Body Maps J. Wisdom Massachusetts Institute of Technology, Cambridge, MA 02139 wisdom@poincare.mit.edu Received ; accepted 2 ABSTRACT Symplectic correctors

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 13. Midterm review February 4th, 2008 1. Astronomy

More information

SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES

SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES Q1. The figure below shows what scientists over 1000 years ago thought the solar system was like. Give one way that the historical model of the solar

More information

Arvind Borde / AST 10, Week 2: Our Home: The Milky Way

Arvind Borde / AST 10, Week 2: Our Home: The Milky Way Arvind Borde / AST 10, Week 2: Our Home: The Milky Way The Milky Way is our home galaxy. It s a collection of stars, gas and dust. (1) What holds it together? Its self-gravity. (2) What did the last slide

More information

A supernova is the explosion of a star. It is the largest explosion that takes place in space.

A supernova is the explosion of a star. It is the largest explosion that takes place in space. What is a supernova? By NASA, adapted by Newsela staff on 03.28.17 Word Count 974 Level 1110L TOP: A vivid view of a supernova remnant captured by NASA's Spitzer and Chandra space observatories and the

More information

Chapter One. Introduction

Chapter One. Introduction Chapter One Introduction A system is a combination of components or parts that is perceived as a single entity. The parts making up the system may be clearly or vaguely defined. These parts are related

More information

The Dynamical Evolution of Exoplanet Systems

The Dynamical Evolution of Exoplanet Systems The Dynamical Evolution of Exoplanet Systems Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund Observatory Collaborators: Clément Bonnerot, John Chambers, Ross Church, Francesca de

More information

Lecture Tutorial: Angular Momentum and Kepler s Second Law

Lecture Tutorial: Angular Momentum and Kepler s Second Law 2017 Eclipse: Research-Based Teaching Resources Lecture Tutorial: Angular Momentum and Kepler s Second Law Description: This guided inquiry paper-and-pencil activity helps students to describe angular

More information

The Modern Origins Story: From the Big Bang to Habitable Planets

The Modern Origins Story: From the Big Bang to Habitable Planets The Modern Origins Story: From the Big Bang to Habitable Planets Eliot Quataert (UC Berkeley) The Solar System Age 4.5Gyrs 8 (9? 10? 12?) planets orbiting the sun all in roughly the same plane Lots of

More information

ALGORITHMIC REGULARIZATION CHAIN (state of the art 2010) Seppo Mikkola

ALGORITHMIC REGULARIZATION CHAIN (state of the art 2010) Seppo Mikkola ALGORITHMIC REGULARIZATION CHAIN (state of the art 2010) Seppo Mikkola University of Turku, Finland Department of Physics and Astronomy Tuorla Observatory e-mail: Seppo.Mikkola@utu.fi H = T U = k p 2 k

More information

1 The Solar System. 1.1 a journey into our galaxy

1 The Solar System. 1.1 a journey into our galaxy 1 The Solar System Though Pluto, and the far-flung depths of the Solar System, is the focus of this book, it is essential that Pluto is placed in the context of the planetary system that it inhabits our

More information

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question Key Concepts: Lecture 21: Measuring the properties of stars (cont.) The Hertzsprung-Russell (HR) Diagram (L versus T) The Hertzprung-Russell Diagram The Stefan-Boltzmann Law: flux emitted by a black body

More information

Extrasolar Planets: Molecules and Disks

Extrasolar Planets: Molecules and Disks Extrasolar Planets: Molecules and Disks The basic question: Is our solar system typical of what we should affect around other stars (inhabited or not), or is it an unusual freak? One approach is to look

More information

ASTR 200 : Lecture 21. Stellar mass Black Holes

ASTR 200 : Lecture 21. Stellar mass Black Holes 1 ASTR 200 : Lecture 21 Stellar mass Black Holes High-mass core collapse Just as there is an upper limit to the mass of a white dwarf (the Chandrasekhar limit), there is an upper limit to the mass of a

More information

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy Chariho Regional School District - Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

Lecture 3. Basic Physics of Astrophysics - Force and Energy.

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Lecture 3 Basic Physics of Astrophysics - Force and Energy http://apod.nasa.gov/apod/ Tue Wed Thur Thur ISB 165 Wed 5 Thur 4 Momentum (generally m F = Forces is the product of mass and velocity - a vector

More information

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA 1 BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA This part of the Basic Exam covers topics at the undergraduate level, most of which might be encountered in courses here such as Math 233, 235, 425, 523, 545.

More information

Exact and Approximate Numbers:

Exact and Approximate Numbers: Eact and Approimate Numbers: The numbers that arise in technical applications are better described as eact numbers because there is not the sort of uncertainty in their values that was described above.

More information

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat.

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat. Numerical Methods for Engineers An Introduction with and Scientists Applications using MATLAB Third Edition Amos Gilat Vish- Subramaniam Department of Mechanical Engineering The Ohio State University Wiley

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.

More information

Third Edition. William H. Press. Raymer Chair in Computer Sciences and Integrative Biology The University of Texas at Austin. Saul A.

Third Edition. William H. Press. Raymer Chair in Computer Sciences and Integrative Biology The University of Texas at Austin. Saul A. NUMERICAL RECIPES The Art of Scientific Computing Third Edition William H. Press Raymer Chair in Computer Sciences and Integrative Biology The University of Texas at Austin Saul A. Teukolsky Hans A. Bethe

More information

4.3 Conservation Laws in Astronomy

4.3 Conservation Laws in Astronomy 4.3 Conservation Laws in Astronomy Our goals for learning: Why do objects move at constant velocity if no force acts on them? What keeps a planet rotating and orbiting the Sun? Where do objects get their

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

A study upon Eris. I. Describing and characterizing the orbit of Eris around the Sun. I. Breda 1

A study upon Eris. I. Describing and characterizing the orbit of Eris around the Sun. I. Breda 1 Astronomy & Astrophysics manuscript no. Eris c ESO 2013 March 27, 2013 A study upon Eris I. Describing and characterizing the orbit of Eris around the Sun I. Breda 1 Faculty of Sciences (FCUP), University

More information

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Peter Young (Dated: April 14, 2009) I. INTRODUCTION One frequently obtains detailed dynamical

More information

Chapter 14 Satellite Motion

Chapter 14 Satellite Motion 1 Academic Physics Mechanics Chapter 14 Satellite Motion The Mechanical Universe Kepler's Three Laws (Episode 21) The Kepler Problem (Episode 22) Energy and Eccentricity (Episode 23) Navigating in Space

More information

Introduction to the Universe

Introduction to the Universe What makes up the Universe? Introduction to the Universe Book page 642-644 Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy)

More information

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary Earth Space Systems Semester 1 Exam Astronomy Vocabulary Astronomical Unit- Aurora- Big Bang- Black Hole- 1AU is the average distance between the Earth and the Sun (93 million miles). This unit of measurement

More information

Introduction to the Universe. What makes up the Universe?

Introduction to the Universe. What makes up the Universe? Introduction to the Universe What makes up the Universe? Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy) - understanding

More information

Gravitation. Kepler s Law. BSc I SEM II (UNIT I)

Gravitation. Kepler s Law. BSc I SEM II (UNIT I) Gravitation Kepler s Law BSc I SEM II (UNIT I) P a g e 2 Contents 1) Newton s Law of Gravitation 3 Vector representation of Newton s Law of Gravitation 3 Characteristics of Newton s Law of Gravitation

More information

Stability of Lagrange Points: James Webb Space Telescope

Stability of Lagrange Points: James Webb Space Telescope Stability of Lagrange Points: James Webb Space Telescope Pearson, Kyle Alexander; Hanson, Jake; Cacolici, Gianna Nicole; Lejoly, Cassandra; Reynolds, Katherine ABSTRACT We present a detailed procedure

More information

Unit 3 Lesson 2 Gravity and the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 2 Gravity and the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.4 Explain how hypotheses are valuable if they lead to further investigations, even if they turn out not to be supported by the data. SC.8.N.1.5 Analyze the methods used to develop

More information

Gravity and the Orbits of Planets

Gravity and the Orbits of Planets Gravity and the Orbits of Planets 1. Gravity Galileo Newton Earth s Gravity Mass v. Weight Einstein and General Relativity Round and irregular shaped objects 2. Orbits and Kepler s Laws ESO Galileo, Gravity,

More information