SECTION 2.6 THE SECOND ALTERNATIVE

Size: px
Start display at page:

Download "SECTION 2.6 THE SECOND ALTERNATIVE"

Transcription

1 54 SECTION 2.6 THE SECOND ALTERNATIVE We ow discuss the probles where the Secod Alterative holds. The suppositio is that there is a otrivial solutio for L(y) =, B (y) = B 2 (y) =. The Fredhol Theores assure us that, if f is cotiuous, the there is a solutio for L(y) = f, with B (y) = B 2 (y) = provided < f, w > = f(x) w(x) dx = for all solutios w of the equatio L*(w) =, B *(w) = B 2 *(w) =. As before, we will costruct Gree's fuctios G such that, i case f satisfies the above requireet, the y(x) = G(x,t) f(t) dt provides a solutio for L(y) = f. I this secod alterative, there ay be ay solutios for the equatio L(y) = f. Cosequetly, we expect there ay be ay Gree's fuctios. I the techique developed below, G(,t) is always i M= {y: B (y) = B (y) = }. This is ot ecessarily true for Gree's fuctios costructed by other ethods: see for exaple the costructio foud by Do Joes while a graduate research assistat at GEORGIA TECH ad give i a appedix. We agai divide the probles ito three cases accordig to the ature of the boudary coditios. We shall illustrate ethods of costructio. The first case to cosider is where the boudary coditios arise as iitial coditios. This case is ot pertiet for the iitial value proble has a uique solutio. Thus, case oe is always i the first alterative. EXAMPLE:(Secod Alterative,uixed, two poit boudary coditios) Suppose that L(y) = y'' + y' - 2y, B (y) = y() - y'(), ad B 2 (y) = y() - y'(). It is the purpose of this exaple to show that there is o fuctio G such that L(G(,t))(x) = δ(x,t). Note that L*(z) = z'' - z' -2z ad M* = {y: 2z() = z'(), 2z() = z'()}. Notrivial fuctios i the ullspace of {L*, B *, B 2 *} are ultiples of e 2t. Hece, we are i the secod alterative. The Fredhol Alterative theore suggests that there will be o fuctio G such that, if t is i (,), the the distributio equatio L(G(,t)) (x) = δ(x,t) holds uless δ(x,t) e 2t dt =.

2 55 Of course, the value of this itegral is ot zero. For this situatio, we ust odify the costructio of the Gree's fuctio. CONSTRUCTION OF G IN THE SECOND ALTERNATIVE, th ORDER Step () Fid the ullspace of { L*, M*} Step (2) Fid a orthooral basis for this ullspace. Call this basis v,v 2,...v, <. Step (3) Costruct u p such that L(u p ) = v p, p =, 2,... Step (4) Costruct G such that L(G(,t))(x) = δ(x,t) - v p (x)v p (t). p= THEOREM If < t <, the there is G(,t) such that L(G(,t))(x) = δ(x,t) - v p (x)v p (t). p= INDICATION OF PROOF. By the Fredhol Alterative Theores, there will be such a fuctio G provided = < δ(x,t) - v p (x)v p (t), w(t) > [δ(x,t) - v p (x)v p (t)] w(t) dt p= p= for all w i the ullspace of L*. This ca be verified by writig w i ters of this orthooral basis, w(x) = α p v p (x), ad evaluatig the dot p= product. HOW TO CONSTRUCT G SUCH THAT L(G(,t))(x) = δ(x,t) - v p (x)v p (t). p= First, fid liearly idepedet solutios {y p } p= of the hoogeeous equatio L(y) =. The, fid solutios {u p } p=, <, for the equatios

3 L(u p )(x) = v p (x). It is ot required that these solutios should satisfy ay special boudary coditios. The proble of fidig G is ow a proble of fidig costats {C p } p= ad {D p } p= such that p= C p y p (x) - v p (t) u p (x) if x < t p= G(x,t) =. D p y p (x) - v p (t) u p (x) if t < x p= p= where {C p } p= ad {D p } p= are deteried by these 2 equatios: 56 (a) B p (G(,t)) =, p=,2,..., (b) = P G(x,t)/ x p x=t+ - P G(x,t)/ x p x=t-, < p < -2, (c) /a (t) = - G(x,t)/ x - x=t+ - - G(x,t)/ x - x=t-. CONTINUATION OF THE PREVIOUS EXAMPLE Recall that L(y) = y'' +y' -2y, B (y) = y() - y'(), ad B 2 (y) = y() - y'(). Liearly idepedet solutios for L(y) = are e -2x ad e x. A oralized basis for the oe-diesioal ullspace of {L*,B *,B 2 *} is αe 2x where α is the positive uber give by α2 = / (e 2x ) 2 dx = 4/(e 4 -). A solutio u for the equatio y'' +y' -2y = αe 2x is u(x) = αe 2x /4. Now, G is give by: G(x,t) = Ae-2x +Be x - α 2 e 2(x+t) /4 if x < t Ce -2x +De x - α 2 e 2(x+t) /4 if t < x. The four costats - A,B,C, ad D - ca be solved by these four equatios: () = B (G(,t)) = G(,t) - G(x,t)/ x x= = 3A + α 2 e t /4 (2) = B2(G(,t)) = G(,t) - G(x,t)/ x x= = 3Ce -2 + a 2 e 2(+t) /4, (3) = G(t +,t) - G(t -,t) = (C-A)e -2t + (D-B)e t, ad (4) = G(x,t)/ x x=t+ - G(x,t)/ x x=t- = -2(C-A)e -2t + (D-B)e t. Upo solvig this syste of four equatios ad four ukows, a ifiity of solutios will be foud deteried by these three equatios: A = -α 2 e 2t /2, C = Ae 4, D-B = e -t /3. EXERCISE: FOR EACH OF THE FOLLOWING, GIVE L*,B *, B 2 *, ad G.

4 (a) L(y) = y'' +y' -2y, B (y) = y()-y'(),b 2 (y) = y() - y'(). (b) L(y) =4y'' - y, B (y) = y() - 2y'(), B 2 (y) = y() - 2y'(). (c) L(y) = y'' - 2y' - 3y, B (y) = 3y() - y'(), B 2 (y) = 3y() - y'(). 57 EXAMPLE(Secod Alterative, ixed, two poit boudary coditios.) Suppose that L(y) = y'', B (y) = y() + y(), B 2 (y) = y'() - y'(). The L*(z) = z'', B *(z) = z()- z(), B 2 *(z) = z'() + z'(). All solutios of {L,B, B 2 } are ultiples of 2x -. A otrivial solutio of [L*,B *, B 2 *} is the costat fuctio. Also, the fuctio V(x) = fors a basis for the ull space of = L*(z) i M*. The fuctio u(x) = x2/2 satisfies L(u) =. Thus G(x,t) = A + Bx - x2/2 if x < t C + Dx - x2/2 if t < x. We have four ukows; we have the followig four equatios: () = G(,t) +G(,t) = A + C + D - /2 (2) = dg(x,t)/dx x= - dg(x,t)/dx x= = B - (D-) (3) = G(t +,t) - G(t -,t) = C-A + (D-B)t (4) = dg(x,t)/dx x=t+ - dg(x,t)/dx x=t- = D-B. As expected, there is a ifiity of solutios to these equatios which ay be foud by choosig D ad the B = D - 2C = -(t+d) + /2 A = C + t. EXERCISE: I Verify that each of these probles is secod alterative ad fid L*,B *, B 2 *,ad G. () L(y) = y'', B (y) = y() - y(), B 2 (y) = y'() - y'(), (2) L(y) = y'' + 9π 2 y, B (y) = y() - y(), B 2 (y) = y'() + y'(), (3) L(y) = y'' + y' - 2y, B (y) = e y() - y(), B 2 (y) = e y'() - y'(). II. Costruct L*, B* ad G for each of the followig L's ad with periodic boudary coditios y() = y(), y'() = y'(): (a) L(y) = y'', (b) L(y) = y'' + π 2 y (c) L(y) = 2y'' + y' - y, NONHOMOGENEOUS BOUNDARY CONDITIONS To solve the equatios L(y) = f, B (y) = α, B 2 (y) = β, first costruct G for the proble L(y) = f, B (y)=, B 2 (y) =. The costruct fuctios z ad z 2 such that B (z ) =, B 2 (z ), ad B (z 2 ), B 2 (z 2 ) =. The solutio for the origial proble is

5 y(x) = G(x,t)f(t) dt + β z (x) B 2 (z ) + α z 2(x) B (z 2 ) 58

Math 220B Final Exam Solutions March 18, 2002

Math 220B Final Exam Solutions March 18, 2002 Math 0B Fial Exam Solutios March 18, 00 1. (1 poits) (a) (6 poits) Fid the Gree s fuctio for the tilted half-plae {(x 1, x ) R : x 1 + x > 0}. For x (x 1, x ), y (y 1, y ), express your Gree s fuctio G(x,

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

PARTIAL DIFFERENTIAL EQUATIONS SEPARATION OF VARIABLES

PARTIAL DIFFERENTIAL EQUATIONS SEPARATION OF VARIABLES Diola Bagayoko (0 PARTAL DFFERENTAL EQUATONS SEPARATON OF ARABLES. troductio As discussed i previous lectures, partial differetial equatios arise whe the depedet variale, i.e., the fuctio, varies with

More information

5.6 Binomial Multi-section Matching Transformer

5.6 Binomial Multi-section Matching Transformer 4/14/21 5_6 Bioial Multisectio Matchig Trasforers 1/1 5.6 Bioial Multi-sectio Matchig Trasforer Readig Assiget: pp. 246-25 Oe way to axiize badwidth is to costruct a ultisectio Γ f that is axially flat.

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions ECE 9 Lecture 4: Estiatio of Lipschitz sooth fuctios R. Nowak 5/7/29 Cosider the followig settig. Let Y f (X) + W, where X is a rado variable (r.v.) o X [, ], W is a r.v. o Y R, idepedet of X ad satisfyig

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

PROBLEMS AND SOLUTIONS 2

PROBLEMS AND SOLUTIONS 2 PROBEMS AND SOUTIONS Problem 5.:1 Statemet. Fid the solutio of { u tt = a u xx, x, t R, u(x, ) = f(x), u t (x, ) = g(x), i the followig cases: (b) f(x) = e x, g(x) = axe x, (d) f(x) = 1, g(x) =, (f) f(x)

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20 ECE 6341 Sprig 016 Prof. David R. Jackso ECE Dept. Notes 0 1 Spherical Wave Fuctios Cosider solvig ψ + k ψ = 0 i spherical coordiates z φ θ r y x Spherical Wave Fuctios (cot.) I spherical coordiates we

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 116C. Problem Set 4. Benjamin Stahl. November 6, 2014

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 116C. Problem Set 4. Benjamin Stahl. November 6, 2014 UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 6C Problem Set 4 Bejami Stahl November 6, 4 BOAS, P. 63, PROBLEM.-5 The Laguerre differetial equatio, x y + ( xy + py =, will be solved

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Løsningsførslag i 4M

Løsningsførslag i 4M Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side 1 av 6 Løsigsførslag i 4M Oppgave 1 a) A sketch of the graph of the give f o the iterval [ 3, 3) is as follows: The Fourier

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

MATH 6101 Fall 2008 Newton and Differential Equations

MATH 6101 Fall 2008 Newton and Differential Equations MATH 611 Fall 8 Newto ad Differetial Equatios A Differetial Equatio What is a differetial equatio? A differetial equatio is a equatio relatig the quatities x, y ad y' ad possibly higher derivatives of

More information

The Binomial Multi- Section Transformer

The Binomial Multi- Section Transformer 4/4/26 The Bioial Multisectio Matchig Trasforer /2 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: ( ω ) = + e +

More information

5.6 Binomial Multi-section Matching Transformer

5.6 Binomial Multi-section Matching Transformer 4/14/2010 5_6 Bioial Multisectio Matchig Trasforers 1/1 5.6 Bioial Multi-sectio Matchig Trasforer Readig Assiget: pp. 246-250 Oe way to axiize badwidth is to costruct a ultisectio Γ f that is axially flat.

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

The Binomial Multi-Section Transformer

The Binomial Multi-Section Transformer 4/15/2010 The Bioial Multisectio Matchig Trasforer preset.doc 1/24 The Bioial Multi-Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where:

More information

Null Spaces, Column. Transformations. Remarks. Definition ( ) ( ) Null A is the set of all x's in R that go to 0 in R 3

Null Spaces, Column. Transformations. Remarks. Definition ( ) ( ) Null A is the set of all x's in R that go to 0 in R 3 Null Spaces Colu Spaces ad Liear rasforatios earks Whe we study fuctios f ( ) we fid that a uderstadig of the doai D f itervals of - values ad the rage f itervals of y - values are ecessary to descrie

More information

Question 1: The magnetic case

Question 1: The magnetic case September 6, 018 Corell Uiversity, Departmet of Physics PHYS 337, Advace E&M, HW # 4, due: 9/19/018, 11:15 AM Questio 1: The magetic case I class, we skipped over some details, so here you are asked to

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy Liear Differetial Equatios of Higher Order Basic Theory: Iitial-Value Problems d y d y dy Solve: a( ) + a ( )... a ( ) a0( ) y g( ) + + + = d d d ( ) Subject to: y( 0) = y0, y ( 0) = y,..., y ( 0) = y

More information

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a Jacobi sybols efiitio Let be a odd positive iteger If 1, the Jacobi sybol : Z C is the costat fuctio 1 1 If > 1, it has a decopositio ( as ) a product of (ot ecessarily distict) pries p 1 p r The Jacobi

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 Lecture 18. October 5, 005 Homework. Problem Set 5 Part I: (c). Practice Problems. Course Reader: 3G 1, 3G, 3G 4, 3G 5. 1. Approximatig Riema itegrals. Ofte, there is o simpler expressio for the atiderivative

More information

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1 ROOT LOCUS TECHNIQUE 93 should be desiged differetly to eet differet specificatios depedig o its area of applicatio. We have observed i Sectio 6.4 of Chapter 6, how the variatio of a sigle paraeter like

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

42 Dependence and Bases

42 Dependence and Bases 42 Depedece ad Bases The spa s(a) of a subset A i vector space V is a subspace of V. This spa ay be the whole vector space V (we say the A spas V). I this paragraph we study subsets A of V which spa V

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

Define a Markov chain on {1,..., 6} with transition probability matrix P =

Define a Markov chain on {1,..., 6} with transition probability matrix P = Pla Group Work 0. The title says it all Next Tie: MCMC ad Geeral-state Markov Chais Midter Exa: Tuesday 8 March i class Hoework 4 due Thursday Uless otherwise oted, let X be a irreducible, aperiodic Markov

More information

Chapter 7 Isoperimetric problem

Chapter 7 Isoperimetric problem Chapter 7 Isoperimetric problem Recall that the isoperimetric problem (see the itroductio its coectio with ido s proble) is oe of the most classical problem of a shape optimizatio. It ca be formulated

More information

The Non-homogeneous Diffusion Equation

The Non-homogeneous Diffusion Equation The No-hoogeeous Diffusio Equatio The o-hoogeeous diffusio equatio, with sources, has the geeral for, 2 r,t a 2 r,t Fr,t t a 2 is real ad The hoogeeous diffusio equatio, 2 r,t a 2 t r,t ca be solved by

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

EXAM-3 MATH 261: Elementary Differential Equations MATH 261 FALL 2006 EXAMINATION COVER PAGE Professor Moseley

EXAM-3 MATH 261: Elementary Differential Equations MATH 261 FALL 2006 EXAMINATION COVER PAGE Professor Moseley EXAM-3 MATH 261: Elemetary Differetial Equatios MATH 261 FALL 2006 EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE Friday Ocober

More information

EXAM-3A-1 MATH 261: Elementary Differential Equations MATH 261 FALL 2009 EXAMINATION COVER PAGE Professor Moseley

EXAM-3A-1 MATH 261: Elementary Differential Equations MATH 261 FALL 2009 EXAMINATION COVER PAGE Professor Moseley EXAM-3A-1 MATH 261: Elemetary Differetial Equatios MATH 261 FALL 2009 EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE Friday,

More information

Application of Homotopy Analysis Method for Solving various types of Problems of Ordinary Differential Equations

Application of Homotopy Analysis Method for Solving various types of Problems of Ordinary Differential Equations Iteratioal Joural o Recet ad Iovatio Treds i Coputig ad Couicatio IN: 31-8169 Volue: 5 Issue: 5 16 Applicatio of Hootopy Aalysis Meod for olvig various types of Probles of Ordiary Differetial Equatios

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Precalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions

Precalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions Precalculus MATH 2412 Sectios 3.1, 3.2, 3.3 Epoetial, Logistic ad Logarithmic Fuctios Epoetial fuctios are used i umerous applicatios coverig may fields of study. They are probably the most importat group

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

Assignment Number 3 Solutions

Assignment Number 3 Solutions Math 4354, Assigmet Number 3 Solutios 1. u t (x, t) = u xx (x, t), < x (1) u(, t) =, u(, t) = u(x, ) = x ( 1) +1 u(x, t) = e t si(x). () =1 Solutio: Look for simple solutios i the form u(x, t) =

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Iterative Techniques for Solving Ax b -(3.8). Assume that the system has a unique solution. Let x be the solution. Then x A 1 b.

Iterative Techniques for Solving Ax b -(3.8). Assume that the system has a unique solution. Let x be the solution. Then x A 1 b. Iterative Techiques for Solvig Ax b -(8) Cosider solvig liear systems of them form: Ax b where A a ij, x x i, b b i Assume that the system has a uique solutio Let x be the solutio The x A b Jacobi ad Gauss-Seidel

More information

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data Lecture 9 Curve fittig I Itroductio Suppose we are preseted with eight poits of easured data (x i, y j ). As show i Fig. o the left, we could represet the uderlyig fuctio of which these data are saples

More information

A Note on Integrals & Hybrid Contours in the Complex Plane

A Note on Integrals & Hybrid Contours in the Complex Plane A Note o Itegrals & Hybrid Cotours i the Complex Plae Joh Gill July 4 Abstract: Cotour itegrals ca be expressed graphically as simple vectors arisig from a secodary cotour. We start with a well-behaved

More information

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α Nice plottig of proteis: I A widely used display of protei shapes is based o the coordiates of the alpha carbos - - C α -s. The coordiates of the C α -s are coected by a cotiuous curve that roughly follows

More information

Exercise 8 CRITICAL SPEEDS OF THE ROTATING SHAFT

Exercise 8 CRITICAL SPEEDS OF THE ROTATING SHAFT Exercise 8 CRITICA SEEDS OF TE ROTATING SAFT. Ai of the exercise Observatio ad easureet of three cosecutive critical speeds ad correspodig odes of the actual rotatig shaft. Copariso of aalytically coputed

More information

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces Lecture : Bouded Liear Operators ad Orthogoality i Hilbert Spaces 34 Bouded Liear Operator Let ( X, ), ( Y, ) i i be ored liear vector spaces ad { } X Y The, T is said to be bouded if a real uber c such

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Linear Elliptic PDE s Elliptic partial differential equations frequently arise out of conservation statements of the form

Linear Elliptic PDE s Elliptic partial differential equations frequently arise out of conservation statements of the form Liear Elliptic PDE s Elliptic partial differetial equatios frequetly arise out of coservatio statemets of the form B F d B Sdx B cotaied i bouded ope set U R. Here F, S deote respectively, the flux desity

More information

Solutions to Final Exam Review Problems

Solutions to Final Exam Review Problems . Let f(x) 4+x. Solutios to Fial Exam Review Problems Math 5C, Witer 2007 (a) Fid the Maclauri series for f(x), ad compute its radius of covergece. Solutio. f(x) 4( ( x/4)) ( x/4) ( ) 4 4 + x. Sice the

More information

6a Time change b Quadratic variation c Planar Brownian motion d Conformal local martingales e Hints to exercises...

6a Time change b Quadratic variation c Planar Brownian motion d Conformal local martingales e Hints to exercises... Tel Aviv Uiversity, 28 Browia motio 59 6 Time chage 6a Time chage..................... 59 6b Quadratic variatio................. 61 6c Plaar Browia motio.............. 64 6d Coformal local martigales............

More information

Integrals of Functions of Several Variables

Integrals of Functions of Several Variables Itegrals of Fuctios of Several Variables We ofte resort to itegratios i order to deterie the exact value I of soe quatity which we are uable to evaluate by perforig a fiite uber of additio or ultiplicatio

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

IYGB. Special Extension Paper E. Time: 3 hours 30 minutes. Created by T. Madas. Created by T. Madas

IYGB. Special Extension Paper E. Time: 3 hours 30 minutes. Created by T. Madas. Created by T. Madas YGB Special Extesio Paper E Time: 3 hours 30 miutes Cadidates may NOT use ay calculator. formatio for Cadidates This practice paper follows the Advaced Level Mathematics Core ad the Advaced Level Further

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0 GENERATING FUNCTIONS Give a ifiite sequece a 0,a,a,, its ordiary geeratig fuctio is A : a Geeratig fuctios are ofte useful for fidig a closed forula for the eleets of a sequece, fidig a recurrece forula,

More information

Find quadratic function which pass through the following points (0,1),(1,1),(2, 3)... 11

Find quadratic function which pass through the following points (0,1),(1,1),(2, 3)... 11 Adrew Powuk - http://www.powuk.com- Math 49 (Numerical Aalysis) Iterpolatio... 4. Polyomial iterpolatio (system of equatio)... 4.. Lier iterpolatio... 5... Fid a lie which pass through (,) (,)... 8...

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

2. F ; =(,1)F,1; +F,1;,1 is satised by thestirlig ubers of the rst kid ([1], p. 824). 3. F ; = F,1; + F,1;,1 is satised by the Stirlig ubers of the se

2. F ; =(,1)F,1; +F,1;,1 is satised by thestirlig ubers of the rst kid ([1], p. 824). 3. F ; = F,1; + F,1;,1 is satised by the Stirlig ubers of the se O First-Order Two-Diesioal Liear Hoogeeous Partial Dierece Equatios G. Neil Have y Ditri A. Gusev z Abstract Aalysis of algoriths occasioally requires solvig of rst-order two-diesioal liear hoogeeous partial

More information

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF u = u p

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF u = u p A NOTE ON BOUNDARY BLOW-UP PROBLEM OF u = u p SEICK KIM Abstract. Assume that Ω is a bouded domai i R with 2. We study positive solutios to the problem, u = u p i Ω, u(x) as x Ω, where p > 1. Such solutios

More information

LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes Beroulli Polyoials Tals give at LSBU, October ad Noveber 5 Toy Forbes Beroulli Polyoials The Beroulli polyoials B (x) are defied by B (x), Thus B (x) B (x) ad B (x) x, B (x) x x + 6, B (x) dx,. () B 3

More information

Fourier Series and the Wave Equation

Fourier Series and the Wave Equation Fourier Series ad the Wave Equatio We start with the oe-dimesioal wave equatio u u =, x u(, t) = u(, t) =, ux (,) = f( x), u ( x,) = This represets a vibratig strig, where u is the displacemet of the strig

More information

Chapter Vectors

Chapter Vectors Chapter 4. Vectors fter readig this chapter you should be able to:. defie a vector. add ad subtract vectors. fid liear combiatios of vectors ad their relatioship to a set of equatios 4. explai what it

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x +

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x + MATH - sprig 008 lecture Aswers to selected problems INTEGRALS. f =? For atiderivatives i geeral see the itegrals website at http://itegrals.wolfram.com. (5-vi (0 i ( ( i ( π ; (v π a. This is example

More information

MATH2007* Partial Answers to Review Exercises Fall 2004

MATH2007* Partial Answers to Review Exercises Fall 2004 MATH27* Partial Aswers to Review Eercises Fall 24 Evaluate each of the followig itegrals:. Let u cos. The du si ad Hece si ( cos 2 )(si ) (u 2 ) du. si u 2 cos 7 u 7 du Please fiish this. 2. We use itegratio

More information

REVIEW 1, MATH n=1 is convergent. (b) Determine whether a n is convergent.

REVIEW 1, MATH n=1 is convergent. (b) Determine whether a n is convergent. REVIEW, MATH 00. Let a = +. a) Determie whether the sequece a ) is coverget. b) Determie whether a is coverget.. Determie whether the series is coverget or diverget. If it is coverget, fid its sum. a)

More information

f(x)g(x) dx is an inner product on D.

f(x)g(x) dx is an inner product on D. Ark9: Exercises for MAT2400 Fourier series The exercises o this sheet cover the sectios 4.9 to 4.13. They are iteded for the groups o Thursday, April 12 ad Friday, March 30 ad April 13. NB: No group o

More information

Implicit function theorem

Implicit function theorem Jovo Jaric Implicit fuctio theorem The reader kows that the equatio of a curve i the x - plae ca be expressed F x, =., this does ot ecessaril represet a fuctio. Take, for example F x, = 2x x =. (1 either

More information

Special Modeling Techniques

Special Modeling Techniques Colorado School of Mies CHEN43 Secial Modelig Techiques Secial Modelig Techiques Summary of Toics Deviatio Variables No-Liear Differetial Equatios 3 Liearizatio of ODEs for Aroximate Solutios 4 Coversio

More information

Complete Solutions to Supplementary Exercises on Infinite Series

Complete Solutions to Supplementary Exercises on Infinite Series Coplete Solutios to Suppleetary Eercises o Ifiite Series. (a) We eed to fid the su ito partial fractios gives By the cover up rule we have Therefore Let S S A / ad A B B. Covertig the suad / the by usig

More information

Exponential and Trigonometric Functions Lesson #1

Exponential and Trigonometric Functions Lesson #1 Epoetial ad Trigoometric Fuctios Lesso # Itroductio To Epoetial Fuctios Cosider a populatio of 00 mice which is growig uder plague coditios. If the mouse populatio doubles each week we ca costruct a table

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

NTMSCI 5, No. 1, (2017) 26

NTMSCI 5, No. 1, (2017) 26 NTMSCI 5, No. 1, - (17) New Treds i Mathematical Scieces http://dx.doi.org/1.85/tmsci.17.1 The geeralized successive approximatio ad Padé approximats method for solvig a elasticity problem of based o the

More information

6. Uniform distribution mod 1

6. Uniform distribution mod 1 6. Uiform distributio mod 1 6.1 Uiform distributio ad Weyl s criterio Let x be a seuece of real umbers. We may decompose x as the sum of its iteger part [x ] = sup{m Z m x } (i.e. the largest iteger which

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

MATH 31B: MIDTERM 2 REVIEW

MATH 31B: MIDTERM 2 REVIEW MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate x (x ) (x 3).. Partial Fractios Solutio: The umerator has degree less tha the deomiator, so we ca use partial fractios. Write x (x ) (x 3) = A x + A (x ) +

More information

DETERMINATION OF MECHANICAL PROPERTIES OF A NON- UNIFORM BEAM USING THE MEASUREMENT OF THE EXCITED LONGITUDINAL ELASTIC VIBRATIONS.

DETERMINATION OF MECHANICAL PROPERTIES OF A NON- UNIFORM BEAM USING THE MEASUREMENT OF THE EXCITED LONGITUDINAL ELASTIC VIBRATIONS. ICSV4 Cairs Australia 9- July 7 DTRMINATION OF MCHANICAL PROPRTIS OF A NON- UNIFORM BAM USING TH MASURMNT OF TH XCITD LONGITUDINAL LASTIC VIBRATIONS Pavel Aokhi ad Vladimir Gordo Departmet of the mathematics

More information

Application 10.5D Spherical Harmonic Waves

Application 10.5D Spherical Harmonic Waves Applicatio 10.5D Spherical Haroic Waves I probles ivolvig regios that ejoy spherical syetry about the origi i space, it is appropriate to use spherical coordiates. The 3-diesioal Laplacia for a fuctio

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1 Trasfer Fuctio Aalysis Free & Forced Resposes Trasfer Fuctio Syste Stability ME375 Trasfer Fuctios - 1 Free & Forced Resposes Ex: Let s look at a stable first order syste: y y Ku Take LT of the I/O odel

More information

On forward improvement iteration for stopping problems

On forward improvement iteration for stopping problems O forward improvemet iteratio for stoppig problems Mathematical Istitute, Uiversity of Kiel, Ludewig-Mey-Str. 4, D-24098 Kiel, Germay irle@math.ui-iel.de Albrecht Irle Abstract. We cosider the optimal

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

Introduction to Optimization Techniques

Introduction to Optimization Techniques Itroductio to Optimizatio Techiques Basic Cocepts of Aalysis - Real Aalysis, Fuctioal Aalysis 1 Basic Cocepts of Aalysis Liear Vector Spaces Defiitio: A vector space X is a set of elemets called vectors

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Discrete Mathematics: Lectures 8 and 9 Principle of Inclusion and Exclusion Instructor: Arijit Bishnu Date: August 11 and 13, 2009

Discrete Mathematics: Lectures 8 and 9 Principle of Inclusion and Exclusion Instructor: Arijit Bishnu Date: August 11 and 13, 2009 Discrete Matheatics: Lectures 8 ad 9 Priciple of Iclusio ad Exclusio Istructor: Arijit Bishu Date: August ad 3, 009 As you ca observe by ow, we ca cout i various ways. Oe such ethod is the age-old priciple

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

Lecture 6: Integration and the Mean Value Theorem. slope =

Lecture 6: Integration and the Mean Value Theorem. slope = Math 8 Istructor: Padraic Bartlett Lecture 6: Itegratio ad the Mea Value Theorem Week 6 Caltech 202 The Mea Value Theorem The Mea Value Theorem abbreviated MVT is the followig result: Theorem. Suppose

More information