Find quadratic function which pass through the following points (0,1),(1,1),(2, 3)... 11

Size: px
Start display at page:

Download "Find quadratic function which pass through the following points (0,1),(1,1),(2, 3)... 11"

Transcription

1 Adrew Powuk - Math 49 (Numerical Aalysis) Iterpolatio Polyomial iterpolatio (system of equatio) Lier iterpolatio Fid a lie which pass through (,) (,) Fid a lie which pass through (-,-) (,) Quadratic iterpolatio Fid quadratic fuctio which pass through the followig poits (,),(,),(, ).... Fid quadratic fuctio which pass through the followig poits (,),(,),(, )..... Higher order iterpolatio.... Lagrage iterpolatio Fid a lie which pass through (,) (,) Fid a lie which pass through (, )(, 5) Fid quadratic fuctio which pass through the followig poits (,),(,),(, ) Fid quadratic fuctio which pass through the followig poits (, ),(, ),(, ) Fid quadratic fuctio which pass through the followig poits (,),(,),(, ) Fid quadratic fuctio which pass through the followig poits (, ),(, ),(, ) Fid quadratic fuctio which pass through the followig poits (,),(, ),(,) Fid cubic fuctio which pass through the followig poits (, ),(, ),(, ),(, 7) Fid quadratic fuctio which pass through the followig poits (,),(, 7),(, 5),(, ) Fid cubic fuctio which pass through the followig poits (, ),(, ),(, ),(, 5). 7.. Fid iterpolatio polyomial which pass through the followig poits (,),(, ),(, 5),(, 7),(4, 9)..... Newto divided differece iterpolatio formula..... Fid a lie which pass through (,) (,) Fid a lie which pass through (, )(, 5) Fid a lie which pass through (,),(, 5)... 5

2 Adrew Powuk - Math 49 (Numerical Aalysis)..4 Fid quadratic fuctio which pass through the followig poits (,),(,),(, ) Fid quadratic fuctio which pass through the followig poits (,),(,),(, ) Fid quadratic fuctio which pass through the followig poits (, ),(,),(, ) Fid cubic fuctio which pass through the followig poits (,),(,),(, ),(, 7) Fid cubic fuctio which pass through the followig poits (, ),(,),(, 8),(,7) Fid cubic fuctio which pass through the followig poits (, ),(, ),(, ),(, 7) Fid cubic fuctio which pass through the followig poits (,),(, ),(, 5),(, 7) Fid cubic fuctio which pass through the followig poits (, ),(, ),(, ),(, 5) Fid iterpolatio polyomial which pass through the followig poits (,),(, 7),(, 5),(, ) Fid iterpolatio polyomial which pass through the followig poits (,),(,),(,),(, 6)(4,5) Properties of divided differeces (*) Error i polyomial iterpolatio (*) Hermite iterpolatio (**) Splie iterpolatio Liear splies (*) Example (,), (,),(,) Geeral case Example (,), (,),(,) Quadratic splies (*) Fid quadratic splie which pass through the followig poits (,),(,),(,5) Cubic Splies Fid cubic splie for (,),(,),(,6) Example (,),(,),(,) Example (,),(,),(,) Example (,),(,),(,) Example (,),(,),(,5) Example (,),(,),(,),(,) Example (,),(,),(,),(,)... 9

3 Adrew Powuk - Math 49 (Numerical Aalysis).6..8 Example (,),(,),(,),(,),(4,) Geeral case (**)....7 Review Summer

4 Adrew Powuk - Math 49 (Numerical Aalysis) Iterpolatio. (*) Polyomial iterpolatio (system of equatio) Curve expert (***) 4

5 Adrew Powuk - Math 49 (Numerical Aalysis).. Iterpolatio coditios ( x, y ),( x, y ),...,( x, y ),,,,, 4 y x, a, a, a,..., a y a a x a x a, a, a,..., a x, a, a, a,..., a y a a a x, a, a, a,..., a y a a a a a a x, a, a, a,..., a y a, a, a y x x y x For example y ax bx c ( x, y ),( x, y ),( x, y ) ax bx c y ax bx c y a, b, c ax bx c y (*) Hermitte iterpolatio y x, a, a,..., a ( x, y ),( x, y ),...,( x, y ) () () ( x, y ),...,( x, y )... x, a, a,..., a y m x, a, a,..., a y m... x, a, a,..., a y... x, a, a,..., a y... m () () x, a, a,..., a y m () () m m a, a,..., a m 5

6 Adrew Powuk - Math 49 (Numerical Aalysis).. Zero order iterpolatio... Fid a lie which passes through (,) y... Fid a lie which passes through (4,7) y 7 6

7 Adrew Powuk - Math 49 (Numerical Aalysis).. Lier iterpolatio y ax b ( x, y ) a?, b? ( x, y ) l : y ax b y ax b (, ) l : y ax b y ax b y ax b ( x, y ) l y y x y x y a, b x x x x y ax b y x y l y ax b y y x y x y x x x x x y y y x y y y y y ( x x ) y x x x x x x x y y x x y y y y y x y x ( y x y x ) x y x x x x x x x x x x x x y x y y x x x y x y x y x y y y x y x x x x x x x x y y y y y y y y ( x x ) y x x x x x x x x y y x x y y y y y x y x x y x y x y x x x x x x x x x x x x x x yx y x x y xy y y x y y x y x y x x x x x x x x x Sol=Solve[{a*x+by,a*x+by},{a,b}] a*x+b/.sol {{a-((-y+y)/(x-x)),b-((x y-x y)/(x-x))}} {-((x (-y+y))/(x-x))-(x y-x y)/(x-x)} 7

8 Adrew Powuk - Math 49 (Numerical Aalysis)... Fid a lie which passes through (,) (,), (, ) y ax b a b b b a b a a y x... Fid a lie which passes through (-,-) (,), (, ) y ax b a( ) b ( b) b b b b a b b a b a b a b b b b a a a y x 8

9 Adrew Powuk - Math 49 (Numerical Aalysis)..4 Quadratic iterpolatio y ax bx c ( x, y ),( x, y ),( x, y ) ax bx c y ax bx c y a, b, c ax bx c y Sol=Solve[{a*x^+b*x+cy,a*x^+b*x+cy,a*x^+b*x+cy},{a,b,c}] a*x^+b*x+c/.sol {{a-((-x y+x y+x y-x y-x y+x y)/((x-x) (x -x x-x x+x x))),b-((x y-x y-x y+x y+x y-x y)/((x-x) (x-x) (x-x))),c-((-x x y+x x y+x x y-x x y-x x y+x x y)/((x-x) (x-x) (x-x)))}} {-((x (-x y+x y+x y-x y-x y+x y))/((x-x) (x -x x-x x+x x)))-(x (x y- x y-x y+x y+x y-x y))/((x-x) (x-x) (x-x))-(-x x y+x x y+x x y-x x y-x x y+x x y)/((x-x) (x-x) (x-x))} 9

10 Adrew Powuk - Math 49 (Numerical Aalysis)..4. Fid quadratic fuctio which pass through the followig poits (,),(,4),(,9) x=;y=; x=;y=4; x=;y=9; Sol=Solve[{a*x^+b*x+c==y, a*x^+b*x+c==y, a*x^+b*x+c==y},{a,b,c}] a*x^+b*x+c/.sol {{a->,b->,c->}} {+ x+x } Solutio x x..4. Fid quadratic fuctio which pass through the followig poits (,),(,),(, ). y ax bx c (,),(,),(, ) (,) : a b c c (,) : a( ) b( ) c a b (, ) : a b c a b c a b b a a b a a y ax bx c y x x

11 Adrew Powuk - Math 49 (Numerical Aalysis)..4. Fid quadratic fuctio which pass through the followig poits (,),(,),(, ). y ax bx c (,),(,),(, ) (,) : a b c c c (,) : a b c a b c a b (, ) : a b c a4 b c a4 b a b a b a b a b a4 b 4a b 4a b 4( b) b 4( b) b b b a b ( ) a y ax bx c y x x

12 Adrew Powuk - Math 49 (Numerical Aalysis)..5 Higher order iterpolatio y a x a x... a x a ( x, y ),( x, y ),...,( x, y ) y a x a x... a x a... a, a,..., a y a x a x... a x a y x x... x a y x x... x a y x x... x a y x x... x a a, a,..., a y a x a x... a x a Vadermode matrix x x... x x x... x x x... x x x... x

13 Adrew Powuk - Math 49 (Numerical Aalysis)

14 Adrew Powuk - Math 49 (Numerical Aalysis). Lagrage iterpolatio ( x, y ),( x, y ),...,( x, y ) ( x) y L ( x) y L ( x) y L ( x)... y L ( x) Liear iterpolatio ( x) y L (x ) y L ( x ) Quadratic iterpolatio ( x) y L ( x ) y L ( x) y L ( x) Cubic iterpolatio ( x) y L ( x) y L ( x) y L ( x) y L ( x)... ( x y L x y L x y L x y L ( x) ) ( ) ( )... ( ) i i i 4

15 Adrew Powuk - Math 49 (Numerical Aalysis) Joseph-Louis Lagrage Joseph-Louis (Giuseppe Luigi), comte de Lagrage (5 Jauary 76 April 8 5

16 Adrew Powuk - Math 49 (Numerical Aalysis) Liear iterpolatio ( x, y ),( x, y ) ( x, y ),( x, y ) x x x x L ( x), L ( x) x x x x ( x) y L ( x) y L ( x) ( x) y x x x x y x x x x Quadratic iterpolatio ( x, y )( x, y )( x, y ) ( x) y L ( x) y L ( x) y L ( x) ( x x )( x x )( x x ) L ( x) ( x ) x ( x x )( x x ) ( x x )( x x ) ( x x )( x x ) ( x x )( x x )( x x ) ( x x )( x x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x ) ( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x ) ( x) y L ( x) y L ( x) y L ( x) ( x x )( x x ) ( x x )( x x ) ( x x )( x x ) ( x x )( x x ) ( x x )( x x ) ( x) y y y ( x x )( x x ) ( x x )( x x ) ( x ) ) x ( x x L ( x ) L ( x ) L ( x ) 6

17 Adrew Powuk - Math 49 (Numerical Aalysis) Cubic iterpolatio ( x) y L ( x) y L ( x) y L ( x) y L ( x) ( x, y )( x, y )( x, y )( x, y ) ( x) y L ( x) y L ( x) y L ( x) y L ( x) ( x x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) ( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) ( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x )( x x ) ( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) ( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x )( x x ) ( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x )( x x ) ( x) y L ( x) y L ( x) y L ( x) y L ( x) L ( x ) L ( x ) ( x x )( x x )( x x ) ( x x )( x x )( x x ) ( x x )( x x )( x x ) ( x x )( x x )( x x ) ( x) y y ( x x )( x x )( x x ) ( x x )( x x )( x x ) y ( x x )( x x )( x x ) ( x x )( x x )( x x ) y ( x x )( x x )( x x ) ( x x )( x x )( x x ) L ( x ) L ( x ) 7

18 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid a lie which passes through (,) (,) (,),(, ) ( x, y )( x, y ) ( x x )( x x ) L ( x) ( x x )( x x ) ( x x )( x x ) L ( x) ( x x )( x x ) x x x x x x x x x x x x ( x) y L ( x) y L ( x) y y x x x x x x x ( x) x x x x.. Fid a lie which passes through (, )(, 5) (, )(, 5) ( x, y )( x, y ) ( x ) ( x ) ( x ) L ( x) x ( ) ( ) ( ) ( x )( x ) L ( x) ( )( ) ( x ) x ( ) y y L ( x) y L ( x) ( x) 5( x ) 6 x 5x 5 x 8

19 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid quadratic fuctio which passes through the followig poits (,),(,),(, ). (,),(,),(, ) ( x, y ),( x, y ),( x, y ) ( x x )( x x ) ( x x )( x x ) ( x x )( x x ) ( x) y y y ( x x )( x x ) ( x x )( x x ) ( x x )( x x ) ( x ( ))( x x ) ( x )( x x ) ( x ) ( x ( )) ( ( ))( x ) (( ) )(( ) x ) ( x )( x ( )) ( x ) x x x x x x x x x ( x ( ))( x ) ( x )( x ) ( x )( x ( )) ( ( ))( ) (( ) )(( ) ) ( )( ( )) ( x )( x ) x( x ) x( x ) ( ) x x x x 9

20 Adrew Powuk - Math 49 (Numerical Aalysis)..4 Fid quadratic fuctio which passes through the followig poits (, ),(, ),(, ). (, ),(, ),(, ) ( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) ( x x )( x x )( x x ) ( x x )( x x ) ( x ) ( x )( x ) ( x )( x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x ) ( ) ( )( ) ( )( ) ( x x )( x x )( x x ) ( x x )( x x ) ( x )( x ) ( x ) ( x )( x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x ) ( )( ) ( ) ( )( ) ( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x ) ( x) y L ( x) y L ( x) y L ( x) ( x x )( x x ) ( x )( x )( x ) ( x x )( x x ) ( )( )( ) ( x )( x ) ( x )( x ) ( x )( x ) ( x) ( )( ) ( )( ) ( )( ) ( x )( x ) ( x )( x ) ( )( ) ( ) ( ) x ( x )( x ) ( )( ) ( x )( x ) ( x )( x ) ( x )( x ) x( x ) ( )( ) ( )( ) ( )( ) * x( x ) ( x ) x x x x x x x x

21 Adrew Powuk - Math 49 (Numerical Aalysis)..5 Fid quadratic fuctio which passes through the followig poits (,),(,),(, ). (,),(,),(, ) ( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) ( x x )( x x )( x x ) ( x x )( x x ) ( x ) ( x )( x ) ( x )( x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x ) ( ) ( )( ) ( )( ) ( x x )( x x )( x x ) ( x x )( x x ) ( x )( x ) ( x ) ( x )( x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x ) ( )( ) ( ) ( )( ) ( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x ) ( x )( x )( x ) ( x x )( x x ) ( )( )( ) ( x )( x ) ( x )( x ) ( x )( x ) ( x) x x ( )( ) ( )( ) ( )( ) ( x )( x ) ( )( )

22 Adrew Powuk - Math 49 (Numerical Aalysis)..6 Fid quadratic fuctio which passes through the followig poits (,5),(5,),(, 95). (,5),(5,),(, 95) ( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) ( x x )( x x )( x x ) L ( x) ( x ) ( x x )( x x ) ( x 5)( x ) ( x x )( x x ) ( 5)( ) x ( x x )( x x ) ( x x )( x x )( x x ) ( x x )( x x ) ( x )( x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x ) (5 )(5 ) ( x x )( x x )( x x ) ( x x )( x x ) ( x )( x 5) L ( x) ( x x )( x x )( x x ) ( x x )( x x ) ( )( 5) ( x 5)( x ) ( x )( x ) ( x )( x 5) ( x) x 7x ( 5)( ) (5 )(5 ) ( )( 5)

23 Adrew Powuk - Math 49 (Numerical Aalysis)..7 Fid quadratic fuctio which passes through the followig poits (, ),(, ),(,). (, ),(, ),(,) ( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) ( x x )( x x )( x x ) ( x ( )) ( x )( x ) ( x )( x ) L ( x) ( x )( )( ) (( ) ( )) (( ) )(( ) ) (( ) )(( ) ) x x x x x ( x x )( x x )( x x ) ( x ( ))( x ) ( x ) ( x ( ))( x ) L ( x) ( x x )( x x )( x x ) ( ( ))( ( )) ( ) ( ( ))( ) ( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x ) ( x) y L ( x) y L ( x) y L ( x) ( x ( ))( x )( x ) ( ( ))( )( ) ( x ( ))( x ) ( ( ))( ) ( x )( x ) ( x ( ))( x ) ( x ( ))( x ) ( x) x (( ) )(( ) ) ( ( ))( ) ( ( ))( ) x..8 Fid quadratic fuctio which passes through the followig poits (,),(, ),(,). (,),(, ),(,) ( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) L ( x) ( x x )( x x ) ( x )( x ) ( x x )( x x ) ( )( ) ( x x )( x x ) x x x x L ( x) x x ( x x )( x x ) ( x x )( x x ) ( x )( x ) x x L ( x) ( x x )( x x ) ( )( ) x x ( x )( x ) ( x )( x ) ( x) x ( ) ( ) ( )( ) x

24 Adrew Powuk - Math 49 (Numerical Aalysis)..9 Fid quadratic polyomial which passes through the followig poits (, 5),(, ),(5, 6). (, 5),(, ),(5, 6) ( x, y ),( x, y ),( x, y ) (x x )( x x )( x x ) ( x x )( x x ) ( x ( ))( x 5) x x L ( x) (x x )( x x )( x x ) ( x x )( x x ) ( ( ))( 5) ( x x )( x x) ( x x ) ( x x )( x x ) x x 5 5x L ( x) ( x x )(x x )( x x ) ( x x )( x x ) 5 4 ( x x )( x x )(x x ) L ( x) ( x x )( x x )(x x ) ( x) y L ( x) y L ( x) y L ( x) x x 5 5 ( x x )( x x ) ( x )( x ( )) ( x x )( x x ) (5 )(5 ( )) x 4 x x 5 5 ( x ( ))( x 5) ( x )( x ( )) ( x) ( 5) ( ) 6 5 x x ( ( ))( 5) (5 )(5 ( )) 4

25 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid cubic fuctio which passes through the followig poits (, ),(, ),(, ),(, 7). (, ),(, ),(, ),(, 7) ( x, y ),( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) y L ( x) x x x x x x x ( x x )( x x )( x x )( x x ) ( x )( x )( x ) L ( x) ( x )( )( )( ) (( ) )(( ) )(( ) ) ( x x )( x x ) L ( x) ( x x )( x x ) ( x ( ))( x )( x ) ( x x )( x x )( x x )( x x ) ( ( ))( )( ) ( x x )( x x )( x x )( x x ) ( x ( ))( x )( x ) L ( x) ( x x )( x x )( x x )( x x ) ( ( ))( )( ) ( x x )( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x )( x x ) ( x ( ))( x )( x ) ( ( ))( )( ) ( x )( x )( x ) ( x ( ))( x )( x ) ( x) ( ) ( ) (( ) )(( ) )(( ) ) ( ( ))( )( ) ( x ( ))( x )( x ) ( x ( ))( x )( x ) 7 x ( ( ))( )( ) ( ( ))( )( ) 5

26 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid cubic polyomial which passes through the followig poits (,),(, 7),(, 5),(, ). (,),(, 7),(, 5),(, ) ( x, y ),( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) y L ( x) x ( x x )( x x )( x x )( x x ) ( x ( ))( x )( x ) L ( x) ( x )( x x )( x x )( x x ) ( ( ))( )( ) ( x x )( x x ) L ( x) ( x x )( x x ) ( x )( x )( x ) ( x x )( x x )( x x )( x x ) ( )( )( ) ( x x )( x x )( x x )( x x ) ( x )( x ( ))( x ) L ( x) ( x x )( x x )( x x )( x x ) ( )( ( ))( ) ( x x )( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x )( x x ) ( x ))( x ( ))( x ) ( )( ( ))( ) ( x ( ))( x )( x ) ( x )( x )( x ) ( x) ( 7) ( ( ))( )( ) ( )( )( ) ( x )( x ( ))( x ) ( x )( x ( ))( x ) 5 ( ) ( )( ( ))( ) ( )( ( ))( ) x x x 6

27 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid cubic fuctio which passes through the followig poits (, ),(, ),(,),(, 5). (, ),(, ),(,),(, 5) ( x, y ),( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) y L ( x) ( x x )( x x )( x x )( x x ) L ( x) ( x )( )( )( ) x x x x x x x ( x )( x )( x ) ( )( )( ) ( x x )( x x ) L ( x) ( x x )( x x ) ( x )( x )( x ) ( x x )( x x )( x x )( x x ) ( )( )( ) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) L ( x) ( x x )( x x )( x x )( x x ) ( )( )( ) ( x x )( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) ( )( )( ) ( x )( x )( x ) ( x )( x )( x ) ( x) ( ) ( )( )( ) ( )( )( ) ( x )( x )( x ) ( x )( x )( x ) 5 x x x ( )( )( ) ( )( )( ) 7

28 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid cubic fuctio which passes through the followig poits (, ),(, ),(,),(,) (, ),(, ),(,),(,) ( x, y ),( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) y L ( x ) ( x x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) ( )( )( ) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) L ( x) ( x x )( x x )( x x )( x x ) ( )( )( ) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) L ( x) ( x x )( x x )( x x )( x x ) ( )( )( ) ( x x )( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) ( )( )( ) ( x )( x )( x ) ( x )( x )( x ) ( x) ( ) ( ) ( )( )( ) ( )( )( ) ( x )( x )( x ) ( x )( x )( x ) x x x ( )( )( ) ( )( )( ) 8

29 Adrew Powuk - Math 49 (Numerical Aalysis)..4 Fid cubic fuctio which passes through the followig poits (, ),(, ),(,),(,) (, ),(, ),(,),(,) ( x, y ),( x, y ),( x, y ),( x, y ) ( x) y L ( x) y L ( x) y L ( x) y L ( x ) ( x x ) L ( x) ( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) ( )( )( ) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) L ( x) ( x x )( x x )( x x )( x x ) ( )( )( ) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) L ( x) ( x x )( x x )( x x )( x x ) ( )( )( ) ( x x )( x x )( x x )( x x ) L ( x) ( x x )( x x )( x x )( x x ) ( x )( x )( x ) ( )( )( ) ( x )( x )( x ) ( x )( x )( x ) ( x) ( ) ( ) ( )( )( ) ( )( )( ) ( x )( x )( x ) ( x )( x )( x ) x x ( )( )( ) ( )( )( ) x 9

30 Adrew Powuk - Math 49 (Numerical Aalysis)..5 Fid iterpolatio polyomial which pass through the followig poits (,),(, ),(, 5),(, 7),(4, 9). (,),(, ),(, 5),(, 7),(4, 9) ( x, y ),( x, y ),( x, y ),( x, y ),( x, y ) 4 4 ( x) y L ( x) y L ( x) y L ( x) y L ( x) y L ( x) 4 4 ( x x )( x x )( x x )( x x )( x x ) 4 L ( x) ( x ) ( x x )( x x )( x x )( x x ) 4 ( x x )( x x )( x x )( x x ) x ( x x )( x x )( x x )( x x ) 4 4 ( x x )( x x )( x x )( x x )( x x ) 4 L ( x) ( x x )( x x )( x x )( x x )( x x ) 4 ( x x )( x x )( x x )( x x ) 4 ( x x )( x x )( x x )( x x ) 4 ( x x )( x x )( x x )( x x )( x x ) 4 ( x x )( x x )( x x )( x x ) 4 L ( x) ( x x )( x x )( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) 4 4 ( x x )( x x )( x x )( x x )( x x ) 4 ( x x )( x x )( x x )( x x ) 4 L ( x) ( x x )( x x )( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) 4 ( x x )( x x )( x x )( x x )( x x ) 4 L ( x) 4 ( x x )( x x )( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) ( x x )( x x )( x x )( x x ) (,),(, ),(, 5),(, 7),(4, 9) ( x, y ),( x, y ),( x, y ),( x, y ),( x, y ) 4 4 ( x )( x )( x )( x 4) L ( x) ( )( )( )( 4) ( x )( x )( x )( x 4) L ( x) ( )( )( )( 4) ( x )( x )( x )( x 4) L ( x) ( )( )( )( 4) ( x )( x )( x )( x 4) L ( x) ( )( )( )( 4) ( x )( x )( x )( x ) L ( x) 4 (4 )(4 )(4 )(4 )

31 Adrew Powuk - Math 49 (Numerical Aalysis) ( x )( x )( x )( x 4) ( x )( x )( x )( x 4) ( x) ( )( )( )( 4) ( )( )( )( 4) ( x )( x )( x )( x 4) ( x )( x )( x )( x 4) ( x )( x )( x )( x ) ( )( )( )( 4) ( )( )( )( 4) (4 ) (4 )(4 )(4 ) x

32 Adrew Powuk - Math 49 (Numerical Aalysis). Newto divided differece iterpolatio formula P ( x) f ( x ) P( x) f ( x ) ( x x ) f [ x, x ] P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x x )( x x )( x x ) f [ x, x, x, x ]... Taylor polyomial ( ) df ( x ) d f ( x ) d f ( x ) f ( x) f ( x ) ( x x ) ( x x )... ( x x ) dx! dx! dx df ( x ) ( ) ( ) d f x d f x f ( x) f ( x ) ( x x ) ( x x )( x x ) ( x x )( x x )( x x )... dx! dx! dx f ( x ) f ( x ) fx [, x ] x x f [ x, x ] f [ x, x ] fx [, x, x ] x x f [ x, x, x ] f [ x, x, x ] fx [, x, x, x ] x x f [ x, x,..., x ] f [ x, x, x, x ] fx [, x, x,..., x ] x x

33 Adrew Powuk - Math 49 (Numerical Aalysis)

34 Adrew Powuk - Math 49 (Numerical Aalysis) Portrait of Newto at 46 i 689 by Godfrey Keller 5 December 64 March 76/7 4

35 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid a lie which passes through (,) (,) (,),(, ) ( x, y )( x, y ) P ( x) f ( x ) ( x x ) f [ x, x ] ( x ) x fx [, x ] f ( x ) y f ( x ) f ( x ) x x.. Fid a lie which passes through (, )(, 5) (, )(, 5) ( x, y )( x, y ) P( x) f ( x ) ( x x ) f [ x, x ] ( x ) x x f f( x ) f( x ) 5 [ x, x ] x x.. Fid a lie which passes through (,),(, 5) (,),(, 5) ( x, y )( x, y ) P( x) f ( x ) ( x x ) f [ x, x ] ( x ) x fx f ( x ) f ( x ) 5 [, x ] x x..4 Fid the quadratic polyomial which passes through the followig poits (,),(,),(, ). (,),(,),(, ) ( x, y ),( x, y ),( x, y ) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x ) ( x )( x ) x fx f ( x ) f ( x ) [, x ] x x ( ) fx f ( x ) f ( x ) [, x ] x x ( ) fx [ f [ x, x ] f [ x, x ] x, x, x ] x x 5

36 Adrew Powuk - Math 49 (Numerical Aalysis) x f..5 Fid quadratic fuctio which passes through the followig poits (,),(,),(, ). (,),(,),(, ) ( x, y ),( x, y ),( x, y ) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x ) ( x )( x ) x( x ) x x fx [, x ] x x fx [, x ] x x f [ x, x, x f ( x ) f ( x ) f ( x ) f ( x ) f [ x, x ] f [ x, x ] ] x x..6 Fid quadratic fuctio which passes through the followig poits (, ),(,),(, ). (, ),(,),(, ) ( x, y ),( x, y ),( x, y ) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x )( ) ( x )( x ) x x x x x fx f ( x ) f ( x ) [, x ] x x f ( x ) f ( x ) fx [, x ] x x f [ x, x ] f [ x, x ] ( ) fx [, x, x ] x x 6

37 Adrew Powuk - Math 49 (Numerical Aalysis)..7 Fid cubic polyomial which passes through the followig poits (,),(,),(, ),(, 7). (,),(,),(, ),(, 7) ( x, y ),( x, y ),( x, y ),( x, y ) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x x )( x x )( x x ) f [ x, x, x, x ] ( x ) ( x )( x ) ( x )( x )( x ) x( x ) x x fx [, x ] fx f [, x ] x x [ x, x ] 4 x x fx f [, x, x ] x x [ x, x, x ] x x f [ x, x, x, x ] f ( x ) f ( x ) x x f ( x ) f ( x ) f ( x ) f ( x ) 7 4 (,),(,),(, ),(, 7) f [ x, x ] f [ x, x ] f[ x, x ] f[ x, x ] 4 f [ x, x, x ] f [ x, x, x ] x x x fx [ ] x fx [ ] x fx [ ] x fx [ ] 7 f x, x f x, x 7 f x, x 4 f [ x, x, x ] 4 f [ x, x, x ] fx [, x, x, x ] 7

38 Adrew Powuk - Math 49 (Numerical Aalysis)..8 Fid cubic fuctio which passes through the followig poits (, ),(,),(, 8),(,7). (, ),(,),(, 8),(,7) ( x, y ),( x, y ),( x, y ),( x, y ) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x x )( x x )( x x ) f [ x, x, x, x ] ( x ) ( x )( x ) ( x )( x )( x ) x f ( x ) f ( x ) fx [, x ] x x f ( x ) f ( x ) 8 7 fx [, x ] 7 x x f ( x ) f ( x ) f [ x, x ] 9 x x f [ x, x ] f [ x, x ] 7 fx [, x, x ] x x f [ x, x ] f [ x, x ] 9 7 f [ x, x, x ] 6 x x f [ x, x, x ] fx [, x, x ] 6 fx [, x, x, x ] x x 8

39 Adrew Powuk - Math 49 (Numerical Aalysis)..9 Fid cubic fuctio which passes through the followig poits (,),(,),(,),(, 7). (,),(,),(,),(, 7) ( x, y ),( x, y ),( x, y ),( x, y ) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x x )( x x )( x x ) f [ x, x, x, x ] ( x ( )) ( x ( ))( x ) ( x ( ))( x )( x ) ( x ) x( x ) x( x ) x x fx [, x ] x x ( ) fx f [, x ] x x [ x, x ] 6 x x fx [, x, x ] x x ( ) f [ x, x, x ] f f ( x ) f ( x ) f ( x ) f ( x ) f ( x ) f ( x ) 7 f [ x, x ] f [ x, x ] f[ x, x ] f[ x, x ] 6 x x f [ x, x, x ] f [ x, x, x ] [ x, x, x, x ] x x ( ) 9

40 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid cubic fuctio which passes through the followig poits (,),(, ),(, 5),(, 7). (,),(, ),(, 5),(, 7) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x x )( x x )( x x ) f [ x, x, x, x ] P ( x) ( x ) ( x )( x ) ( x )( x )( x ) x fx f ( x ) f ( x ) [, x ] x x f ( x ) f ( x ) 5 fx [, x ] x x f ( x ) f ( x ) 7 5 f [ x, x ] x x f [ x, x ] f [ x, x ] fx [, x, x ] x x f[ x, x ] f[ x, x ] f [ x, x, x ] x x f [ x, x, x ] f [ x, x, x ] f [ x, x, x, x ] x x 4

41 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid cubic fuctio which passes through the followig poits. (,) (,7) (,7) (,9) x x f x, x P x f x 5 x x x x f x, x, x x x x x x x f x, x, x, x x, f x x, f x 7 x, f x 7 x, f x 9 x, f x x, f x 7 f x f x 7 f x, x x x x, f x 7 f x f x 7 7 f x, x x x x, f x 9 f x f x 9 7 f x, x x x

42 Adrew Powuk - Math 49 (Numerical Aalysis) f f f f f x f x 7 x, x x x f x f x 7 7 x, x x x x, x x x 6 f x, x f x, x 6 x, x, x 57 x x f x f x f x, x, x f x, x f x, x 966 x x 4 f f f f x, x f x, x 6 x, x, x 57 x x f x, x f x, x 966 x, x, x 4 x x f x, x, x f x, x, x 4 57 x, x, x, x x x P x f x x x f x, x 5 x x x x f x, x, x x x x x x x f x, x, x, x P x x 6 x x 57 x x x 5 5 x P x x 6 x x 57 x x 9x 9x x 4

43 Adrew Powuk - Math 49 (Numerical Aalysis) Verificatio F[x_]=+9 x-9 x + x ; F[] F[] F[] F[] (,) (,7) (,7) (,9) (,),(,),(, ),(, 7) x fx [ ] x fx [ ] 7 x fx [ ] 7 x fx [ ] 9 7 f x, x f x, x 9 7 f x, x 966 f [ x, x, x ] f[ x, x, x ] x x x x f [ x, x, x ] f[ x, x, x ] f [ x, x, x, x ] 4

44 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid cubic fuctio which passes through the followig poits (, ),(, ),(,),(, 5). (, ),(, ),(,),(, 5) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x x )( x x )( x x ) f [ x, x, x, x ] P ( x) ( x ) ( x )( x ) ( x )( x )( x ) P ( x) x x x f ( x ) f ( x ) f [ x, x ] x x f ( x ) f ( x ) ( ) fx [, x ] 7 x x f ( x ) f ( x ) 5 f [ x, x ] 5 x x f [ x, x ] f [ x, x ] 7 fx [, x, x ] x x f[ x, x ] f[ x, x ] 5 7 f [ x, x, x ] 4 x x f [ x, x, x ] f [ x, x, x ] 4 fx [, x, x, x ] x x 44

45 Adrew Powuk - Math 49 (Numerical Aalysis).. Fid iterpolatio polyomial which passes through the followig poits (,),(, 7),(, 5),(, ). (,),(, 7),(, 5),(, ) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] ( x x )( x x )( x x ) f [ x, x, x, x ] P ( x) ( x )4 ( x )( x ( )) ( x )( x ( ))( x ) P ( x) x x x f ( x ) f ( x ) 7 f [ x, x ] 4 x x f ( x ) f ( x ) 5 ( 7) fx [, x ] 4 x x ( ) f ( x ) f ( x ) 5 f [ x, x ] x x f [ x, x ] f [ x, x ] 4 4 fx [, x, x ] x x f[ x, x ] f[ x, x ] 4 f [ x, x, x ] x x ( ) f [ x, x, x ] f [ x, x, x ] f [ x, x, x, x ] x x 45

46 Adrew Powuk - Math 49 (Numerical Aalysis)..4 Fid iterpolatio polyomial which passes through the followig poits (,),(,),(,),(, 6)(4,5). (,),(,),(,),(, 6)(4,5) P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] 5 ( x x )( x x )( x x ) f [ x, x, x, x ] 5 ( x x )( x x )( x x )( x x ) f [ x, x, x, x, x ] 4 P ( x) ( x ) ( x )( x )5 ( x )( x )( x )5 ( x )( x )( x )( x ) x x x x fx 4 f [ x, x, x, x ] fx [, x, x, x ] [, x, x, x, x ] 4 x x 4 4 f [ x x x x f[ x, x, x ] f[ x, x, x ] 47 4,,, ] 9 4 x x 4 4 f [ x, x, x ] f [ x, x, x ] 5 fx [, x, x, x ] x x f [ x, x ] f [ x, x ] fx [, x, x ] 5 x x f[ x, x ] f[ x, x ] 5 f [ x, x, x ] x x f[ x, x ] f[ x, x ] f [ x, x, x ] 47 4 x x 4 4 f [ x ] f [ x ] fx [, x ] x x f[ x ] f[ x ] f [ x, x ] x x f[ x ] f[ x ] 6 f [ x, x ] 5 x x f[ x ] f[ x ] f [ x, x ] 44 4 x x

47 Adrew Powuk - Math 49 (Numerical Aalysis)..5 Fid iterpolatio polyomial which passes through the followig poits (, ),(,),(, 4),(, 9)(4,6),(5,5). (, ),(,),(, 4),(, 9)(4,6),(5,5) x, y, x, y,..., x, y 5 5 x, f x f x f x x, f x, f x, x x x f x f x 4 x, f x 4, f x, x x x f x f x 9 4 x, f x 9, f x, x 5 x x f x f x x 4, f x 6, f x, x x x 4 4 f x f x x 5, f x 5, f x, x x x f x, x f x, x f x, x f x, x, f x, x, x x x f x, x f x, x 5 f x, x 5, f x, x, x x x f x, x f x, x f x, x 7, f x, x, x 4 4 x x 4 4 f x, x f x, x f x, x 9, f x, x, x x x

48 Adrew Powuk - Math 49 (Numerical Aalysis) f x, x, x f x, x, x f x, x, x f x, x, x, f x, x, x, x x x f x, x, x f x, x, x 4 f x, x, x, f x, x, x, x 4 4 x x 4 4 f x, x f x, x, x, f x, x, x, x, x f x, x, x x x 5 5 f x, x, x, x f x, x, x, x f x, x, x, x 4 f x, x, x, x, f x, x, x, x, x 4 4 x x 4 4 f x, x, x, x f x, x, x, x f x, x, x, x, f x, x, x, x, x x x 5 5 f x, x, x, x, x 4 f x, x, x, x, x f x, x, x, x, x f x, x, x, x, x, f x, x, x, x, x, x x x 5 Iterpolatio polyomial x x f x, x x x x x f x, x, x x x x x x x f x, x, x, x P x f x 5 x x x x x x x x f x, x, x, x, x 4 x x x x x x x x x x f x, x, x, x, x, x

49 Adrew Powuk - Math 49 (Numerical Aalysis) P x x x x x x x x x x x x x x x x 5 4 x x( x ) x x x x 49

50 Adrew Powuk - Math 49 (Numerical Aalysis)..6 Fid iterpolatio polyomial which passes through the followig poits. (,) (,7) (,7) (,9) (4,546) (5,95) (6,55987) Iterpolatio polyomial x x f x, x x x x x f x, x, x x x x x x x f x, x, x, x x x x x x x x x f x, x, x, x, x P x f x 5 x x x x x x x x x x f x, x, x, x, x, x x x x x x x x x x x x x f x, x, x, x, x, x, x x, f x x, f x 7 x, f x 7 x, f x 9 x 4, f x x 5, f x x 6, f x

51 Adrew Powuk - Math 49 (Numerical Aalysis) x, f x x, f x 7 f x f x 7 f x, x x x x, f x 7 f x f f x, x x x x, x x x x, f x 9 f x f x 9 7 f x 4, f x f x f x f x x, x 4 x x 4 4 x 5, f x f x f x f 5 4 x, x 4 5 x x x 6, f x f x f x f x, x 5 6 x x

52 Adrew Powuk - Math 49 (Numerical Aalysis) f f f f f x f x 7 x, x x x f x f x 7 7 x, x x x x, x x x 6 f x, x f x, x 6 x, x, x 57 x x f x f x f x, x f x, x 966 f x, x, x x x f x f x f 468 f f 4 x, x 4 x x 4 4 x, x x, x 5 6 x x f x f x x x f x f x

53 Adrew Powuk - Math 49 (Numerical Aalysis).4 (*) Error i polyomial iterpolatio.4. (*) Properties of divided differeces f x x x! f x x Theorem ( ) [,,..., ] ( ), (, ) For pairwise distict poits x, x,..., x i the doaub of a -times diffeetiable fuctio where the -th there exists ad iterior poiot mi x, x,..., x, m ax x, x,..., x derivative of f equals! times the -th divided differece at these poits: f f[ x, x,..., x ] f ( ), mi x, x,..., x, max x, x,..., x! Proof Let of ( ) P x is the iterpolatio polyomial for P x that the highest therm of P x is f [ x, x,..., x ] x x x x... x x f at x, x,..., x. The it follows from the Newto form. Let g be the reimader of the iterpolatio defied by g f P. The g has zeros x, x,..., x. By applyig the Rolle s theorem first to g, the to g ', ad so o util ( ) g, we fid that ( ) g has zero. This meas that ( ) ( ) ( ) g f P f[ x, x,..., x ]! the ( ) f[ x, x,..., x ] f ( ), mi x, x,..., x, max x, x,..., x.! 5

54 Adrew Powuk - Math 49 (Numerical Aalysis) ( ) f [ x, x,..., x ] f ( ), ( x, x )! P ( x) f ( x ) ( x x ) f [ x x ] f f (), ( x ) ( x x ) ( ) fx [ ]! ( x, x ) x x (), x f ( ) lim x lim x x x x () () lim P ( x) lim f ( x ) ( x x ) f f ( x ) ( x x ) f x x x x x ( ) ( ) ( ) f [ x, x,..., x ] f ( ), ( x, x )! P ( x) f ( x ) ( x x ) f [ x, x ] ( x x )( x x ) f [ x, x, x ] () () f ( x ) ( x x ) f ( ) ( x x )( x x ) f ( )! () fx [, x ] f ( ), ( x, x )! () f [ x, x, x ] f ( ), ( x, x )! lim x x x lim x x lim x x x lim x x x x x x x x x x x x x x lim P ( x) () () lim f ( x ) ( x x ) f ( ) ( x x )( x x ) f ( )! () () f ( x ) ( x x ) f ( x ) ( x x )( x x ) f ( x )! () () f( x ) ( x x ) f ( x ) ( x x ) f ( x )! 54

55 Adrew Powuk - Math 49 (Numerical Aalysis).4. (*) Geeralized Rolle s theorem Theorem () - If a real-valued fuctio f is cotiuous o a closed iterval [a,b], differetiable o the ope iterval (a, b), ad f(a) = f(b), the there exists a c i the ope iterval (a, b) such that Or If ) f : ) f is cotiuous o a closed iterval [a,b] ) f is differetiable o a ope iterval (a,b) 4) f(a) = f(b) f ' c. the there exists a c i the ope iterval (a, b) such that f ' c. Proof We kow that f a f b Case Fuctio is costat. ' x c a, b, f ' c f x cost f a f b f 55

56 Adrew Powuk - Math 49 (Numerical Aalysis) For all c ab, f ' c, the the theorem is true. Case Fuctio is ot costat. Case a It is possible to fid x ab, such that f x f a It is possible to fid a maximum of all Fuctio f f x i.e. f such that f x f a is cotiuous the from the Extreme Value Theorem we kow that f ad it is possible to fid x ab, max such that max f max f x f x. max x max a, b max. x max f x ab, max is fiite x f x ab, f ' x. By assumptio the fuctio is differetiable, the accordig to the Fermat s Theorem max The the theorem is true ad c x. max Case b It is possible to fid x ab, such that f x f a It is possible to fid a maximum of all Fuctio f f x such that f x f a i.e. f is cotiuous the from the Extreme Value Theorem we kow that ad it is possible to fid x mi ab, such that mi mi f max f x f x. x mi a, b mi. x f f x a, b mi mi is fiite x f x a, b f ' x. By assumptio the fuctio is differetiable, the accordig to the Fermat s Theorem mi The the theorem is true ad c x. mi 56

57 Adrew Powuk - Math 49 (Numerical Aalysis) Theorem Let us cosider - - cotiuously differetiable fuctio o a closed iterval - -th derivative exists o the ope iterval ab, ab, - there are itervals give by a b a b... a b i ab, such that Proof the f k bk f a there is a umber c for every k i ab, from to. such that the -th derivative of f at c is zero i.e. ( ) f c. From preseted theorem it is possible to get the followig coclusio. 57

58 Adrew Powuk - Math 49 (Numerical Aalysis) Theorem If the fuctio f : a, b is - cotiuous at ab, - differetiable at ab, - has + differet roots x x x... x i ab, the derivative of the fuctio f ' : a, b has at least differet roots c, c,...,,,, ab, c. Proof Let us cosider the roots of the fuctio f i.e. x x x... x. For every iterval x, x i i we have - fuctio - fuctio f f - f xi f xi is cotiuous o x, x i i, is differetiable o x, x i i ( x i are the roots), the accordig to the classical Roll s theorem exists some x, x i i i such that i There are itervals x, x i i the there are f ' i.e. the derivative has differet roots. i differet umbers ab, i f '. such that 58

59 Adrew Powuk - Math 49 (Numerical Aalysis) Theorem (Geeralised Roll s theorem) If the fuctio f : a, b is - cotiuous at ab, - -times differetiable at ab, - has + differet roots x x x... x i ab, the derivative of the fuctio ( f ) : a, b has at least oe root ab, Proof i.e. exist ab, such that ( ) f. We kow that fuctio f : a, b is - cotiuous at ab, - differetiable at ab, - has + differet roots x x x... x i ab, the accordig to previous theorem derivative of the fuctio f ' : a, b has at least differet roots c, c,...,,,, ab, c. 59

60 Adrew Powuk - Math 49 (Numerical Aalysis) c, c a b,,, Because - by assumptio is differetiable at, the ab, f () - c, c,, a, b x ab, f () x is cotiuous at the iterval the the fuctio c,, ab ) () f x is cotiuous at the iterval c, c,,. (because c, ab,, We kow that fuctio () f : c, c,, is - cotiuous at c, c,, - differetiable at, ab i particular c c,,, - has differet roots c c... c i c, c a, b,,,,, the accordig to previous theorem derivative of the fuctio c c... c,,., () f : c, c,, has at least - differet roots By iductio ( ) f x has oe root ab, 6

61 Adrew Powuk - Math 49 (Numerical Aalysis).4. Error theorem Applicatios f ( x) P ( x) error f ( x) P ( x) b a f ( x) dx P ( x) dx b b a error f ( x ) P ( x) dx a d d f ( x) P ( x) dx dx d error f ( x ) P ( x) dx 6

62 Adrew Powuk - Math 49 (Numerical Aalysis) Theorem If f is times cotiuously differetialble o closed iterval polyomial of degree at most that iterpolates iterval. The for each x i the iterval there exists f ad distict poits,,..., at x I a, b i that iterval such that: P x be a x x x i that ( x x )( x x )... ( x x ) f x P x x ( )! Proof ( ) ( ) ( x) f ( ),, x x f : a, b x, x,..., x ab, - grid poits,,,..., i i f x P x i f x P x t f t P t w t wx... i w x x x x x x x x x i 6

63 Adrew Powuk - Math 49 (Numerical Aalysis) P x w x P x w x P x w x f x x f x P x w x f x x x x x... x x f x x x x x f x P x x f x P x w x w x f x P x x x x x... x x w x f x P x x x... x x w x f x P x w x f x P x... w x f x P x x x x x w x x f x P x w x x x x x x x... f x P x w x f x P x f x P x w x w x f x P x f x P x x f x P x w x t Fuctio has + roots at x, x,..., x, x ab,. 6

64 Adrew Powuk - Math 49 (Numerical Aalysis) Case oe root x t f t P t P x w x P x w x f x t f t P t w t f x t f t P t t x P x w x P x w x f x ' t f ' t P ' t t x ' f x ' ' ' Fuctio such that t has two roots i the iterval ' i.e. ab, the accordig to the theorem, exists ab, f P P x wx f x ' ' ' The order of the iterpolatio polyomial is i.e. P x x cost the f x P x P w x f x P x ' w x f x P x f ' w x f x P x f ' w x ' ' f ' ' f f x P x f w x f x P x f x x P ' 64

65 Adrew Powuk - Math 49 (Numerical Aalysis) Case two poits x, x f x P x t f t P t w t w x f x P x t f t P t t x t x w x w t t x t x t f t P f x P x t t x t x w x t f t P f x P x t t x t x t x t x w x t f t P f x P x t t x t x w x t f t P f x P x t t x t x w x t f t P f t x P x w x t f t P f x P x t w x ' ' ' ' ' ' ' ' ' ' ' ' '' '' '' ' ' '' '' '' '' '' '' The order of the iterpolatio polyomial is i.e. P x wx f x '' t f '' t P t at b the P t at b '' '' t Fuctio has three roots ( x, x, x ) i the iterval ab, ab, such that '' i.e. the accordig to the theorem, exists 65

66 Adrew Powuk - Math 49 (Numerical Aalysis) f w x P x w x f x '' '' f '' f x P x P x f '' w x f x Case three poits x, x, x w t t x t x t x w ' t t x ' t x t x t x t x ' t x t x t x t x ' w ' t t x t x t x t x t x t x t x ' t x t x t x ' t x ' t x t x t x ' t x t x t x t x t x t x w '' t t x ' t x t x t x ' t x ' t x ' t x ' t x ' 6 w ' '' t t x ' t x ' 66

67 Adrew Powuk - Math 49 (Numerical Aalysis) f x P x w x w t t x t x t x t f t P t w t t f t P t P x w x f x P x w x f x P x w x f x P x w x f x ' t f ' t P ' t w ' t '' t f '' t P '' t w '' t ''' t f ''' t P ''' t w ''' t ''' ''' ''' 6 The order of the iterpolatio polyomial is P ''' t at bt c ''' i.e. P t at bt c the P x wx f x ''' t f ''' t 6 Fuctio ab, such that t has four roots ( x, x, x, x ) i the iterval ab, ''' i.e. the accordig to the theorem, exists f w x P x w x f x ''' ''' 6 f ''' 6 f x P x P x () w x f x f 6 67

68 Adrew Powuk - Math 49 (Numerical Aalysis) Case - grid poits x, x,..., x f x P x f ( ) w x! 68

69 Adrew Powuk - Math 49 (Numerical Aalysis) f ( x) e ( x, y ),( x, y ),( x, y ) x (,),(, e),(, e ) ( ) x f ( x) e x, x, ( x x )( x x )... ( x x ) ( ) ( x )( x )( x ) () error( x) f ( ) f ( ) ( )! ( )! ( x )( x )( x ) ( x )( x )( x ) e e ( )! ( )! Iterpolatio polyomial (,),(, e),(, e ) y a bx cx y a b c a a () * y() e a b * c * b * c * y() e a b * c * b * c * b c e b e c b 4c e ( e c ) 4c e ( e c ) 4c e e c 4c e c e e e e c e e b e c e e e e e e e e y a bx cx e e x x 69

70 Adrew Powuk - Math 49 (Numerical Aalysis) e=exp[]; Clear[x] Plot[{+(-(/) e +e-/)x+((e -e+)/)x,exp[x]},{x,,}] N[+(-(/) e +e-/)x+((e -e+)/)x ] x e.+.46 x x 7

71 Adrew Powuk - Math 49 (Numerical Aalysis).5 (**) Hermite iterpolatio (Newto form of the iterpolatio polyomial) Give f () i x, i, j k fid p x p m k k i i ( j) ( j) p x f x, j k i i i,... k such that Theorem For give iterpolatio coditios exists a uique iterpolatio polyomial iterpolatio coditios. p pm followig hermite 7

72 Adrew Powuk - Math 49 (Numerical Aalysis).5. Example p Quadratic iterpolatio for p p ' p x a bx cx p x b cx p a b c p ' b c p a b c o solutio p Cubic iterpolatio p p ' p x a bx cx dx p x b cx dx p a b c d p ' b c d p a b c d may solutios 7

73 Adrew Powuk - Math 49 (Numerical Aalysis) Special case () ( k ),,..., f x f x f x p Pk The solutio is the Taylor polyomial Newto divided differece method. x,..., x, x,..., x,..., x,..., x k k k p x f x f x, x x x f x, x, x x x... f x f x f x x f x x f x, lim, lim ' x x x x x x f x, x,..., x f x k! k ( k ) 7

74 Adrew Powuk - Math 49 (Numerical Aalysis) Appropriate table of the Newto s divided differeces require iformatio about derivatives. Example, p' p p 6, p ' 7, p '' 8 Table x f /!= ,,,,,,,,,, f x f f x f x f x x f x x f x x x x x x x 74

75 Adrew Powuk - Math 49 (Numerical Aalysis).5. Example Use the exteded ewto divided differece method to obtai a quartic polyomial that takes the value. X P(x) P (x) -9 4 x () f () f () f () f (4) f ',,,,,,,,, p x f x f x x x 4 f x x x x x x x f x x x x x x x x x x f x x x x x x x x x x x x x x x x x x x x x x p x x x x x 5x ' x 9 x 9x x p x x x x x x p x x p 4 75

76 Adrew Powuk - Math 49 (Numerical Aalysis).6 (**) Hermite iterpolatio (Lagrage form of the iterpolatio polyomial) Lagrage form of the iterpolatio polyomial ' ' p x f x l x x x l x f x x x l x i i i i i i i i i i.6. Example, ',, ' p x y p x d p x y p x d x x x x l x, l x x x x x l ' x, l ' x x x x x ' ' p x f x l x x x l x f x x x l x i i i i i i i i i i ' ' f ' x x x l x f ' x x x l x p x f x l x x x l x f x l x x x l x p x y x x x x x x x y x x x x x x x x x x x x x d x x d x x x x x x 76

77 Adrew Powuk - Math 49 (Numerical Aalysis).7 (*) Multivariable Lagrage iterpolatio (rectagle, hypercube) Iterpolatio coditios for N, N L N, N L N N x x x, L x L x L L x L L L x x L L Lagrage iterpolatio i D x, L. L x x u x u N x u N x u N i i x u u L L i x,y L L. Lagrage iterpolatio i D,,,,,,,, i, j i j u x y u N x N y u N x N y u N x N y u N x N y u x y u N x N y i j xy,, z L L L. Lagrage iterpolatio i D,,,,, i, j, k i j k u x y z u N x N y N z Etc. i j k 77

78 Adrew Powuk - Math 49 (Numerical Aalysis).8 (*) Shape fuctios

79 Adrew Powuk - Math 49 (Numerical Aalysis).9 (*) Trigoometric iterpolatio 79

80 Adrew Powuk - Math 49 (Numerical Aalysis). Splie iterpolatio 8

81 Adrew Powuk - Math 49 (Numerical Aalysis).. (*) Liear splies S ( x) a x b, x [ x, x ] S ( x) a x b, x [ x, x ] Sx ( )... S ( x) a x b, x [ x, x ] Poits (+) ( x, y ),( x, y ),...,( x, y ) I is ecessary to calculate ukows coefficiets Number of equatios = = umber of ukows a i, b i. 8

82 Adrew Powuk - Math 49 (Numerical Aalysis) = itervals S( x) ax b, x [ x, x ] S ( x) S ( x) ax b, x [ x, x ] S( x) ax b, x [ x, x] ( x, y ),( x, y ),( x, y ),( x, y ) +=+=4 poits a, b, a, b, a, b - *=*=6 costats y S ( x ) y a x b y S ( x ) y a x b y S ( x ) y a x b y S ( x ) y a x b y S ( x ) y a x b y S ( x ) y a x b =6 equatio =6 ukows Number of equatios = umber of ukows The solutio is uique. 8

83 Adrew Powuk - Math 49 (Numerical Aalysis)... Example (,), (,),(,) ( x, y ) y=x ( x, y ) S ( x) (,) S ( x ) y=-x+ (,) xx, [,] Sx ( ) x, x [,] (,) ( x, y ) (,), (,),(,) S( x) ax b, x [ x, x ] S( x) ax b, x [,] S( x) S ( x) ax b, x [ x, x ] S ( x) ax b, x [, ] ( x, y ) y a x b a b S( x) ax b, ( x, y) y ax b a b ( x, y ) y a x b a b S ( x) ax b, ( x, y ) y ax b a b a b a b a b a b a x b, x [,] Sx ( ) a x b, x [,] xx, [,] Sx ( ) x, x [,] 8

84 Adrew Powuk - Math 49 (Numerical Aalysis)... Geeral case Iterpolatio coditios Number of poits: + Number of itervals: - ukows - - equatios a, b i i y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x )... y S ( x ) y S ( x ) y S ( x ) y S ( x ) y a x b y a x b y a x b y a x b y a x b y a x b y a x b y a x b 84

85 Adrew Powuk - Math 49 (Numerical Aalysis)... Example (,), (,),(,) S ( x) a x b, x [,] Sx ( ) S ( x) a x b, x [,] b y S ( x ) S () a b a b y S ( x ) S () a b a b y S ( x ) S () a b a b y S ( x ) S () a b a a b a b a b b a ( ) a S ( x) a x b, x [,] Sx ( ) S ( x) a x b, x [,] S ( x) x, x [,] Sx ( ) S ( x) ( ) x, x [,] S ( x) x, x [,] Sx ( ) S ( x) x, x [,] 85

86 Adrew Powuk - Math 49 (Numerical Aalysis).. (*) Quadratic splies S ( x) a b x c x, x [ x, x ] S ( x) a b x c x, x [ x, x ] Sx ( )... S x a b x c x x x x ( ), [, ] Iterpolatio by usig oly poits Iterpolatio coditios Number of poits: + Number of itervals: - ukows - a, b, c i i i - equatios y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x )... y S ( x ) y S ( x ) y S ( x ) y S ( x ) y a x b x c y a x b x c y a x b x c y a x b x c y a x b x c y a x b x c y a x b x c y a x b x c There are ifiitely may solutios of this iterpolatio problem. 86

87 Adrew Powuk - Math 49 (Numerical Aalysis) Poits - + ( x, y ),( x, y ),...,( x, y ) Itervals - ukows a, b, c. i i i.. Cotiuity equatios for derivative (- equatios) ' ' S ( x ) S ( x ) ' ' S ( x ) S ( x )... ' ' S ( x ) S ( x ) b c x b c x b c x b c x... b c x b c x Number of equatios ( ) Number of ukows y S ( x ) y S ( x ) ' ' S ( x ) S ( x ) y S ( x ) y S ( x ) ' ' S ( x ) S ( x ) y S ( x ) y S ( x ) ' ' S ( x ) S ( x ) 4... y S ( x ) y S ( x ) ' ' S ( x ) S ( x ) y S ( x ) y S ( x ) 87

88 Adrew Powuk - Math 49 (Numerical Aalysis) Typical assumptios Additioal coditios S '' t a S t b x c Or S '' t a S t b x c 88

89 Adrew Powuk - Math 49 (Numerical Aalysis)... Fid quadratic splie which pass through the followig poits (,),(,),(,5),,,,, 5 ( x, y ),( x, y ),( x, y ) S ( x) a b x c x, x [,] Sx ( ) S ( x) a b x c x, x [,] S ( x ) y S () a b c S ( x ) y S () a b c S '( x ) S '( x ) S '() S '() b c b c S ( x ) y S () a b c S ( x ) y S () 5 a b c 5 a b c a b c b c b c a b c a b c 5 a 89

90 Adrew Powuk - Math 49 (Numerical Aalysis) Clear[x]; Clear[a]; S[x_]=a+b*x+c*x^; S[x_]=a+b*x+c*x^; ds[x_]=b+*c*x; ds[x_]=b+*c*x; Sol=Solve[{S[]==,S[]==,dS[]==dS[],S[]==,S[]= =5},{a,a,b,b,c,c}] a:=; f[x_]=extract[s[x]/.sol,] f[x_]=extract[s[x]/.sol,] f[x_]=if[x==,f[x],f[x]]; Plot[f[x],{x,,}] Solutio {{a,b-(/)+a/,b/-( a)/,c/-a/,c/+a/}} +x +x

91 Adrew Powuk - Math 49 (Numerical Aalysis).. Cubic Splies ( x x) M ( x x ) M ( x x) y ( x x ) y j j j j j j j j S ( x) j 6( x x ) x x j j j j x x ( x x) M ( x x ) M 6 M j j j j j j M x x x x x x j j j j j j M M M j j j 6 6 y y y y j j j j, j,..., x x x x j j j j 9

92 Adrew Powuk - Math 49 (Numerical Aalysis) Equatios S ( x) a b x c x d x, x [ x, x ] S ( x) a b x c x d x, x [ x, x ] Sx ( )... S x a b x c x d x x x x ( ), [, ] Poits (+) ( x, y ),( x, y ),...,( x, y ) y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x )... y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x ) y S ( x ) y ( ) S x y S ( x )... y S ( x ) y S ( x ) y S ( x ) y ( ) S x y a b x c x d x y a b x c x d x y a b x c x d x y a b x c x d x y a b x c x d x y a b x c x d x y a b x c x d x y a b x c x d x Cotiuity equatios for derivative (- equatios) ' ' S ( x ) S ( x ) ' ' S ( x ) S ( x )... ' ' S ( x ) S ( x ) b c x d x b c x d x b c x d x b c x d x... b c x d x b c x d x 9

93 Adrew Powuk - Math 49 (Numerical Aalysis) Cotiuity equatios for secod order derivative (- equatios) '' '' S ( x ) S ( x ) '' '' S ( x ) S ( x )... '' '' S ( x ) S ( x ) c 6d x c 6d x c 6d x c 6d x... c 6d x c 6d x 4 To complete the system, we are addig the followig equatios: S '' ( x ) S '' ( x ) y '' y' C y Cx D it is a lie !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ( x x) M ( x x ) M ( x x) y ( x x ) y j j j j j j j j S ( x) j 6( x x ) x x j j j j x x ( x x) M ( x x ) M 6 j j j j j j M M x x x x x x j j j j j j M M M j j j 6 6 y y y y j j j j, j,..., x x x x j j j j!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 9

94 Adrew Powuk - Math 49 (Numerical Aalysis)... Fid cubic splie for (,),(,),(,6) x=;x=;x=; y=;y=;y=6; S[x_]=a+b*x+c*x^+d*x^; S[x_]=a+b*x+c*x^+d*x^; ds[x_]=b+*c*x+*d*x^; ds[x_]=b+*c*x+*d*x^; ds[x_]=*c+6*d*x; ds[x_]=*c+6*d*x; Sol=Solve[{S[x]==y,S[x]==y,dS[x]==dS[x],dS[x]==dS[x],S[x]==y,S[x ]==y,ds[x]==,ds[x]==},{a,a,b,b,c,c,d,d}] f[x_]=extract[s[x]/.sol,] f[x_]=extract[s[x]/.sol,] f[x_]=if[x<,f[x],f[x]]; Plot[f[x],{x,,}] Solutio {{a,a,b,b-6,c,c6,d,d-}} S=x S=-6 x+6 x -x Plot[Piecewise[{{x^,x<},{-6 x+6 x^-x^,x>}}],{x,,}] Solutio

95 Adrew Powuk - Math 49 (Numerical Aalysis) Method x=;x=;x=; y=;y=;y=6; x ; x ; x ; y ; y ; y 6; ( x x) M ( x x ) M ( x x) y ( x x ) y j j j j j j j j S ( x) j 6( x x ) x x 6 j j j j x x ( x x) M ( x x ) M j j j j j j M M j j j j j j M M M j j j 6 6 j x x x x x x y y y y j j j x x x x j j j j, j,..., ( x x) M ( x x ) M ( x x) y ( x x ) y j : S ( x) 6( x x ) x x x x ( x x) M ( x x ) M 6 ( x x) M ( x x ) M ( x x) y ( x x ) y j : S ( x) 6( x x ) x x x x ( x x) M ( x x ) M 6 x = ; x = ; x = ; y ; y ; y 6; ( x) M ( x ) M ( x) ( x ) S ( x) ( x) M ( x ) M 6( ) 6 ( x) M ( x ) M ( x) ( x )6 S ( x) ( x) M ( x ) M 6( ) 6 95

96 Adrew Powuk - Math 49 (Numerical Aalysis) M, M, M M M M M M,? j x x x x x x y y y y M M M j j j 6 6 x x x x j j j j j j j j j j j j j x x x x x x y y y y j : M M M : 6 6 x x x x 6 j : M j 6 6 M 5 j : M 4 j : M 4 6 ( x) ( x ) 6 ( x) ( x ) S ( x) ( x) ( x )6 x 6( ) 6 6( ) 6 ( x) 6 ( x ) ( x) ( x )6 S ( x) ( x)6 ( x ) 6x 6x x j, 96

97 Adrew Powuk - Math 49 (Numerical Aalysis)... Example (,),(,),(,) x, x, x y, y, y ( x x) M ( x x ) M ( x x) y ( x x ) y j j j j j j j j S ( x) j 6( x x ) x x j j j j x x ( x x) M ( x x ) M 6 j j j j j j M M j x x x x x x j j j j j j M M M j j j 6 6 y y y y j j j j, j,..., x x x x j j j ( x x) M ( x x ) M ( x x ) y ( x x ) y j : S ( x) 6( x x ) x x x x ( x x) M ( x x ) M 6 ( x x) M ( x x ) M ( x x) y ( x x ) y j : S ( x) 6( x x ) x x x x ( x x) M ( x x ) M 6 x, x, x y, y, y ( x) ( x ) M ( x) ( x ) : ( ) ( ) ( ) j S x x x M 6( ) 6 ( x) M ( x ) ( x) ( x ) j : S ( x) ( x) M ( x ) 6( ) 6 x x x x x x j j j j j j : M M j j 6 6 j j j j j x x x x x x y y y y j : M M M j 6 6 x x x x M y y y y x x x x j j j j 97

Math 128A: Homework 1 Solutions

Math 128A: Homework 1 Solutions Math 8A: Homework Solutios Due: Jue. Determie the limits of the followig sequeces as. a) a = +. lim a + = lim =. b) a = + ). c) a = si4 +6) +. lim a = lim = lim + ) [ + ) ] = [ e ] = e 6. Observe that

More information

*X203/701* X203/701. APPLIED MATHEMATICS ADVANCED HIGHER Numerical Analysis. Read carefully

*X203/701* X203/701. APPLIED MATHEMATICS ADVANCED HIGHER Numerical Analysis. Read carefully X0/70 NATIONAL QUALIFICATIONS 006 MONDAY, MAY.00 PM.00 PM APPLIED MATHEMATICS ADVANCED HIGHER Numerical Aalysis Read carefully. Calculators may be used i this paper.. Cadidates should aswer all questios.

More information

Section A assesses the Units Numerical Analysis 1 and 2 Section B assesses the Unit Mathematics for Applied Mathematics

Section A assesses the Units Numerical Analysis 1 and 2 Section B assesses the Unit Mathematics for Applied Mathematics X0/70 NATIONAL QUALIFICATIONS 005 MONDAY, MAY.00 PM 4.00 PM APPLIED MATHEMATICS ADVANCED HIGHER Numerical Aalysis Read carefully. Calculators may be used i this paper.. Cadidates should aswer all questios.

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Unit 4: Polynomial and Rational Functions

Unit 4: Polynomial and Rational Functions 48 Uit 4: Polyomial ad Ratioal Fuctios Polyomial Fuctios A polyomial fuctio y px ( ) is a fuctio of the form p( x) ax + a x + a x +... + ax + ax+ a 1 1 1 0 where a, a 1,..., a, a1, a0are real costats ad

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation

A collocation method for singular integral equations with cosecant kernel via Semi-trigonometric interpolation Iteratioal Joural of Mathematics Research. ISSN 0976-5840 Volume 9 Number 1 (017) pp. 45-51 Iteratioal Research Publicatio House http://www.irphouse.com A collocatio method for sigular itegral equatios

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

Polynomial Interpolation

Polynomial Interpolation Polyomial Iterpolatio 1 Iterpolatig Polyomials the iterpolatio problem 2 Lagrage Iterpolatio a basis of Lagrage polyomials 3 Neville Iterpolatio the value problem Neville s algorithm a Julia fuctio MCS

More information

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0, Math Activity 9( Due with Fial Eam) Usig first ad secod Taylor polyomials with remaider, show that for, 8 Usig a secod Taylor polyomial with remaider, fid the best costat C so that for, C 9 The th Derivative

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

The Method of Least Squares. To understand least squares fitting of data.

The Method of Least Squares. To understand least squares fitting of data. The Method of Least Squares KEY WORDS Curve fittig, least square GOAL To uderstad least squares fittig of data To uderstad the least squares solutio of icosistet systems of liear equatios 1 Motivatio Curve

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion Topics i Aalysis 3460:589 Summer 007 Itroductio Ree descartes - aalysis (breaig dow) ad sythesis Sciece as models of ature : explaatory, parsimoious, predictive Most predictios require umerical values,

More information

PAijpam.eu ON DERIVATION OF RATIONAL SOLUTIONS OF BABBAGE S FUNCTIONAL EQUATION

PAijpam.eu ON DERIVATION OF RATIONAL SOLUTIONS OF BABBAGE S FUNCTIONAL EQUATION Iteratioal Joural of Pure ad Applied Mathematics Volume 94 No. 204, 9-20 ISSN: 3-8080 (prited versio); ISSN: 34-3395 (o-lie versio) url: http://www.ijpam.eu doi: http://dx.doi.org/0.2732/ijpam.v94i.2 PAijpam.eu

More information

HOMEWORK #10 SOLUTIONS

HOMEWORK #10 SOLUTIONS Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

More information

SOLUTION SET VI FOR FALL [(n + 2)(n + 1)a n+2 a n 1 ]x n = 0,

SOLUTION SET VI FOR FALL [(n + 2)(n + 1)a n+2 a n 1 ]x n = 0, 4. Series Solutios of Differetial Equatios:Special Fuctios 4.. Illustrative examples.. 5. Obtai the geeral solutio of each of the followig differetial equatios i terms of Maclauri series: d y (a dx = xy,

More information

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms. [ 11 ] 1 1.1 Polyomial Fuctios 1 Algebra Ay fuctio f ( x) ax a1x... a1x a0 is a polyomial fuctio if ai ( i 0,1,,,..., ) is a costat which belogs to the set of real umbers ad the idices,, 1,...,1 are atural

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Power Series: A power series about the center, x = 0, is a function of x of the form

Power Series: A power series about the center, x = 0, is a function of x of the form You are familiar with polyomial fuctios, polyomial that has ifiitely may terms. 2 p ( ) a0 a a 2 a. A power series is just a Power Series: A power series about the ceter, = 0, is a fuctio of of the form

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

Math 142, Final Exam. 5/2/11.

Math 142, Final Exam. 5/2/11. Math 4, Fial Exam 5// No otes, calculator, or text There are poits total Partial credit may be give Write your full ame i the upper right corer of page Number the pages i the upper right corer Do problem

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series MATH 4530: Aalysis Oe Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 2017 MATH 4530: Aalysis Oe Outlie

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

Some properties of Boubaker polynomials and applications

Some properties of Boubaker polynomials and applications Some properties of Boubaker polyomials ad applicatios Gradimir V. Milovaović ad Duša Joksimović Citatio: AIP Cof. Proc. 179, 1050 (2012); doi: 10.1063/1.756326 View olie: http://dx.doi.org/10.1063/1.756326

More information

MATH 6101 Fall 2008 Newton and Differential Equations

MATH 6101 Fall 2008 Newton and Differential Equations MATH 611 Fall 8 Newto ad Differetial Equatios A Differetial Equatio What is a differetial equatio? A differetial equatio is a equatio relatig the quatities x, y ad y' ad possibly higher derivatives of

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS. If g( is cotiuous i [a,b], te uder wat coditio te iterative (or iteratio metod = g( as a uique solutio i [a,b]? '( i [a,b].. Wat

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

Differentiable Convex Functions

Differentiable Convex Functions Differetiable Covex Fuctios The followig picture motivates Theorem 11. f ( x) f ( x) f '( x)( x x) ˆx x 1 Theorem 11 : Let f : R R be differetiable. The, f is covex o the covex set C R if, ad oly if for

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

6. Uniform distribution mod 1

6. Uniform distribution mod 1 6. Uiform distributio mod 1 6.1 Uiform distributio ad Weyl s criterio Let x be a seuece of real umbers. We may decompose x as the sum of its iteger part [x ] = sup{m Z m x } (i.e. the largest iteger which

More information

L 5 & 6: RelHydro/Basel. f(x)= ( ) f( ) ( ) ( ) ( ) n! 1! 2! 3! If the TE of f(x)= sin(x) around x 0 is: sin(x) = x - 3! 5!

L 5 & 6: RelHydro/Basel. f(x)= ( ) f( ) ( ) ( ) ( ) n! 1! 2! 3! If the TE of f(x)= sin(x) around x 0 is: sin(x) = x - 3! 5! aylor epasio: Let ƒ() be a ifiitely differetiable real fuctio. At ay poit i the eighbourhood of =0, the fuctio ca be represeted as a power series of the followig form: X 0 f(a) f() ƒ() f()= ( ) f( ) (

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

An Analysis of a Certain Linear First Order. Partial Differential Equation + f ( x, by Means of Topology

An Analysis of a Certain Linear First Order. Partial Differential Equation + f ( x, by Means of Topology Iteratioal Mathematical Forum 2 2007 o. 66 3241-3267 A Aalysis of a Certai Liear First Order Partial Differetial Equatio + f ( x y) = 0 z x by Meas of Topology z y T. Oepomo Sciece Egieerig ad Mathematics

More information

INEQUALITIES BJORN POONEN

INEQUALITIES BJORN POONEN INEQUALITIES BJORN POONEN 1 The AM-GM iequality The most basic arithmetic mea-geometric mea (AM-GM) iequality states simply that if x ad y are oegative real umbers, the (x + y)/2 xy, with equality if ad

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

Introduction to Optimization Techniques

Introduction to Optimization Techniques Itroductio to Optimizatio Techiques Basic Cocepts of Aalysis - Real Aalysis, Fuctioal Aalysis 1 Basic Cocepts of Aalysis Liear Vector Spaces Defiitio: A vector space X is a set of elemets called vectors

More information

Additional Notes on Power Series

Additional Notes on Power Series Additioal Notes o Power Series Mauela Girotti MATH 37-0 Advaced Calculus of oe variable Cotets Quick recall 2 Abel s Theorem 2 3 Differetiatio ad Itegratio of Power series 4 Quick recall We recall here

More information

DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS. Park Road, Islamabad, Pakistan

DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS. Park Road, Islamabad, Pakistan Mathematical ad Computatioal Applicatios, Vol. 9, No. 3, pp. 30-40, 04 DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS Muhammad Aslam Noor, Khalida Iayat Noor ad Asif Waheed

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

Solution of Linear Constant-Coefficient Difference Equations

Solution of Linear Constant-Coefficient Difference Equations ECE 38-9 Solutio of Liear Costat-Coefficiet Differece Equatios Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa Solutio of Liear Costat-Coefficiet Differece Equatios Example: Determie

More information

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not. Quiz. Use either the RATIO or ROOT TEST to determie whether the series is coverget or ot. e .6 POWER SERIES Defiitio. A power series i about is a series of the form c 0 c a c a... c a... a 0 c a where

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

Math 220B Final Exam Solutions March 18, 2002

Math 220B Final Exam Solutions March 18, 2002 Math 0B Fial Exam Solutios March 18, 00 1. (1 poits) (a) (6 poits) Fid the Gree s fuctio for the tilted half-plae {(x 1, x ) R : x 1 + x > 0}. For x (x 1, x ), y (y 1, y ), express your Gree s fuctio G(x,

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

PC5215 Numerical Recipes with Applications - Review Problems

PC5215 Numerical Recipes with Applications - Review Problems PC55 Numerical Recipes with Applicatios - Review Problems Give the IEEE 754 sigle precisio bit patter (biary or he format) of the followig umbers: 0 0 05 00 0 00 Note that it has 8 bits for the epoet,

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 207 Outlie Revistig the Expoetial Fuctio Taylor Series

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Brief Review of Functions of Several Variables

Brief Review of Functions of Several Variables Brief Review of Fuctios of Several Variables Differetiatio Differetiatio Recall, a fuctio f : R R is differetiable at x R if ( ) ( ) lim f x f x 0 exists df ( x) Whe this limit exists we call it or f(

More information

SAMPLING LIPSCHITZ CONTINUOUS DENSITIES. 1. Introduction

SAMPLING LIPSCHITZ CONTINUOUS DENSITIES. 1. Introduction SAMPLING LIPSCHITZ CONTINUOUS DENSITIES OLIVIER BINETTE Abstract. A simple ad efficiet algorithm for geeratig radom variates from the class of Lipschitz cotiuous desities is described. A MatLab implemetatio

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkasas Tech Uiversity MATH 94: Calculus II Dr Marcel B Fia 85 Power Series Let {a } =0 be a sequece of umbers The a power series about x = a is a series of the form a (x a) = a 0 + a (x a) + a (x a) +

More information

MATH 31B: MIDTERM 2 REVIEW

MATH 31B: MIDTERM 2 REVIEW MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate x (x ) (x 3).. Partial Fractios Solutio: The umerator has degree less tha the deomiator, so we ca use partial fractios. Write x (x ) (x 3) = A x + A (x ) +

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Implicit function theorem

Implicit function theorem Jovo Jaric Implicit fuctio theorem The reader kows that the equatio of a curve i the x - plae ca be expressed F x, =., this does ot ecessaril represet a fuctio. Take, for example F x, = 2x x =. (1 either

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent.

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent. 06 微甲 0-04 06-0 班期中考解答和評分標準. ( poits) Determie whether the series is absolutely coverget, coditioally coverget, or diverget. Please state the tests which you use. (a) ( poits) (b) ( poits) (c) ( poits)

More information

An Interpolation Process on Laguerre Polynomial

An Interpolation Process on Laguerre Polynomial Global Joural of Pure ad Applied Mathematics. ISSN 0973-1768 Volume 13, Number 10 (2017), pp. 7089-7099 Research Idia Publicatios http://www.ripublicatio.com A Iterpolatio Process o Laguerre Polyomial

More information

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction Chapter 2 Periodic poits of toral automorphisms 2.1 Geeral itroductio The automorphisms of the two-dimesioal torus are rich mathematical objects possessig iterestig geometric, algebraic, topological ad

More information

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

f(x)g(x) dx is an inner product on D.

f(x)g(x) dx is an inner product on D. Ark9: Exercises for MAT2400 Fourier series The exercises o this sheet cover the sectios 4.9 to 4.13. They are iteded for the groups o Thursday, April 12 ad Friday, March 30 ad April 13. NB: No group o

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

Numerical Method for Blasius Equation on an infinite Interval

Numerical Method for Blasius Equation on an infinite Interval Numerical Method for Blasius Equatio o a ifiite Iterval Alexader I. Zadori Omsk departmet of Sobolev Mathematics Istitute of Siberia Brach of Russia Academy of Scieces, Russia zadori@iitam.omsk.et.ru 1

More information

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. AP Calculus AB Portfolio Project Multiple Choice Practice Name: CALCULUS AB SECTION I, Part A Time 60 miutes Number of questios 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directios: Solve

More information

Taylor expansion: Show that the TE of f(x)= sin(x) around. sin(x) = x - + 3! 5! L 7 & 8: MHD/ZAH

Taylor expansion: Show that the TE of f(x)= sin(x) around. sin(x) = x - + 3! 5! L 7 & 8: MHD/ZAH Taylor epasio: Let ƒ() be a ifiitely differetiable real fuctio. A ay poit i the eighbourhood of 0, the fuctio ƒ() ca be represeted by a power series of the followig form: X 0 f(a) f() f() ( ) f( ) ( )

More information

a 2 +b 2 +c 2 ab+bc+ca.

a 2 +b 2 +c 2 ab+bc+ca. All Problems o the Prize Exams Sprig 205 The source for each problem is listed below whe available; but eve whe the source is give, the formulatio of the problem may have bee chaged. Solutios for the problems

More information

e to approximate (using 4

e to approximate (using 4 Review: Taylor Polyomials ad Power Series Fid the iterval of covergece for the series Fid a series for f ( ) d ad fid its iterval of covergece Let f( ) Let f arcta a) Fid the rd degree Maclauri polyomial

More information

MAS111 Convergence and Continuity

MAS111 Convergence and Continuity MAS Covergece ad Cotiuity Key Objectives At the ed of the course, studets should kow the followig topics ad be able to apply the basic priciples ad theorems therei to solvig various problems cocerig covergece

More information

Lecture 8: Convergence of transformations and law of large numbers

Lecture 8: Convergence of transformations and law of large numbers Lecture 8: Covergece of trasformatios ad law of large umbers Trasformatio ad covergece Trasformatio is a importat tool i statistics. If X coverges to X i some sese, we ofte eed to check whether g(x ) coverges

More information

Sequences and Limits

Sequences and Limits Chapter Sequeces ad Limits Let { a } be a sequece of real or complex umbers A ecessary ad sufficiet coditio for the sequece to coverge is that for ay ɛ > 0 there exists a iteger N > 0 such that a p a q

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

MATH 205 HOMEWORK #2 OFFICIAL SOLUTION. (f + g)(x) = f(x) + g(x) = f( x) g( x) = (f + g)( x)

MATH 205 HOMEWORK #2 OFFICIAL SOLUTION. (f + g)(x) = f(x) + g(x) = f( x) g( x) = (f + g)( x) MATH 205 HOMEWORK #2 OFFICIAL SOLUTION Problem 2: Do problems 7-9 o page 40 of Hoffma & Kuze. (7) We will prove this by cotradictio. Suppose that W 1 is ot cotaied i W 2 ad W 2 is ot cotaied i W 1. The

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart. MATH 1080: Calculus of Oe Variable II Fall 2017 Textbook: Sigle Variable Calculus: Early Trascedetals, 7e, by James Stewart Uit 3 Skill Set Importat: Studets should expect test questios that require a

More information

CONTENTS. Course Goals. Course Materials Lecture Notes:

CONTENTS. Course Goals. Course Materials Lecture Notes: INTRODUCTION Ho Chi Mih City OF Uiversity ENVIRONMENTAL of Techology DESIGN Faculty Chapter of Civil 1: Orietatio. Egieerig Evaluatio Departmet of mathematical of Water Resources skill Egieerig & Maagemet

More information

} is said to be a Cauchy sequence provided the following condition is true.

} is said to be a Cauchy sequence provided the following condition is true. Math 4200, Fial Exam Review I. Itroductio to Proofs 1. Prove the Pythagorea theorem. 2. Show that 43 is a irratioal umber. II. Itroductio to Logic 1. Costruct a truth table for the statemet ( p ad ~ r

More information

Enumerative & Asymptotic Combinatorics

Enumerative & Asymptotic Combinatorics C50 Eumerative & Asymptotic Combiatorics Stirlig ad Lagrage Sprig 2003 This sectio of the otes cotais proofs of Stirlig s formula ad the Lagrage Iversio Formula. Stirlig s formula Theorem 1 (Stirlig s

More information