Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes

Size: px
Start display at page:

Download "Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes"

Transcription

1 Beroulli Polyoials Tals give at LSBU, October ad Noveber 5 Toy Forbes Beroulli Polyoials The Beroulli polyoials B (x) are defied by B (x), Thus B (x) B (x) ad B (x) x, B (x) x x + 6, B (x) dx,. () B 3 (x) x 3 3x + x, B 4(x) x 4 x 3 + x 3, B 5 (x) x 5 5x4 + 5x3 3 x 6, B 6(x) x 6 3x 5 + 5x4 x + 4, B 7 (x) x 7 7x6 + 7x5 7x3 6 + x 6, B 8(x) x 8 4x 7 + 4x6 7x x 3 3, B 9 (x) x 9 9x8 +6x7 x5 5 +x3 3x, B (x) x 5x 9 + 5x8 7x6 +5x 4 3x , B (x) x x + 55x9 6 B (x) x 6x + x 33x8 x 7 + x 5 x3 + x 6 33x4 The costat ter gives the th Beroulli uber, B B (), + 5x 6, + 5x 69 73,.... B, B, B 6, B 3, B 4 3, B 5, B 6 4, B 7, B 8 3, B 9, B 5 66, B, B 69 73, B 3, B 4 7 6, B 5, B , B 7, B , B 9, B ,.... There is soe erit i defiig what oe ight call the alterative Beroulli polyoials: B (x) B (x) B (x), ad B (x) dx,. The B (x) B (x) + x ( ) B ( x). The correspodig alterative Beroulli ubers are B B () B (). The oly differece occurs whe : B B, B B,,, 3, 4,.... We wo t ivestigate the alterative polyoials, but watch out for B i what follows.

2 The graphs show that B ( x) ( ) B (x). Fro the defiitio, the coefficiet of x is B () B. More geerally, the coefficiet of x i B (x) is ( ) B ; hece ( ) B (x) B x. Moreover, for x [, ] we have these approxiatios for large : B (x) B cos πx, eve, B (x) B (/4) si πx, odd, ad B (x)b (x) dx whe + is odd. Exercise for reader: copute B (x)b (x) dx whe + is eve Beroulli polyoials B (x) for, 3,..., 8 The geeratig fuctios for the Beroulli polyoials ad the Beroulli ubers are respectively te xt e t B (x) t! ad t e t B t!. () These could be used as defiitios; the the left-had equality i () is recovered by differetiatig the left-had equality i () with respect to x: t e xt e x B (x) t text! e x B (x) t B +(x)! + t!. Fro the right-had equality i () we obtai two facts: (i) B + for sice the fuctio t/(e t ) + t/ is eve, ad (ii) ultiplyig the series by the Taylor expasio of (e t )/t gives ( ) + B. This last equality ca be used to copute the B recursively; see Lovelace [3], for exaple.

3 Stirlig ubers of the secod id The Stirlig uber of the secod id S(, ) is the uber of ways to partitio a set of obects ito o-epty subsets: S(, )! ( ( ) ) ( )! or they ca be defied recursively ( ) ( ), S(, ), S(, ) for >, S(, ) for >, S( +, ) S(, ) + S(, ) for > It is clear fro the recursive defiitio that the S(, ) are itegers, that S(, ) ad that S(, ) if >. Iterestig proble: prove directly that ( )( ) wheever > > Plot of log S(, ) + for 5,,... ad,,..., 3 3

4 Euler Maclauri suatio Let f(x) be a sufficietly well-behaved fuctio. Suppose we wat to su f(x) over iteger values of x ad that we ow how to itegrate f(x). Let < be itegers. The + f(r) f(x) dx + r ( f ( ) () f ( ) () ) B! or, aig use of the fact that B for odd 3, + f() f(x) dx + f() f() f (r) (x) B r(x x ) (r)! + s f (r) (x) B r ( x x) r! ( f ( ) () f ( ) () ) B ()! dx, (r ). If f(x) is a polyoial, the last ter will vaish for sufficietly large r. For exaple, to get the forula for the su of the first squares put ad f(x) x : x dx + + B! ( + )( + ). 6 dx, Poly-Beroulli ubers If we defie the ore geeral poly-beroulli ubers B () Li (t) t, Li ( e t ) e t by B () t!, the gives Li (x) log( x) ad the geeratig fuctio t/( e t ) of B () B. Properties of the Beroulli ubers Theore (Explicit forula for the Beroulli ubers) We have B + ( ) ( ) ( )! S(, ). (3) + Proof We refer to the geeratig fuctio: x e x log( + (ex )) e x e x ( ) + (ex ) ( ) (ex ) +. Now expad the bioial (e x ) ad the expad e x : x e x ( ) + x! x! ( ) ( ) e x ( ) ( ) ( ) + ( )!S(, ). + 4 ( ) + ( ) ( ) x!

5 But S(, ) whe >. Hece x e x x! ( )!S(, ), + as required to get the right-had expressio i (3). substitutig for S(, ). The other expressio follows by Theore (vo Staudt Clause) If is a positive eve iteger, the B + p, p prie p (od ). (4) Proof Suppose is eve. We cosider each of the ters i the su over i either of the two expressios of (3). If + is ot prie ad > 3, the!/( + ) is a iteger, as also is S(, ); so the ter correspodig to this is a iteger. Also oe ca verify directly that the ters correspodig to ad 3 are itegers. Now suppose + is prie ad does ot divide. Write q + r with < r <. The for <, q (od + ). Hece odulo + the su over becoes ( )( ) r ±!S(r, ) sice > r. Fially, suppose + is prie ad divides. The for <, (od + ), ad. Therefore ( )( ) (od + ) ad hece odulo there is a cotributio of /( + ) to the su. Whe is odd the su is zero odulo ; the ter cotributes /, as before, but ow the 3 ter also cotributes /. All other ters are itegers. The Vo Staudt Clause theore allows you to copute the fractioal part of B for soe quite large. For exaple, if 8, the divisors of are powers of two ad the deoiators of the fractios i (4) are ust ad the Ferat pries, 3, 5, 7, 57 ad O the other had, the calculatio is curretly ipossible for, say, 9. It is coveiet to have a expressio for the absolute value of B. So we rearrage (4) to get, writig {x} for x x, { } p, p prie /p, >, (od 4), { } p, p prie B B + /p, (od 4), (5),, /,,, >, odd. Thus for, 4,..., we get 6, 3, 4, 3, 5 66, 69 73, 6, 47 5, , 4 33, 7 38, 69 73, 6, 59 87, , 47 5, 6, , 6, 353, 86, 53 69, 4 8, , 5 66, 83 59, , 59 87, , , 6, 47 5, , 3, , , 6, 3, , , , , 6, , , 77 4, 6, , 6,

6 Theore 3 The Beroulli ubers are related to the Riea zeta-fuctio by B ζ( ), ; B! ζ(), eve. (6) (πi) Proof (Titcharsh [6, sectio.4]) Let s be a coplex veriable with Re s >. Usig we get Γ(s)ζ(s) x s e s dx x s e x dx Γ(s) s x s e x dx x s e x dx. Let C ρ, ρ >, deote the cotour that goes fro + to ρ o the real axis, circles the origi oce aticlocwise ad the returs to +. Let ρ. Sice the itegral alog the circle teds to zero as ρ teds to zero, we have C z s e z dz z s e z dz + (e πi z) s e z dz (e πis )Γ(s)ζ(s). Usig the well-ow forula Γ( z)γ(z) π/(si πz), we obtai ζ(s) z (e πis )Γ(s) C s e z dz e πis Γ( s) z πi C s e z dz, which exteds the doai of ζ(s) to the whole coplex plae except for s. Now let be a iteger ad put s. The ζ( ) ( ) ( )! πi C z e z dz ( ) ( )! πi C B! z dz. But the value of itegral o the right is πi ties the residue of the pole at z, ad this is ust the coefficiet of /z i the su. Hece, recallig that B B ad B for odd 3, ζ( ) ( ) ( )! πi πi B! ( ) B B. This is the left-had equality i (6) for. For the reaiig case, recall that ζ(s) γ + O(s ) as s. s The right-had equality follows fro the fuctioal equatio of ζ(s), ( ( ) s s Γ π ) s/ ζ(s) Γ π ( s)/ ζ( s). (See Edwards [], for exaple.) Of course we ca discard the sig if we are iterested oly i the absolute value: B!! ζ() ( + (π) (π) + 3 ) +..., eve. (7) 6

7 We ca use (5) ad (7) to deterie B exactly. Write b() (!) / /(π). The split the su ito three parts, B I + E + R, b() ( ) I b(), E b() ( ) b() I, R b()+ ( ) b(). We copute I exactly ad E approxiately, we assue that R is sall eough to be igored, ad we get the exact value of F, the fractioal part of B, usig the vo Staudt Clause forula, (5). The for positive eve, we have B I + ɛ + F, where ɛ if E < F, ɛ otherwise. Exaple: b() 59, I , E ad F > E. There is a iterestig applicatio cocerig prie geeratig fuctios, [4], ad also a iterestig proble. Is there a that requires ɛ? By siple-ided direct calculatio there are o istaces for eve up to 3. But could it possibly happe that E is very early equal to but less tha, F is very sall, ad R, which is very sall ayway, is ust large eough so that E + R >? The we would have F E + R ad hece B I +. A siilar proble is preseted i M5 [, 5]. Refereces [] H. M. Edwards, Riea s Zeta-Fuctio. [] TF, Proble 67.4 Beroulli ubers, M5 67 (Deceber 5). [3] A. A. Lovelace, Note G i: L. F. Meabrea, Setch of The Aalytical Egie Iveted by Charles Babbage With otes upo the Meoir by the Traslator, Ada Augusta, Coutess of Lovelace, Bibliothèque Uiverselle de Geève 8 (October 84). [4] R. Thopso, Beroulli ubers ad prie geeratig fuctios, M5 67 (Deceber 5). [5] R. Thopso, Solutio 67.4 Beroulli ubers, M5, to appear. [6] E. C. Titcharsh, The Theory of the Riea Zeta-Fuctio. 7

x !1! + 1!2!

x !1! + 1!2! 4 Euler-Maclauri Suatio Forula 4. Beroulli Nuber & Beroulli Polyoial 4.. Defiitio of Beroulli Nuber Beroulli ubers B (,,3,) are defied as coefficiets of the followig equatio. x e x - B x! 4.. Expreesio

More information

Bertrand s postulate Chapter 2

Bertrand s postulate Chapter 2 Bertrad s postulate Chapter We have see that the sequece of prie ubers, 3, 5, 7,... is ifiite. To see that the size of its gaps is ot bouded, let N := 3 5 p deote the product of all prie ubers that are

More information

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a Jacobi sybols efiitio Let be a odd positive iteger If 1, the Jacobi sybol : Z C is the costat fuctio 1 1 If > 1, it has a decopositio ( as ) a product of (ot ecessarily distict) pries p 1 p r The Jacobi

More information

Binomial transform of products

Binomial transform of products Jauary 02 207 Bioial trasfor of products Khristo N Boyadzhiev Departet of Matheatics ad Statistics Ohio Norther Uiversity Ada OH 4580 USA -boyadzhiev@ouedu Abstract Give the bioial trasfors { b } ad {

More information

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k)

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k) THE TWELVEFOLD WAY FOLLOWING GIAN-CARLO ROTA How ay ways ca we distribute objects to recipiets? Equivaletly, we wat to euerate equivalece classes of fuctios f : X Y where X = ad Y = The fuctios are subject

More information

A PROBABILITY PROBLEM

A PROBABILITY PROBLEM A PROBABILITY PROBLEM A big superarket chai has the followig policy: For every Euros you sped per buy, you ear oe poit (suppose, e.g., that = 3; i this case, if you sped 8.45 Euros, you get two poits,

More information

Orthogonal Functions

Orthogonal Functions Royal Holloway Uiversity of odo Departet of Physics Orthogoal Fuctios Motivatio Aalogy with vectors You are probably failiar with the cocept of orthogoality fro vectors; two vectors are orthogoal whe they

More information

6.4 Binomial Coefficients

6.4 Binomial Coefficients 64 Bioial Coefficiets Pascal s Forula Pascal s forula, aed after the seveteeth-cetury Frech atheaticia ad philosopher Blaise Pascal, is oe of the ost faous ad useful i cobiatorics (which is the foral ter

More information

Perturbation Theory, Zeeman Effect, Stark Effect

Perturbation Theory, Zeeman Effect, Stark Effect Chapter 8 Perturbatio Theory, Zeea Effect, Stark Effect Ufortuately, apart fro a few siple exaples, the Schrödiger equatio is geerally ot exactly solvable ad we therefore have to rely upo approxiative

More information

Summer MA Lesson 13 Section 1.6, Section 1.7 (part 1)

Summer MA Lesson 13 Section 1.6, Section 1.7 (part 1) Suer MA 1500 Lesso 1 Sectio 1.6, Sectio 1.7 (part 1) I Solvig Polyoial Equatios Liear equatio ad quadratic equatios of 1 variable are specific types of polyoial equatios. Soe polyoial equatios of a higher

More information

Integrals of Functions of Several Variables

Integrals of Functions of Several Variables Itegrals of Fuctios of Several Variables We ofte resort to itegratios i order to deterie the exact value I of soe quatity which we are uable to evaluate by perforig a fiite uber of additio or ultiplicatio

More information

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0 GENERATING FUNCTIONS Give a ifiite sequece a 0,a,a,, its ordiary geeratig fuctio is A : a Geeratig fuctios are ofte useful for fidig a closed forula for the eleets of a sequece, fidig a recurrece forula,

More information

X. Perturbation Theory

X. Perturbation Theory X. Perturbatio Theory I perturbatio theory, oe deals with a ailtoia that is coposed Ĥ that is typically exactly solvable of two pieces: a referece part ad a perturbatio ( Ĥ ) that is assued to be sall.

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s) that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

On the transcendence of infinite sums of values of rational functions

On the transcendence of infinite sums of values of rational functions O the trascedece of ifiite sus of values of ratioal fuctios N. Saradha ad R. Tijdea Abstract P () = We ivestigate coverget sus T = Q() ad U = P (X), Q(X) Q[X], ad Q(X) has oly siple ratioal roots. = (

More information

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1 ROOT LOCUS TECHNIQUE 93 should be desiged differetly to eet differet specificatios depedig o its area of applicatio. We have observed i Sectio 6.4 of Chapter 6, how the variatio of a sigle paraeter like

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

Bernoulli Number Identities via Euler-Maclaurin Summation

Bernoulli Number Identities via Euler-Maclaurin Summation = Jacob eroulli 654-75 eroulli Nuber Idetities via Euler-Maclauri Suatio Hieu D. Nguye Math Dept Colloquiu Septeber 4, 8 Sus of Powers 3... 3... () 5,5 ()() 6 333,833,5 3...? ( ) 3... ( ) (Pythagoreas)

More information

Discrete Mathematics: Lectures 8 and 9 Principle of Inclusion and Exclusion Instructor: Arijit Bishnu Date: August 11 and 13, 2009

Discrete Mathematics: Lectures 8 and 9 Principle of Inclusion and Exclusion Instructor: Arijit Bishnu Date: August 11 and 13, 2009 Discrete Matheatics: Lectures 8 ad 9 Priciple of Iclusio ad Exclusio Istructor: Arijit Bishu Date: August ad 3, 009 As you ca observe by ow, we ca cout i various ways. Oe such ethod is the age-old priciple

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20 ECE 6341 Sprig 016 Prof. David R. Jackso ECE Dept. Notes 0 1 Spherical Wave Fuctios Cosider solvig ψ + k ψ = 0 i spherical coordiates z φ θ r y x Spherical Wave Fuctios (cot.) I spherical coordiates we

More information

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction WHAT ARE THE BERNOULLI NUMBERS? C. D. BUENGER Abstract. For the "What is?" semiar today we will be ivestigatig the Beroulli umbers. This surprisig sequece of umbers has may applicatios icludig summig powers

More information

Generating Functions and Their Applications

Generating Functions and Their Applications Geeratig Fuctios ad Their Applicatios Agustius Peter Sahaggau MIT Matheatics Departet Class of 2007 18.104 Ter Paper Fall 2006 Abstract. Geeratig fuctios have useful applicatios i ay fields of study. I

More information

A talk given at Institut Camille Jordan, Université Claude Bernard Lyon-I. (Jan. 13, 2005), and University of Wisconsin at Madison (April 4, 2006).

A talk given at Institut Camille Jordan, Université Claude Bernard Lyon-I. (Jan. 13, 2005), and University of Wisconsin at Madison (April 4, 2006). A tal give at Istitut Caille Jorda, Uiversité Claude Berard Lyo-I (Ja. 13, 005, ad Uiversity of Wiscosi at Madiso (April 4, 006. SOME CURIOUS RESULTS ON BERNOULLI AND EULER POLYNOMIALS Zhi-Wei Su Departet

More information

Automated Proofs for Some Stirling Number Identities

Automated Proofs for Some Stirling Number Identities Autoated Proofs for Soe Stirlig Nuber Idetities Mauel Kauers ad Carste Scheider Research Istitute for Sybolic Coputatio Johaes Kepler Uiversity Altebergerstraße 69 A4040 Liz, Austria Subitted: Sep 1, 2007;

More information

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version]

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version] Math 4707 Sprig 08 Darij Griberg: idter page Math 4707 Sprig 08 Darij Griberg: idter with solutios [preliiary versio] Cotets 0.. Coutig first-eve tuples......................... 3 0.. Coutig legal paths

More information

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a =

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a = FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS NEIL J. CALKIN Abstract. We prove divisibility properties for sus of powers of bioial coefficiets ad of -bioial coefficiets. Dedicated to the eory of

More information

Riemann Hypothesis Proof

Riemann Hypothesis Proof Riea Hypothesis Proof H. Vic Dao 43 rd West Coast Nuber Theory Coferece, Dec 6-0, 009, Asiloar, CA. Revised 0/8/00. Riea Hypothesis Proof H. Vic Dao vic0@cocast.et March, 009 Revised Deceber, 009 Abstract

More information

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions ECE 9 Lecture 4: Estiatio of Lipschitz sooth fuctios R. Nowak 5/7/29 Cosider the followig settig. Let Y f (X) + W, where X is a rado variable (r.v.) o X [, ], W is a r.v. o Y R, idepedet of X ad satisfyig

More information

COMP 2804 Solutions Assignment 1

COMP 2804 Solutions Assignment 1 COMP 2804 Solutios Assiget 1 Questio 1: O the first page of your assiget, write your ae ad studet uber Solutio: Nae: Jaes Bod Studet uber: 007 Questio 2: I Tic-Tac-Toe, we are give a 3 3 grid, cosistig

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials Soe results o the Apostol-Beroulli ad Apostol-Euler polyoials Weipig Wag a, Cagzhi Jia a Tiaig Wag a, b a Departet of Applied Matheatics, Dalia Uiversity of Techology Dalia 116024, P. R. Chia b Departet

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 Lecture 18. October 5, 005 Homework. Problem Set 5 Part I: (c). Practice Problems. Course Reader: 3G 1, 3G, 3G 4, 3G 5. 1. Approximatig Riema itegrals. Ofte, there is o simpler expressio for the atiderivative

More information

LOWER BOUNDS FOR MOMENTS OF ζ (ρ) 1. Introduction

LOWER BOUNDS FOR MOMENTS OF ζ (ρ) 1. Introduction LOWER BOUNDS FOR MOMENTS OF ζ ρ MICAH B. MILINOVICH AND NATHAN NG Abstract. Assuig the Riea Hypothesis, we establish lower bouds for oets of the derivative of the Riea zeta-fuctio averaged over the otrivial

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

A Pair of Operator Summation Formulas and Their Applications

A Pair of Operator Summation Formulas and Their Applications A Pair of Operator Suatio Forulas ad Their Applicatios Tia-Xiao He 1, Leetsch C. Hsu, ad Dogsheg Yi 3 1 Departet of Matheatics ad Coputer Sciece Illiois Wesleya Uiversity Blooigto, IL 6170-900, USA Departet

More information

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2 Beroulli Numbers Beroulli umbers are amed after the great Swiss mathematiia Jaob Beroulli5-705 who used these umbers i the power-sum problem. The power-sum problem is to fid a formula for the sum of the

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

The Gamma function Michael Taylor. Abstract. This material is excerpted from 18 and Appendix J of [T].

The Gamma function Michael Taylor. Abstract. This material is excerpted from 18 and Appendix J of [T]. The Gamma fuctio Michael Taylor Abstract. This material is excerpted from 8 ad Appedix J of [T]. The Gamma fuctio has bee previewed i 5.7 5.8, arisig i the computatio of a atural Laplace trasform: 8. ft

More information

8.3 Perturbation theory

8.3 Perturbation theory 8.3 Perturbatio theory Slides: Video 8.3.1 Costructig erturbatio theory Text referece: Quatu Mechaics for Scietists ad gieers Sectio 6.3 (u to First order erturbatio theory ) Perturbatio theory Costructig

More information

Harmonic Number Identities Via Euler s Transform

Harmonic Number Identities Via Euler s Transform 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 2009), Article 09.6.1 Harmoic Number Idetities Via Euler s Trasform Khristo N. Boyadzhiev Departmet of Mathematics Ohio Norther Uiversity Ada, Ohio 45810

More information

x+ 2 + c p () x c p () x is an arbitrary function. ( sin x ) dx p f() d d f() dx = x dx p cosx = cos x+ 2 d p () x + x-a r (1.

x+ 2 + c p () x c p () x is an arbitrary function. ( sin x ) dx p f() d d f() dx = x dx p cosx = cos x+ 2 d p () x + x-a r (1. Super Derivative (No-iteger ties Derivative). Super Derivative ad Super Differetiatio Defitio.. p () obtaied by cotiuig aalytically the ide of the differetiatio operator of Higher Derivative of a fuctio

More information

Physics 219 Summary of linear response theory

Physics 219 Summary of linear response theory 1 Physics 219 Suary of liear respose theory I. INTRODUCTION We apply a sall perturbatio of stregth f(t) which is switched o gradually ( adiabatically ) fro t =, i.e. the aplitude of the perturbatio grows

More information

A string of not-so-obvious statements about correlation in the data. (This refers to the mechanical calculation of correlation in the data.

A string of not-so-obvious statements about correlation in the data. (This refers to the mechanical calculation of correlation in the data. STAT-UB.003 NOTES for Wedesday 0.MAY.0 We will use the file JulieApartet.tw. We ll give the regressio of Price o SqFt, show residual versus fitted plot, save residuals ad fitted. Give plot of (Resid, Price,

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

The Gamma function. Marco Bonvini. October 9, dt e t t z 1. (1) Γ(z + 1) = z Γ(z) : (2) = e t t z. + z dt e t t z 1. = z Γ(z).

The Gamma function. Marco Bonvini. October 9, dt e t t z 1. (1) Γ(z + 1) = z Γ(z) : (2) = e t t z. + z dt e t t z 1. = z Γ(z). The Gamma fuctio Marco Bovii October 9, 2 Gamma fuctio The Euler Gamma fuctio is defied as Γ() It is easy to show that Γ() satisfy the recursio relatio ideed, itegratig by parts, dt e t t. () Γ( + ) Γ()

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

1 6 = 1 6 = + Factorials and Euler s Gamma function

1 6 = 1 6 = + Factorials and Euler s Gamma function Royal Holloway Uiversity of Lodo Departmet of Physics Factorials ad Euler s Gamma fuctio Itroductio The is a self-cotaied part of the course dealig, essetially, with the factorial fuctio ad its geeralizatio

More information

MAT 271 Project: Partial Fractions for certain rational functions

MAT 271 Project: Partial Fractions for certain rational functions MAT 7 Project: Partial Fractios for certai ratioal fuctios Prerequisite kowledge: partial fractios from MAT 7, a very good commad of factorig ad complex umbers from Precalculus. To complete this project,

More information

Binomial Notations Traditional name Traditional notation Mathematica StandardForm notation Primary definition

Binomial Notations Traditional name Traditional notation Mathematica StandardForm notation Primary definition Bioial Notatios Traditioal ae Bioial coefficiet Traditioal otatio Matheatica StadardFor otatio Bioial, Priary defiitio 06.03.0.0001.01 1 1 1 ; 0 For Ν, Κ egative itegers with, the bioial coefficiet Ν caot

More information

The Bilateral Laplace Transform of the Positive Even Functions and a Proof of Riemann Hypothesis

The Bilateral Laplace Transform of the Positive Even Functions and a Proof of Riemann Hypothesis The Bilateral Laplace Trasform of the Positive Eve Fuctios ad a Proof of Riema Hypothesis Seog Wo Cha Ph.D. swcha@dgu.edu Abstract We show that some iterestig properties of the bilateral Laplace trasform

More information

Solutions to Final Exam Review Problems

Solutions to Final Exam Review Problems . Let f(x) 4+x. Solutios to Fial Exam Review Problems Math 5C, Witer 2007 (a) Fid the Maclauri series for f(x), ad compute its radius of covergece. Solutio. f(x) 4( ( x/4)) ( x/4) ( ) 4 4 + x. Sice the

More information

Chapter 2. Asymptotic Notation

Chapter 2. Asymptotic Notation Asyptotic Notatio 3 Chapter Asyptotic Notatio Goal : To siplify the aalysis of ruig tie by gettig rid of details which ay be affected by specific ipleetatio ad hardware. [1] The Big Oh (O-Notatio) : It

More information

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c)

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c) Problem. Compute the itegrals C r d for Z, where C r = ad r >. Recall that C r has the couter-clockwise orietatio. Solutio: We will use the idue Theorem to solve this oe. We could istead use other (perhaps

More information

JORGE LUIS AROCHA AND BERNARDO LLANO. Average atchig polyoial Cosider a siple graph G =(V E): Let M E a atchig of the graph G: If M is a atchig, the a

JORGE LUIS AROCHA AND BERNARDO LLANO. Average atchig polyoial Cosider a siple graph G =(V E): Let M E a atchig of the graph G: If M is a atchig, the a MEAN VALUE FOR THE MATCHING AND DOMINATING POLYNOMIAL JORGE LUIS AROCHA AND BERNARDO LLANO Abstract. The ea value of the atchig polyoial is coputed i the faily of all labeled graphs with vertices. We dee

More information

Transfer Function Analysis

Transfer Function Analysis Trasfer Fuctio Aalysis Free & Forced Resposes Trasfer Fuctio Syste Stability ME375 Trasfer Fuctios - Free & Forced Resposes Ex: Let s s look at a stable first order syste: τ y + y = Ku Take LT of the I/O

More information

and Genocchi Polynomials

and Genocchi Polynomials Applied Mathematics & Iformatio Scieces 53 011, 390-444 A Iteratioal Joural c 011 NSP Some Geeralizatios ad Basic or - Extesios of the Beroulli, Euler ad Geocchi Polyomials H. M. Srivastava Departmet of

More information

Solutions to Problem Set 8

Solutions to Problem Set 8 8.78 Solutios to Problem Set 8. We ow that ( ) ( + x) x. Now we plug i x, ω, ω ad add the three equatios. If 3 the we ll get a cotributio of + ω + ω + ω + ω 0, whereas if 3 we ll get a cotributio of +

More information

Notes on the prime number theorem

Notes on the prime number theorem Notes o the rime umber theorem Keji Kozai May 2, 24 Statemet We begi with a defiitio. Defiitio.. We say that f(x) ad g(x) are asymtotic as x, writte f g, if lim x f(x) g(x) =. The rime umber theorem tells

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

MDIV. Multiple divisor functions

MDIV. Multiple divisor functions MDIV. Multiple divisor fuctios The fuctios τ k For k, defie τ k ( to be the umber of (ordered factorisatios of ito k factors, i other words, the umber of ordered k-tuples (j, j 2,..., j k with j j 2...

More information

18.S34 (FALL, 2007) GREATEST INTEGER PROBLEMS. n + n + 1 = 4n + 2.

18.S34 (FALL, 2007) GREATEST INTEGER PROBLEMS. n + n + 1 = 4n + 2. 18.S34 (FALL, 007) GREATEST INTEGER PROBLEMS Note: We use the otatio x for the greatest iteger x, eve if the origial source used the older otatio [x]. 1. (48P) If is a positive iteger, prove that + + 1

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

A New Type of q-szász-mirakjan Operators

A New Type of q-szász-mirakjan Operators Filoat 3:8 07, 567 568 https://doi.org/0.98/fil7867c Published by Faculty of Scieces ad Matheatics, Uiversity of Niš, Serbia Available at: http://www.pf.i.ac.rs/filoat A New Type of -Szász-Miraka Operators

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

SOLUTION SET VI FOR FALL [(n + 2)(n + 1)a n+2 a n 1 ]x n = 0,

SOLUTION SET VI FOR FALL [(n + 2)(n + 1)a n+2 a n 1 ]x n = 0, 4. Series Solutios of Differetial Equatios:Special Fuctios 4.. Illustrative examples.. 5. Obtai the geeral solutio of each of the followig differetial equatios i terms of Maclauri series: d y (a dx = xy,

More information

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT TR/46 OCTOBER 974 THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION by A. TALBOT .. Itroductio. A problem i approximatio theory o which I have recetly worked [] required for its solutio a proof that the

More information

19.1 The dictionary problem

19.1 The dictionary problem CS125 Lecture 19 Fall 2016 19.1 The dictioary proble Cosider the followig data structural proble, usually called the dictioary proble. We have a set of ites. Each ite is a (key, value pair. Keys are i

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

A Note on the Symmetric Powers of the Standard Representation of S n

A Note on the Symmetric Powers of the Standard Representation of S n A Note o the Symmetric Powers of the Stadard Represetatio of S David Savitt 1 Departmet of Mathematics, Harvard Uiversity Cambridge, MA 0138, USA dsavitt@mathharvardedu Richard P Staley Departmet of Mathematics,

More information

The Non-homogeneous Diffusion Equation

The Non-homogeneous Diffusion Equation The No-hoogeeous Diffusio Equatio The o-hoogeeous diffusio equatio, with sources, has the geeral for, 2 r,t a 2 r,t Fr,t t a 2 is real ad The hoogeeous diffusio equatio, 2 r,t a 2 t r,t ca be solved by

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

A PROOF OF THE THUE-SIEGEL THEOREM ABOUT THE APPROXIMATION OF ALGEBRAIC NUMBERS FOR BINOMIAL EQUATIONS

A PROOF OF THE THUE-SIEGEL THEOREM ABOUT THE APPROXIMATION OF ALGEBRAIC NUMBERS FOR BINOMIAL EQUATIONS A PROO O THE THUE-SIEGEL THEOREM ABOUT THE APPROXIMATION O ALGEBRAIC NUMBERS OR BINOMIAL EQUATIONS KURT MAHLER, TRANSLATED BY KARL LEVY I 98 Thue () showed that algebraic ubers of the special for = p a

More information

42 Dependence and Bases

42 Dependence and Bases 42 Depedece ad Bases The spa s(a) of a subset A i vector space V is a subspace of V. This spa ay be the whole vector space V (we say the A spas V). I this paragraph we study subsets A of V which spa V

More information

arxiv: v1 [math.nt] 5 Jan 2017 IBRAHIM M. ALABDULMOHSIN

arxiv: v1 [math.nt] 5 Jan 2017 IBRAHIM M. ALABDULMOHSIN FRACTIONAL PARTS AND THEIR RELATIONS TO THE VALUES OF THE RIEMANN ZETA FUNCTION arxiv:70.04883v [math.nt 5 Ja 07 IBRAHIM M. ALABDULMOHSIN Kig Abdullah Uiversity of Sciece ad Techology (KAUST, Computer,

More information

Some remarks on the paper Some elementary inequalities of G. Bennett

Some remarks on the paper Some elementary inequalities of G. Bennett Soe rears o the paper Soe eleetary iequalities of G. Beett Dag Ah Tua ad Luu Quag Bay Vieta Natioal Uiversity - Haoi Uiversity of Sciece Abstract We give soe couterexaples ad soe rears of soe of the corollaries

More information

DIRICHLET CHARACTERS AND PRIMES IN ARITHMETIC PROGRESSIONS

DIRICHLET CHARACTERS AND PRIMES IN ARITHMETIC PROGRESSIONS DIRICHLET CHARACTERS AND PRIMES IN ARITHMETIC PROGRESSIONS We la to rove the followig Theore (Dirichlet s Theore) Let (a, k) = The the arithetic rogressio cotais ifiitely ay ries a + k : = 0,, 2, } = :

More information

Enumerative & Asymptotic Combinatorics

Enumerative & Asymptotic Combinatorics C50 Eumerative & Asymptotic Combiatorics Stirlig ad Lagrage Sprig 2003 This sectio of the otes cotais proofs of Stirlig s formula ad the Lagrage Iversio Formula. Stirlig s formula Theorem 1 (Stirlig s

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please sed all couicatios cocerig ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWA- TERSRAND, PRIVATE

More information

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION MATHEMATICA MONTISNIGRI Vol XXVIII (013) 17-5 THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION GLEB V. FEDOROV * * Mechaics ad Matheatics Faculty Moscow State Uiversity Moscow, Russia

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1. J. Appl. Math. & Computig Vol. x 00y), No. z, pp. A RECURSION FOR ALERNAING HARMONIC SERIES ÁRPÁD BÉNYI Abstract. We preset a coveiet recursive formula for the sums of alteratig harmoic series of odd order.

More information

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0, Math Activity 9( Due with Fial Eam) Usig first ad secod Taylor polyomials with remaider, show that for, 8 Usig a secod Taylor polyomial with remaider, fid the best costat C so that for, C 9 The th Derivative

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES #A37 INTEGERS (20) BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES Derot McCarthy Departet of Matheatics, Texas A&M Uiversity, Texas ccarthy@athtauedu Received: /3/, Accepted:

More information

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data Lecture 9 Curve fittig I Itroductio Suppose we are preseted with eight poits of easured data (x i, y j ). As show i Fig. o the left, we could represet the uderlyig fuctio of which these data are saples

More information

Physics 116A Solutions to Homework Set #9 Winter 2012

Physics 116A Solutions to Homework Set #9 Winter 2012 Physics 116A Solutios to Homework Set #9 Witer 1 1. Boas, problem 11.3 5. Simplify Γ( 1 )Γ(4)/Γ( 9 ). Usig xγ(x) Γ(x + 1) repeatedly, oe obtais Γ( 9) 7 Γ( 7) 7 5 Γ( 5 ), etc. util fially obtaiig Γ( 9)

More information

Queueing Theory II. Summary. M/M/1 Output process Networks of Queue Method of Stages. General Distributions

Queueing Theory II. Summary. M/M/1 Output process Networks of Queue Method of Stages. General Distributions Queueig Theory II Suary M/M/1 Output process Networks of Queue Method of Stages Erlag Distributio Hyperexpoetial Distributio Geeral Distributios Ebedded Markov Chais 1 M/M/1 Output Process Burke s Theore:

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

On the Fibonacci-like Sequences of Higher Order

On the Fibonacci-like Sequences of Higher Order Article Iteratioal Joural of oder atheatical Scieces, 05, 3(): 5-59 Iteratioal Joural of oder atheatical Scieces Joural hoepage: wwwoderscietificpressco/jourals/ijsaspx O the Fiboacci-like Sequeces of

More information

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1 Trasfer Fuctio Aalysis Free & Forced Resposes Trasfer Fuctio Syste Stability ME375 Trasfer Fuctios - 1 Free & Forced Resposes Ex: Let s look at a stable first order syste: y y Ku Take LT of the I/O odel

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Series III. Chapter Alternating Series

Series III. Chapter Alternating Series Chapter 9 Series III With the exceptio of the Null Sequece Test, all the tests for series covergece ad divergece that we have cosidered so far have dealt oly with series of oegative terms. Series with

More information

Randomly Generated Triangles whose Vertices are Vertices of a Regular Polygon

Randomly Generated Triangles whose Vertices are Vertices of a Regular Polygon Radoly Geerated Triagles whose Vertices are Vertices of a Regular Polygo Aa Madras Drury Uiversity Shova KC Hope College Jauary, 6 Abstract We geerate triagles radoly by uiforly choosig a subset of three

More information

Double Derangement Permutations

Double Derangement Permutations Ope Joural of iscrete Matheatics, 206, 6, 99-04 Published Olie April 206 i SciRes http://wwwscirporg/joural/ojd http://dxdoiorg/04236/ojd2066200 ouble erageet Perutatios Pooya aeshad, Kayar Mirzavaziri

More information

De la Vallée Poussin Summability, the Combinatorial Sum 2n 1

De la Vallée Poussin Summability, the Combinatorial Sum 2n 1 J o u r a l of Mathematics ad Applicatios JMA No 40, pp 5-20 (2017 De la Vallée Poussi Summability, the Combiatorial Sum 1 ( 2 ad the de la Vallée Poussi Meas Expasio Ziad S. Ali Abstract: I this paper

More information

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES J. Nuber Theory 0, o., 9-9. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES Zhi-Hog Su School of Matheatical Scieces, Huaiyi Noral Uiversity, Huaia, Jiagsu 00, PR Chia Eail: zhihogsu@yahoo.co

More information

f(1), and so, if f is continuous, f(x) = f(1)x.

f(1), and so, if f is continuous, f(x) = f(1)x. 2.2.35: Let f be a additive fuctio. i Clearly fx = fx ad therefore f x = fx for all Z+ ad x R. Hece, for ay, Z +, f = f, ad so, if f is cotiuous, fx = fx. ii Suppose that f is bouded o soe o-epty ope set.

More information