STATISTICS OF CLIMATE EXTREMES// TRENDS IN CLIMATE DATASETS

Size: px
Start display at page:

Download "STATISTICS OF CLIMATE EXTREMES// TRENDS IN CLIMATE DATASETS"

Transcription

1 STATISTICS OF CLIMATE EXTREMES// TRENDS IN CLIMATE DATASETS Richard L Smith Departments of STOR and Biostatistics, University of North Carolina at Chapel Hill and Statistical and Applied Mathematical Sciences Institute (SAMSI) SAMSI Graduate Class November 14,

2 EXAMINE SST AS AN ALTERNATIVE COVARIATE Define Gulf Coast Region and 80 neighboring precipitation stations (Houston Hobby in black) Calculate monthly mean SST for Gulf Coast Region 2

3 3

4 ESTIMATES FOR HOUSTON HOBBY AIRPORT 4

5 1. Use 7-day annual maximum precipitation (also tried 3, 4, 5, 6, 8 days: similar results) 2. Fit linear trend in GEV location parameter: p Examine all possible consecutive sequences of monthly SST lags from 0 12 months (91 possible covariates) 4. Best SST model uses means of lags 7, 8, 9, p , but this raises an obvious selection bias issue 5. I could not come up with any argument why the SST analysis was better than the linear trend analysis after taking account of the selection bias issue 6. Therefore, try a combined analysis over many stations 5

6 Here is a table of the 10 best models ordered by the deviance-based P-value, with the SST lags that are included in each. Lags P-value 7,8, , ,8,9, ,6,7,8,9, ,7,8,9, ,7,8, ,6,7,8, ,5,6,7,8,9, ,4,5,6,7,8,9, Conclusion: Lags 6 10 all feature in many models Difficult to quantify the effect of selection bias Benjamini-Hochberg test for the False Discovery Rate not valid because the tests are not independent Even so, 10 P-values that are less than (out of 91 models tested) seems to be unlikely to occur by chance 6

7 COMBINED ESTIMATES FOR 80 GULF COAST STATIONS 7

8 1. Initial analysis not promising: many stations showed no statisticially significant trend 2. Definition of SST variable: Settled on averages of lags 7 12 months 3. Based on 7-day maxima, 16 (out of 80) have a statistically significant linear trend at p = 0.05, 13 have a statistically significant SST trend at p = Must be wary of selection bias issues, but these are still greater numbers than could be explained just by chance 5. Therefore, proceed to a full spatial analysis 8

9 Spatial Analysis (Similar to: D.M. Holland, V. De Oliveira, L.H. Cox and R.L. Smith (2000), Estimation of regional trends in sulfur dioxide over the eastern United States. Environmetrics 11, ) Let Z be full spatial field of the linear trend (Z(s) is true trend at location s). Let Ẑ be estimated spatial field at stations s 1,..., s n. Model: Ẑ Z N (Z, W), Z N (0, V(θ)) where W is assumed known and V(θ) is the covariance matrix of some spatial field I use exponential covariance matrix where θ is range. So Ẑ N (0, W + V(θ)) and Z may be reconstructed from Ẑ by kriging (Estimation of W uses bootstrapping) 9

10 I estimated this model using 1. Ẑ is vector of linear trend estimates at each station 2. Ẑ is vector of SST trend estimates at each station 3. Also considered adjusted analysis: put in both linear trend and residuals from SSTs regressed on linear trend (two covariates in same model, kriging done separately for each) 10

11 RESULTS 11

12 Estimates of Overall Trend Parameter Model Estimate Standard Error t Statistics P-value SST alone SST adjusted Linear alone Linear adjusted

13 Image Plot Based on SST Trends latpred lonpred 13

14 Image Plot Based on Adjusted SST Trends latpred lonpred 14

15 Image Plot Based on Linear Trends latpred lonpred 15

16 Image Plot Based on Adjusted Linear Trends latpred lonpred 16

17 Noboot option Instead of using the bootstrap to estimate the matrix W, we simply assumed W was diagonal, with diagonal entries corresponding to the squares of the standard errors in the GEV fitting procedure (in other words: estimates are independent from station to station) The spatial model fitting procedure was repeated, and the new images plotted. The results were very little different. 17

18 Estimates of Overall Trend Parameter Model Estimate Standard Error t Statistics P-value SST alone SST adjusted Linear alone Linear adjusted

19 Image Plot Based on SST Trends (noboot) latpred lonpred 19

20 Image Plot Based on Adjusted SST Trends (noboot) latpred lonpred 20

21 Image Plot Based on Linear Trends (noboot) latpred lonpred 21

22 Image Plot Based on Adjusted Linear Trends (noboot) latpred lonpred 22

23 To do: 1. Rerun the bootstrap procedure to correct for a possible error in constructing the bootstrap samples (discussed during the talk) 2. Interpolate α, σ, ξ in same way and hence construct estimates of threshold exceedance probabilities at different locations under the spatially interpolated model 3. Remark: Direct interpolation of threshold probabilities from site to site doesn t work; estimates are too variable for the spatial model to fit 23

24 CONCLUSIONS 1. Adjusted model shows a clear separation in contributions of the linear and SST components 2. SST component seems particularly concentrated on Houston, whether adjusted or not 3. Linear trend shows a less definitive pattern 4. Future work: (a) Draw similar plots for estimated probabilities of a Harveylevel exceedance (b) Compare extreme value probabilities for different dates (e.g v. 1950) (c) Integrate with CMIP5 model projections for future extreme probabilities (d) POT alternative analysis? 24

25 TIME SERIES ANALYSIS FOR CLIMATE DATA I Overview II The post-1998 hiatus in temperature trends III NOAA s record streak IV Trends or nonstationarity? 25

26 TIME SERIES ANALYSIS FOR CLIMATE DATA I Overview II The post-1998 hiatus in temperature trends III NOAA s record streak IV Trends or nonstationarity? 26

27 HadCRUT4 gl Global Temperatures Global Temperature Anomaly Slope 0.74 degrees/century OLS Standard error Year 27

28 What s wrong with that picture? We fitted a linear trend to data which are obviously autocorrelated OLS estimate 0.74 deg C per century, standard error So it looks statistically significant, but question how standard error is affected by the autocorrelation First and simplest correction to this: assume an AR(1) time series model for the residual So I calculated the residuals from the linear trend and fitted an AR(1) model, X n = φ 1 X n 1 + ɛ n, estimated ˆφ 1 = 0.62 with standard error With this model, the standard error of the OLS linear trend becomes 0.057, still making the trend very highly significant But is this an adequate model? 28

29 ACF of Residuals from Linear Trend ACF Sample ACF AR(1) Lag 29

30 Fit AR(p) of various orders p, calculate log likelihood, AIC, and the standard error of the linear trend. Model X n = p i=1 φ ix n i + ɛ n, ɛ n N[0, σ 2 ɛ ] (IID) AR order LogLik AIC Trend SE

31 Extend the calculation to ARMA(p,q) for various p and q: model is X n p i=1 φ ix n i = ɛ n + q j=1 θ jɛ n j, ɛ n N[0, σɛ 2 ] (IID) AR order MA order SE of trend based on ARMA(1,4) model: deg C per century 31

32 ACF of Residuals from Linear Trend ACF Sample ACF AR(6) ARMA(1,4) Lag 32

33 Calculating the standard error of the trend Estimate ˆβ = n i=1 w i X i, variance σɛ 2 n n i=1 j=1 w i w j ρ i j where ρ is the autocorrelation function of the fitted ARMA model Alternative formula (Bloomfield and Nychka, 1992) Variance(ˆβ) = 2 1/2 0 w(f)s(f)df where s(f) is the spectral density of the autocovariance function and w(f) = is the transfer function n j=1 w n e 2πijf 2 33

34 Example based on Barnes and Barnes (Journal of Climate, 2015) They compared the OLS estimator of a linear regression with the epoch estimator computed by taking the difference between the first M and last M values of a series of length N, for some M < N 2. The epoch estimator is then rescaled so that it is in the same units as the classical linear regression estimator. Question: Which performs better under various time series assumptions on the underlying series? The following plot shows the transfer functions for N = 100, M = 33, epoch estimator in red, OLS in blue. Generally the OLS estimator is better, but not if the series has a spectral peak near

35 Transfer Function Times Ratio of Mean Red and Blue Curves is Frequency 35

36 What s better than the OLS linear trend estimator? Use generalized least squares (GLS) y n = β 0 + β 1 x n + u n, u n ARMA(p, q) Repeat same process with AIC: ARMA(1,4) again best ˆβ = 0.73, standard error

37 Calculations in R ip=4 iq=1 ts1=arima(y2,order=c(ip,0,iq),xreg=1:ny,method= ML ) Coefficients: ar1 ar2 ar3 ar4 ma1 intercept 1:ny s.e sigma^2 estimated as : log likelihood = 106.8, aic = acf1=armaacf(ar=ts1$coef[1:ip],ma=ts1$coef[ip+1:iq],lag.max=150) 37

38 TIME SERIES ANALYSIS FOR CLIMATE DATA I Overview II The post-1998 hiatus in temperature trends III NOAA s record streak IV Trends or nonstationarity? 38

39 HadCRUT4 gl Temperature Anomalies Global Temperature Anomaly Year 39

40 HadCRUT4 gl Temperature Anomalies Global Temperature Anomaly Year 40

41 NOAA Temperature Anomalies Global Temperature Anomaly Year 41

42 NOAA Temperature Anomalies Global Temperature Anomaly Year 42

43 GISS (NASA) Temperature Anomalies Global Temperature Anomaly Year 43

44 GISS (NASA) Temperature Anomalies Global Temperature Anomaly Year 44

45 Berkeley Earth Temperature Anomalies Global Temperature Anomaly Year 45

46 Berkeley Earth Temperature Anomalies Global Temperature Anomaly Year 46

47 Cowtan Way Temperature Anomalies Global Temperature Anomaly Year 47

48 Cowtan Way Temperature Anomalies Global Temperature Anomaly Year 48

49 Statistical Models Let t 1i : ith year of series y i : temperature anomaly in year t i t 2i = (t 1i 1998) + y i = β 0 + β 1 t 1i + β 2 t 2i + u i Simple linear regression (OLS): u i N[0, σ 2 ] (IID) Time series regression (GLS): u i φ 1 u i 1... φ p u i p = ɛ i + θ 1 ɛ i θ q ɛ i q, ɛ i N[0, σ 2 ] (IID) Fit using arima function in R 49

50 HadCRUT4 gl Temperature Anomalies OLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.85 deg/cen (SE 0.50 deg/cen) Year 50

51 HadCRUT4 gl Temperature Anomalies GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 1.16 deg/cen (SE 0.4 deg/cen) Year 51

52 NOAA Temperature Anomalies GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.21 deg/cen (SE 0.62 deg/cen) Year 52

53 GISS (NASA) Temperature Anomalies GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.29 deg/cen (SE 0.54 deg/cen) Year 53

54 Berkeley Earth Temperature Anomalies GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.74 deg/cen (SE 0.6 deg/cen) Year 54

55 Cowtan Way Temperature Anomalies GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.93 deg/cen (SE 1.24 deg/cen) Year 55

56 Adjustment for the El Niño Effect El Niño is a weather effect caused by circulation changes in the Pacific Ocean 1998 was one of the strongest El Niño years in history A common measure of El Niño is the Southern Oscillation Index (SOI), computed monthly Here use SOI with a seven-month lag as an additional covariate in the analysis 56

57 HadCRUT4 gl With SOI Signal Removed GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.81 deg/cen (SE 0.75 deg/cen) Year 57

58 NOAA With SOI Signal Removed GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.18 deg/cen (SE 0.61 deg/cen) Year 58

59 GISS (NASA) With SOI Signal Removed GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.24 deg/cen (SE 0.54 deg/cen) Year 59

60 Berkeley Earth With SOI Signal Removed GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.69 deg/cen (SE 0.58 deg/cen) Year 60

61 Cowtan Way With SOI Signal Removed GLS Fit, Changepoint at 1998 Global Temperature Anomaly Change of slope 0.99 deg/cen (SE 0.79 deg/cen) Year 61

62 Selecting The Changepoint If we were to select the changepoint through some form of automated statistical changepoint analysis, where would we put it? 62

63 HadCRUT4 gl Change Point Posterior Probability Posterior Probability of Changepoint Year 63

64 Conclusion from Temperature Trend Analysis No evidence of decrease post-1998 if anything, the trend increases after this time After adjusting for El Niño, even stronger evidence for a continuously increasing trend If we were to select the changepoint instead of fixing it at 1998, we would choose some year in the 1970s Thus: No statistical evidence to support the hiatus hypothesis 64

65 TIME SERIES ANALYSIS FOR CLIMATE DATA I Overview II The post-1998 hiatus in temperature trends III NOAA s record streak IV Trends or nonstationarity? 65

66 66

67 Continental US monthly temperatures, Jan 1895 Oct For each month between June 2011 and Sep 2012, the monthly temperature was in the top tercile of all observations for that month up to that point in the time series. Attention was first drawn to this in June 2012, at which point the series of top tercile events was 13 months long, leading to a naïve calculation that the probability of that event was (1/3) 13 = Eventually, the streak extended to 16 months, but ended at that point, as the temperature for Oct 2012 was not in the top tercile. In this study, we estimate the probability of either a 13-month or a 16-month streak of top-tercile events, under various assumptions about the monthly temperature time series. 67

68 68

69 69

70 70

71 71

72 Method Two issues with NOAA analysis: Neglects autocorrelation Ignores selection effect Solutions: Fit time series model ARMA or long-range dependence Use simulation to determine the probability distribution of the longest streak in 117 years Some of the issues: Selection of ARMA model AR(1) performs poorly Variances differ by month must take that into account Choices of estimation methods, e.g. MLE or Bayesian Bayesian methods allow one to take account of parameter estimation uncertainty 72

73 73

74 74

75 Conclusions It s important to take account of monthly varying standard deviations as well as means. Estimation under a high-order ARMA model or fractional differencing lead to very similar results, but don t use AR(1). In a model with no trend, the probability that there is a sequence of length 16 consecutive top-tercile observations somewhere after year 30 in the 117-year time series is of the order of , depending on the exact model being fitted. With a linear trend, these probability rise to something over.05. Include a nonlinear trend, and the probabilities are even higher in other words, not surprising at all. Overall, the results may be taken as supporting the overall anthropogenic influence on temperature, but not to a stronger extent than other methods of analysis. 75

76 TIME SERIES ANALYSIS FOR CLIMATE DATA I Overview II The post-1998 hiatus in temperature trends III NOAA s record streak IV Trends or nonstationarity? 76

77 A Parliamentary Question is a device where any member of the U.K. Parliament can ask a question of the Government on any topic, and is entitled to expect a full answer. 77

78 April 22,

79 79

80 Essence of the Met Office Response Acknowledged that under certain circumstances an ARIMA(3,1,0) without drift can fit the data better than an AR(1) model with drift, as measured by likelihood The result depends on the start and finish date of the series Provides various reasons why this should not be interpreted as an argument against climate change Still, it didn t seem to me (RLS) to settle the issue beyond doubt 80

81 There is a tradition of this kind of research going back some time 81

82 82

83 Summary So Far Integrated or unit root models (e.g. ARIMA(p, d, q) with d = 1) have been proposed for climate models and there is some statistical support for them If these models are accepted, the evidence for a linear trend is not clear-cut Note that we are not talking about fractionally integrated models (0 < d < 2 1 ) for which there is by now a substantial tradition. These models have slowly decaying autocorrelations but are still stationary Integrated models are not physically realistic but this has not stopped people advocating them I see the need for a more definitive statistical rebuttal 83

84 HadCRUT4 Global Series, Model I : y t y t 1 = ARMA(p, q) (mean 0) Model II : y t = Linear Trend + ARMA(p, q) Model III : y t y t 1 = Nonlinear Trend + ARMA(p, q) Model IV : y t = Nonlinear Trend + ARMA(p, q) Use AICC as measure of fit 84

85 Integrated Time Series, No Trend p q NA

86 Stationary Time Series, Linear Trend p q NA

87 Integrated Time Series, Nonlinear Trend p q NA

88 Stationary Time Series, Nonlinear Trend p q NA

89 Integrated Mean 0 Stationary Linear Trend Series Series Year Year Integrated Nonlinear Trend Stationary Nonlinear Trend Series Series Year Year Four Time Series Models with Fitted Trends 89

90 Integrated Mean 0 Stationary Linear Trend Residual Residual Year Year Integrated Nonlinear Trend Stationary Nonlinear Trend Residual Residual Year Year Residuals From Four Time Series Models 90

91 Integrated Mean 0 Stationary Linear Trend Residual Residual Year Year Integrated Nonlinear Trend Stationary Nonlinear Trend Residual Residual Year Year Residuals From Four Time Series Models 91

92 Conclusions If we restrict ourselves to linear trends, there is not a clearcut preference between integrated time series models without a trend and stationary models with a trend However, if we extend the analysis to include nonlinear trends, there is a very clear preference that the residuals are stationary, not integrated Possible extensions: Add fractionally integrated models to the comparison Bring in additional covariates, e.g. circulation indices and external forcing factors Consider using a nonlinear trend derived from a climate model. That would make clear the connection with detection and attribution methods which are the preferred tool for attributing climate change used by climatologists. 92

STATISTICS FOR CLIMATE SCIENCE

STATISTICS FOR CLIMATE SCIENCE STATISTICS FOR CLIMATE SCIENCE Richard L Smith University of North Carolina and SAMSI VI-MSS Workshop on Environmental Statistics Kolkata, March 2-4, 2015 www.unc.edu/~rls/kolkata.html 1 1 In Memoriam

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

CLIMATE EXTREMES AND GLOBAL WARMING: A STATISTICIAN S PERSPECTIVE

CLIMATE EXTREMES AND GLOBAL WARMING: A STATISTICIAN S PERSPECTIVE CLIMATE EXTREMES AND GLOBAL WARMING: A STATISTICIAN S PERSPECTIVE Richard L. Smith Department of Statistics and Operations Research University of North Carolina, Chapel Hill rls@email.unc.edu Statistics

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Time Series 4. Robert Almgren. Oct. 5, 2009

Time Series 4. Robert Almgren. Oct. 5, 2009 Time Series 4 Robert Almgren Oct. 5, 2009 1 Nonstationarity How should you model a process that has drift? ARMA models are intrinsically stationary, that is, they are mean-reverting: when the value of

More information

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu AMS Committee on Probability and Statistics

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Classical Decomposition Model Revisited: I

Classical Decomposition Model Revisited: I Classical Decomposition Model Revisited: I recall classical decomposition model for time series Y t, namely, Y t = m t + s t + W t, where m t is trend; s t is periodic with known period s (i.e., s t s

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated Spatial Trends and Spatial Extremes in South Korean Ozone Seokhoon Yun University of Suwon, Department of Applied Statistics Suwon, Kyonggi-do 445-74 South Korea syun@mail.suwon.ac.kr Richard L. Smith

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2. Mean: where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore,

4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2. Mean: where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore, 61 4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2 Mean: y t = µ + θ(l)ɛ t, where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore, E(y t ) = µ + θ(l)e(ɛ t ) = µ 62 Example: MA(q) Model: y t = ɛ t + θ 1 ɛ

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

Some general observations.

Some general observations. Modeling and analyzing data from computer experiments. Some general observations. 1. For simplicity, I assume that all factors (inputs) x1, x2,, xd are quantitative. 2. Because the code always produces

More information

A STATISTICAL APPROACH TO OPERATIONAL ATTRIBUTION

A STATISTICAL APPROACH TO OPERATIONAL ATTRIBUTION A STATISTICAL APPROACH TO OPERATIONAL ATTRIBUTION Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260, USA rls@email.unc.edu IDAG Meeting

More information

Overview of Extreme Value Analysis (EVA)

Overview of Extreme Value Analysis (EVA) Overview of Extreme Value Analysis (EVA) Brian Reich North Carolina State University July 26, 2016 Rossbypalooza Chicago, IL Brian Reich Overview of Extreme Value Analysis (EVA) 1 / 24 Importance of extremes

More information

A Data-Driven Model for Software Reliability Prediction

A Data-Driven Model for Software Reliability Prediction A Data-Driven Model for Software Reliability Prediction Author: Jung-Hua Lo IEEE International Conference on Granular Computing (2012) Young Taek Kim KAIST SE Lab. 9/4/2013 Contents Introduction Background

More information

Regression with correlation for the Sales Data

Regression with correlation for the Sales Data Regression with correlation for the Sales Data Scatter with Loess Curve Time Series Plot Sales 30 35 40 45 Sales 30 35 40 45 0 10 20 30 40 50 Week 0 10 20 30 40 50 Week Sales Data What is our goal with

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

SOME BASICS OF TIME-SERIES ANALYSIS

SOME BASICS OF TIME-SERIES ANALYSIS SOME BASICS OF TIME-SERIES ANALYSIS John E. Floyd University of Toronto December 8, 26 An excellent place to learn about time series analysis is from Walter Enders textbook. For a basic understanding of

More information

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION ARIMA MODELS: IDENTIFICATION A. Autocorrelations and Partial Autocorrelations 1. Summary of What We Know So Far: a) Series y t is to be modeled by Box-Jenkins methods. The first step was to convert y t

More information

Uncertainty in Ranking the Hottest Years of U.S. Surface Temperatures

Uncertainty in Ranking the Hottest Years of U.S. Surface Temperatures 1SEPTEMBER 2013 G U T T O R P A N D K I M 6323 Uncertainty in Ranking the Hottest Years of U.S. Surface Temperatures PETER GUTTORP University of Washington, Seattle, Washington, and Norwegian Computing

More information

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Forecasting 1. Let X and Y be two random variables such that E(X 2 ) < and E(Y 2 )

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Modeling and forecasting global mean temperature time series

Modeling and forecasting global mean temperature time series Modeling and forecasting global mean temperature time series April 22, 2018 Abstract: An ARIMA time series model was developed to analyze the yearly records of the change in global annual mean surface

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS Eric Gilleland Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Supported

More information

HIERARCHICAL MODELS IN EXTREME VALUE THEORY

HIERARCHICAL MODELS IN EXTREME VALUE THEORY HIERARCHICAL MODELS IN EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research, University of North Carolina, Chapel Hill and Statistical and Applied Mathematical Sciences

More information

INFLUENCE OF CLIMATE CHANGE ON EXTREME WEATHER EVENTS

INFLUENCE OF CLIMATE CHANGE ON EXTREME WEATHER EVENTS INFLUENCE OF CLIMATE CHANGE ON EXTREME WEATHER EVENTS Richard L Smith University of North Carolina and SAMSI (Joint with Michael Wehner, Lawrence Berkeley Lab) VI-MSS Workshop on Environmental Statistics

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

5 Autoregressive-Moving-Average Modeling

5 Autoregressive-Moving-Average Modeling 5 Autoregressive-Moving-Average Modeling 5. Purpose. Autoregressive-moving-average (ARMA models are mathematical models of the persistence, or autocorrelation, in a time series. ARMA models are widely

More information

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

STOR 356: Summary Course Notes Part III

STOR 356: Summary Course Notes Part III STOR 356: Summary Course Notes Part III Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu April 23, 2008 1 ESTIMATION

More information

THE ROLE OF OCEAN STATE INDICES IN SEASONAL AND INTER-ANNUAL CLIMATE VARIABILITY OF THAILAND

THE ROLE OF OCEAN STATE INDICES IN SEASONAL AND INTER-ANNUAL CLIMATE VARIABILITY OF THAILAND THE ROLE OF OCEAN STATE INDICES IN SEASONAL AND INTER-ANNUAL CLIMATE VARIABILITY OF THAILAND Manfred Koch and Werapol Bejranonda Department of Geohydraulics and Engineering Hydrology, University of Kassel,

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Unit Root Tests ECON/FIN

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model INTRODUCTION TO TIME SERIES ANALYSIS The Simple Moving Average Model The Simple Moving Average Model The simple moving average (MA) model: More formally: where t is mean zero white noise (WN). Three parameters:

More information

Ch 5. Models for Nonstationary Time Series. Time Series Analysis

Ch 5. Models for Nonstationary Time Series. Time Series Analysis We have studied some deterministic and some stationary trend models. However, many time series data cannot be modeled in either way. Ex. The data set oil.price displays an increasing variation from the

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

Global Temperature Is Continuing to Rise: A Primer on Climate Baseline Instability. G. Bothun and S. Ostrander Dept of Physics, University of Oregon

Global Temperature Is Continuing to Rise: A Primer on Climate Baseline Instability. G. Bothun and S. Ostrander Dept of Physics, University of Oregon Global Temperature Is Continuing to Rise: A Primer on Climate Baseline Instability G. Bothun and S. Ostrander Dept of Physics, University of Oregon The issue of whether or not humans are inducing significant

More information

Modelling using ARMA processes

Modelling using ARMA processes Modelling using ARMA processes Step 1. ARMA model identification; Step 2. ARMA parameter estimation Step 3. ARMA model selection ; Step 4. ARMA model checking; Step 5. forecasting from ARMA models. 33

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

Chapter 5: Models for Nonstationary Time Series

Chapter 5: Models for Nonstationary Time Series Chapter 5: Models for Nonstationary Time Series Recall that any time series that is a stationary process has a constant mean function. So a process that has a mean function that varies over time must be

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz 1 Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE Rick Katz Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu Home

More information

The Identification of ARIMA Models

The Identification of ARIMA Models APPENDIX 4 The Identification of ARIMA Models As we have established in a previous lecture, there is a one-to-one correspondence between the parameters of an ARMA(p, q) model, including the variance of

More information

Short Questions (Do two out of three) 15 points each

Short Questions (Do two out of three) 15 points each Econometrics Short Questions Do two out of three) 5 points each ) Let y = Xβ + u and Z be a set of instruments for X When we estimate β with OLS we project y onto the space spanned by X along a path orthogonal

More information

Seasonal Climate Watch July to November 2018

Seasonal Climate Watch July to November 2018 Seasonal Climate Watch July to November 2018 Date issued: Jun 25, 2018 1. Overview The El Niño-Southern Oscillation (ENSO) is now in a neutral phase and is expected to rise towards an El Niño phase through

More information

Seasonal Climate Watch September 2018 to January 2019

Seasonal Climate Watch September 2018 to January 2019 Seasonal Climate Watch September 2018 to January 2019 Date issued: Aug 31, 2018 1. Overview The El Niño-Southern Oscillation (ENSO) is still in a neutral phase and is still expected to rise towards an

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

RISK AND EXTREMES: ASSESSING THE PROBABILITIES OF VERY RARE EVENTS

RISK AND EXTREMES: ASSESSING THE PROBABILITIES OF VERY RARE EVENTS RISK AND EXTREMES: ASSESSING THE PROBABILITIES OF VERY RARE EVENTS Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu

More information

Forecasting with ARIMA models This version: 14 January 2018

Forecasting with ARIMA models This version: 14 January 2018 Forecasting with ARIMA models This version: 14 January 2018 Notes for Intermediate Econometrics / Time Series Analysis and Forecasting Anthony Tay Elsewhere we showed that the optimal forecast for a mean

More information

1 Random walks and data

1 Random walks and data Inference, Models and Simulation for Complex Systems CSCI 7-1 Lecture 7 15 September 11 Prof. Aaron Clauset 1 Random walks and data Supposeyou have some time-series data x 1,x,x 3,...,x T and you want

More information

A pragmatic view of rates and clustering

A pragmatic view of rates and clustering North Building Atlantic the Chaucer Hurricane Brand A pragmatic view of rates and clustering North Atlantic Hurricane What we re going to talk about 1. Introduction; some assumptions and a basic view of

More information

Delayed Response of the Extratropical Northern Atmosphere to ENSO: A Revisit *

Delayed Response of the Extratropical Northern Atmosphere to ENSO: A Revisit * Delayed Response of the Extratropical Northern Atmosphere to ENSO: A Revisit * Ruping Mo Pacific Storm Prediction Centre, Environment Canada, Vancouver, BC, Canada Corresponding author s address: Ruping

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Model Selection for Geostatistical Models

Model Selection for Geostatistical Models Model Selection for Geostatistical Models Richard A. Davis Colorado State University http://www.stat.colostate.edu/~rdavis/lectures Joint work with: Jennifer A. Hoeting, Colorado State University Andrew

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38 ARIMA Models Jamie Monogan University of Georgia January 25, 2012 Jamie Monogan (UGA) ARIMA Models January 25, 2012 1 / 38 Objectives By the end of this meeting, participants should be able to: Describe

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information

Regression of Time Series

Regression of Time Series Mahlerʼs Guide to Regression of Time Series CAS Exam S prepared by Howard C. Mahler, FCAS Copyright 2016 by Howard C. Mahler. Study Aid 2016F-S-9Supplement Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Chapter 8: Model Diagnostics

Chapter 8: Model Diagnostics Chapter 8: Model Diagnostics Model diagnostics involve checking how well the model fits. If the model fits poorly, we consider changing the specification of the model. A major tool of model diagnostics

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

F9 F10: Autocorrelation

F9 F10: Autocorrelation F9 F10: Autocorrelation Feng Li Department of Statistics, Stockholm University Introduction In the classic regression model we assume cov(u i, u j x i, x k ) = E(u i, u j ) = 0 What if we break the assumption?

More information

data lam=36.9 lam=6.69 lam=4.18 lam=2.92 lam=2.21 time max wavelength modulus of max wavelength cycle

data lam=36.9 lam=6.69 lam=4.18 lam=2.92 lam=2.21 time max wavelength modulus of max wavelength cycle AUTOREGRESSIVE LINEAR MODELS AR(1) MODELS The zero-mean AR(1) model x t = x t,1 + t is a linear regression of the current value of the time series on the previous value. For > 0 it generates positively

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 8: Forecast Examples: Part 1

ECON/FIN 250: Forecasting in Finance and Economics: Section 8: Forecast Examples: Part 1 ECON/FIN 250: Forecasting in Finance and Economics: Section 8: Forecast Examples: Part 1 Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Forecast Examples: Part 1 ECON/FIN

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Climate Variability and El Niño

Climate Variability and El Niño Climate Variability and El Niño David F. Zierden Florida State Climatologist Center for Ocean Atmospheric Prediction Studies The Florida State University UF IFAS Extenstion IST January 17, 2017 The El

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics David B. University of South Carolina Department of Statistics What are Time Series Data? Time series data are collected sequentially over time. Some common examples include: 1. Meteorological data (temperatures,

More information

FIN822 project 2 Project 2 contains part I and part II. (Due on November 10, 2008)

FIN822 project 2 Project 2 contains part I and part II. (Due on November 10, 2008) FIN822 project 2 Project 2 contains part I and part II. (Due on November 10, 2008) Part I Logit Model in Bankruptcy Prediction You do not believe in Altman and you decide to estimate the bankruptcy prediction

More information

TIME SERIES DATA ANALYSIS USING EVIEWS

TIME SERIES DATA ANALYSIS USING EVIEWS TIME SERIES DATA ANALYSIS USING EVIEWS I Gusti Ngurah Agung Graduate School Of Management Faculty Of Economics University Of Indonesia Ph.D. in Biostatistics and MSc. in Mathematical Statistics from University

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

A brief introduction to mixed models

A brief introduction to mixed models A brief introduction to mixed models University of Gothenburg Gothenburg April 6, 2017 Outline An introduction to mixed models based on a few examples: Definition of standard mixed models. Parameter estimation.

More information

Extreme Rainfall in the Southeast U.S.

Extreme Rainfall in the Southeast U.S. Extreme Rainfall in the Southeast U.S. David F. Zierden Florida State Climatologist Center for Ocean Atmospheric Prediction Studies The Florida State University March 7, 2016 Causes of Extreme Rainfall

More information

MAT3379 (Winter 2016)

MAT3379 (Winter 2016) MAT3379 (Winter 2016) Assignment 4 - SOLUTIONS The following questions will be marked: 1a), 2, 4, 6, 7a Total number of points for Assignment 4: 20 Q1. (Theoretical Question, 2 points). Yule-Walker estimation

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Separation of a Signal of Interest from a Seasonal Effect in Geophysical Data: I. El Niño/La Niña Phenomenon

Separation of a Signal of Interest from a Seasonal Effect in Geophysical Data: I. El Niño/La Niña Phenomenon International Journal of Geosciences, 2011, 2, **-** Published Online November 2011 (http://www.scirp.org/journal/ijg) Separation of a Signal of Interest from a Seasonal Effect in Geophysical Data: I.

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Econometric Forecasting

Econometric Forecasting Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 1, 2014 Outline Introduction Model-free extrapolation Univariate time-series models Trend

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

The log transformation produces a time series whose variance can be treated as constant over time.

The log transformation produces a time series whose variance can be treated as constant over time. TAT 520 Homework 6 Fall 2017 Note: Problem 5 is mandatory for graduate students and extra credit for undergraduates. 1) The quarterly earnings per share for 1960-1980 are in the object in the TA package.

More information

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response 2013 ATLANTIC HURRICANE SEASON OUTLOOK June 2013 - RMS Cat Response Season Outlook At the start of the 2013 Atlantic hurricane season, which officially runs from June 1 to November 30, seasonal forecasts

More information