Dipartimento di Scienze Matematiche

Size: px
Start display at page:

Download "Dipartimento di Scienze Matematiche"

Transcription

1 Exploiting parallel computing in Discrete Fracture Network simulations: an inherently parallel optimization approach Stefano Berrone Team: Matìas Benedetto, Andrea Borio, Claudio Canuto, Corrado Fidelibus, Sandra Pieraccini, Stefano Scialò, Marco Tamburini, Fabio Vicini Dipartimento di Scienze Matematiche Workshop - 12 marzo 2014 Stefano Berrone (DISMA) Parallel Computing and DFN simulations - 12 marzo / 28

2 Outline 1 Introduction to DFNs 2 Scalability Parallel environment Scalability results 3 Uncertainty Quantification in Discrete Fracture Network Models Stochastic fracture transmissivity Stochastic geometry Stefano Berrone (DISMA) Parallel Computing and DFN simulations HPC@POLITO - 12 marzo / 28

3 Discrete Fracture Networks (DFN) DFN models can be used in simulating underground flows in fractured media. Possible applications: simulation of underground displacement of pollutant, water in aquifers, super-critical carbon dioxide... Challenges: Main features of the DFN models addressed herein: 3D network of intersecting fractures Fractures represented as planar polygons Quantity of interest is the hydraulic head evaluated with Darcy law Flux balance and hydraulic head continuity imposed across trace intersections Very large domain: high computational cost and memory requirements Complex domain: difficulties in good quality mesh generation Stefano Berrone (DISMA) Parallel Computing and DFN simulations - 12 marzo / 28

4 The problem of mesh generation Typical approach: Discretization with finite elements on totally conforming meshes geometry modifications to conform fracture intersections to the mesh Resolution of a large linear system Mortar methods to allow partial non-conformity of the mesh at fracture intersections Stefano Berrone (DISMA) Parallel Computing and DFN simulations HPC@POLITO - 12 marzo / 28

5 [B., Pieraccini, Scialò (SISC2013a-b, JCP2014)] Our approach: reformulate the problem as a PDE constrained optimization problem Independent mesh on each fracture Coupling given by the minimization of a cost functional Independent resolution of small linear systems on the fractures Stefano Berrone (DISMA) Parallel Computing and DFN simulations HPC@POLITO - 12 marzo / 28

6 Problem formulation: a coupled system of PDEs Local problems Find i I h i = h 0 i + R h id, with h 0 i V i := H 1 D,0(F i) such that: ( Ki h 0 i, v ) = (q i, v) + u i, v Si U S i,u S i + hin, v ΓiN H 1 2 (Γ in ),H 1 2 (Γ in ) (Ki R h id, v), v V i where q i L 2 (F i) is a source term and F i = Γ in Γ id with Γ in Γ id = and Γ id. Coupling (matching) conditions h i Sm h j S m = 0, for i, j I Sm, m M, u Sm i + u Sm j = 0, for i, j I Sm, m M, Stefano Berrone (DISMA) Parallel Computing and DFN simulations HPC@POLITO - 12 marzo / 28

7 PDE constrained optimization approach [BPS ] Let u be the tuple of all u i, i I, and define J : U R as J(u) = ) ( h i(u i) S h j(u j) S 2H S + us i + u S j 2U S S S Remark u being the tuple of all control variables u i S = {set of all traces} U S = H 1 2 (S), H S = H 1 2 (S) = U S the discrete problem is written as a constrained minimization problem a gradient-like method is applied U S = L 2 (S), H S = L 2 (S) = U S The core of the solution process is the (repeated) solution of local and independent problems on each fracture. This makes the approach nearly inherently parallel. Stefano Berrone (DISMA) Parallel Computing and DFN simulations HPC@POLITO - 12 marzo / 28

8 The space discretization: XFEM Extended Finite Elements have been used in [BPS ] to catch the nonsmooth behavior of the solution across the traces, without losing accuracy and still preserving a full independence of meshing process on the fractures. Proper shape functions are added, which mimic the nonsmooth behavior of the solution. Interface S Enriched DoF Reproducing el. Blending el Stefano Berrone (DISMA) Parallel Computing and DFN simulations HPC@POLITO - 12 marzo / 28

9 The space discretization: VEM In [BBPS 2014] flexibility of VEM has been used in order to catch the behavior of the solution across the traces, allowing for a partially conforming mesh, but still maintaining an independent meshing process on each fracture. Stefano Berrone (DISMA) Parallel Computing and DFN simulations HPC@POLITO - 12 marzo / 28

10 Part I - Scalability Stefano Berrone (DISMA) Part I - Scalability HPC@POLITO - 12 marzo / 28

11 Parallel Approach [BSTV] Serial algorithm 1 Build the triangulation on the fractures 2 Evaluate discrete operators on the fractures 3 Solve with a conjugate gradient (CG) iterative method 4 Post-processing - graphical representation Parallel implementation with MPI (Octave+mpi/openmpi ext package) 1 Partitioning the DFN 2 Organize communications 3 Preliminary results Stefano Berrone (DISMA) Part I - Scalability HPC@POLITO - 12 marzo / 28

12 Parallel implementation - MPI 1 Partitioning the DFN Define N p the number of processes available The DFN is seen as a graph in which fractures represents the nodes and traces the edges balanced graph partitioning: split the DFN into subsets of fractures P k, k = 1,..., N p 1 in such a way that the workload of the N p 1 processes is balanced and the number edge cut (i.e. communications) is minimized Fracture Trace Figure: Balanced Graph partitioning Stefano Berrone (DISMA) Part I - Scalability HPC@POLITO - 12 marzo / 28

13 Parallel implementation - MPI 2 Organize communications Hierarchical (modular) Master/Slave structure Figure: The Master/Slave architecture Stefano Berrone (DISMA) Part I - Scalability HPC@POLITO - 12 marzo / 28

14 Scalability results 1 3 Preliminary results Scalability tests performed on a machine with 2 6-core processors (12 physical - 24 virtual cores), before the implementation on the cluster Figure: Time reduction factor vs number of Slave processes - CG algorithm Figure: Processes independence test Stefano Berrone (DISMA) Part I - Scalability HPC@POLITO - 12 marzo / 28

15 Scalability results 2 Figure: Time reduction factor vs number of Slave processes - full algorithm Observations the full algorithm scales worse than the CG resolution phase more inherently parallel, but higher memory occupation conflicts in accessing memory have a more relevant effect Future developments Non-blocking communication routines Implementation in C language Implementation on the cluster Stefano Berrone (DISMA) Part I - Scalability HPC@POLITO - 12 marzo / 28

16 Part II - Uncertainty Quantification Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

17 Motivation DFN simulations are largely interesting in those situations in which the discrete nature of the fractures strongly impacts on the directionality of the flow. DFN are usually applied to simulate the underground displacement of pollutant, water or super-critical carbon dioxide. The simulations mainly aim at estimating the flux entity, the resulting directionality of the flux, and characteristic time. In this context we assume as characteristic quantity the flux that is affecting a fixed boundary of the DFN (fractures F 2 and F 3). A possible scenario is as follows: Assume information is available about the probability distribution of certain fracture features, such as their density, orientation, size, aspect ratio, aperture (these data may affect transmissivity). Assume a borehole is pumping some fluid underground (e.g., carbon dioxide) We are interested in evaluating the probability that the flux of carbon dioxide reaches a certain region of the underground basin, where a large outcropping fault can be a carrier for a dangerous leakage. Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

18 Toy networks for our numerical experiments [BCPS 2014] Figure: An example of toy network. Left: 3D view of the network (traces in red); right: projection on x 1 -x 2 plane Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

19 General setting We consider several toy networks with: 1 An horizontal fracture F 1 2 Two vertical orthogonal fractures F 2, F 3 (with reference to previous 2D figure: F 2 on the right of F 1, F 3 above F 1) 3 A set of additional fractures connecting the network, orthogonal to F 1, and with arbitrary orientation. Boundary conditions: 1 The east edge of F 1 acts as a source (Neumann boundary conditions set to 10) 2 On south edge of F 2 and west edge of F 3 (constant non-homogeneous) Dirichlet b.c. are set 3 All other edges are assumed to be insulated: homogeneous Neumann conditions. We consider the problem of measuring the overall flux entering fractures F 2 and F 3 through their traces, respectively. Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

20 Strategy for UQ Monte Carlo methods Stochastic Collocation Approach (Smolyak-type sparse grids): moments (mean values, variance) are computed with properly chosen weighted quadrature formulas, the weight functions corresponding to the underlying probability law. In both cases, each outcome concurring to the computation of the moments, corresponds to a simulation on the whole network. Two different frameworks: Deterministic geometry, stochastic trasmissivity Deterministic trasmissivity, stochastic geometry Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

21 We consider #I = 7 fractures. We set K 1 = K 2 = K 3 = 10 L, K i = 10 L min+(l max L min )Y i, Y i U(0, 1) for i = 4,..., N, with L min = 4, L max = 0, L = 2. Figure: DFN configuration Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

22 Figure: Flux entering F 2 (left) and F 3 (right) versus one selected stochastic variable y i, the one associated with the fracture with smallest distance from the interesection F 2 F 3 (all others set to 0.5) Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

23 Stochastic geometry We consider a geometry in which the orientation of the fractures is non-deterministic. K is fixed for all fractures. Fracture F i, for i 4, forms an angle α i with the x 1 axis which is α i = ᾱ i + α i(2y 1), y U(0, 1). Figure: Non-deterministic configuration. Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

24 Figure: Flux entering F 2 (left) and F 3 (right) versus the stochastic variable y Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

25 Another test geometry Figure: Non-deterministic configuration: increasing some fractures length. Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

26 Figure: Flux entering F 2 (left) and F 3 (right) versus the stochastic variable y Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

27 Figure: Errors on mean value (left) and variance (right) versus number of grid points. Stochastic collocation (solid lines) vs Monte Carlo (dotted lines) Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

28 Stochastic collocation on sparse grids Number of outcomes to be considered for different numbers d of stochastic parameters Level d = 1 d = 2 d = 3 d = 4 d = Stefano Berrone (DISMA) Part II - Uncertainty Quantification HPC@POLITO - 12 marzo / 28

Uncertainty Quantification in Discrete Fracture Network Models

Uncertainty Quantification in Discrete Fracture Network Models Uncertainty Quantification in Discrete Fracture Network Models Claudio Canuto Dipartimento di Scienze Matematiche, Politecnico di Torino claudio.canuto@polito.it Joint work with Stefano Berrone, Sandra

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Article] An optimization approach for large scale simulations of discrete fracture network flows Original Citation: Berrone., Pieraccini., cialo. 24).

More information

arxiv: v1 [math.na] 11 Sep 2017

arxiv: v1 [math.na] 11 Sep 2017 Dual virtual element method in presence of an inclusion Alessio Fumagalli arxiv:1709.03519v1 [math.na] 11 Sep 2017 Abstract We consider a Darcy problem for saturated porous media written in dual formulation

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

Multilevel stochastic collocations with dimensionality reduction

Multilevel stochastic collocations with dimensionality reduction Multilevel stochastic collocations with dimensionality reduction Ionut Farcas TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017 Outline 1 Motivation 2 Theoretical background Uncertainty

More information

An approach for the host rock assessment methodology. based on URLs site investigation data

An approach for the host rock assessment methodology. based on URLs site investigation data 1 An approach for the host rock assessment methodology development tin JAEA, based on URLs site investigation data Workshop on Assessing the suitability of host rock Yokohama Minato Mirai, Landmark Tower

More information

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS Max Gunzburger Department of Scientific Computing Florida State University North Carolina State University, March 10, 2011

More information

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics SPARSE SOLVERS FOR THE POISSON EQUATION Margreet Nool CWI, Multiscale Dynamics November 9, 2015 OUTLINE OF THIS TALK 1 FISHPACK, LAPACK, PARDISO 2 SYSTEM OVERVIEW OF CARTESIUS 3 POISSON EQUATION 4 SOLVERS

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

Cut Finite Elements for Convection in Fractured Domains

Cut Finite Elements for Convection in Fractured Domains Cut Finite Elements for Convection in Fractured Domains Erik Burman, Peter Hansbo, Mats G. Larson and Karl Larsson arxiv:1801.06103v2 [math.na] 30 May 2018 Abstract We develop a cut finite element method

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Parameter Selection Techniques and Surrogate Models

Parameter Selection Techniques and Surrogate Models Parameter Selection Techniques and Surrogate Models Model Reduction: Will discuss two forms Parameter space reduction Surrogate models to reduce model complexity Input Representation Local Sensitivity

More information

Integration of seismic and fluid-flow data: a two-way road linked by rock physics

Integration of seismic and fluid-flow data: a two-way road linked by rock physics Integration of seismic and fluid-flow data: a two-way road linked by rock physics Abstract Yunyue (Elita) Li, Yi Shen, and Peter K. Kang Geologic model building of the subsurface is a complicated and lengthy

More information

DISPENSA FEM in MSC. Nastran

DISPENSA FEM in MSC. Nastran DISPENSA FEM in MSC. Nastran preprocessing: mesh generation material definitions definition of loads and boundary conditions solving: solving the (linear) set of equations components postprocessing: visualisation

More information

Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification

Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification Tim Wildey Sandia National Laboratories Center for Computing Research (CCR) Collaborators: E. Cyr,

More information

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Alberto Guadagnini (1,), Marco Panzeri (1), Monica Riva (1,), Shlomo P. Neuman () (1) Department of

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

Nonparametric density estimation for elliptic problems with random perturbations

Nonparametric density estimation for elliptic problems with random perturbations Nonparametric density estimation for elliptic problems with random perturbations, DqF Workshop, Stockholm, Sweden, 28--2 p. /2 Nonparametric density estimation for elliptic problems with random perturbations

More information

Table 17 1 Some general field equation terms. Heat Power. Current Source. 0 0 Boundary Current Porous Media Flow. Flow Source

Table 17 1 Some general field equation terms. Heat Power. Current Source. 0 0 Boundary Current Porous Media Flow. Flow Source 17 Related Analogies 17.1 Basic Concepts The differential equation used in a finite element study in one discipline often appears in a different discipline, but with a different physical meaning for the

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

Background. Developing a FracMan DFN Model. Fractures, FracMan and Fragmentation Applications of DFN Models to Block & Panel Caving

Background. Developing a FracMan DFN Model. Fractures, FracMan and Fragmentation Applications of DFN Models to Block & Panel Caving Background Golder Associates are one of the pioneering groups in the use of the Discrete Fracture Network (DFN) approach. DFN models seek to describe the heterogeneous nature of fractured rock masses by

More information

Development of discontinuous Galerkin method for linear strain gradient elasticity

Development of discontinuous Galerkin method for linear strain gradient elasticity Development of discontinuous Galerkin method for linear strain gradient elasticity R Bala Chandran Computation for Design and Optimizaton Massachusetts Institute of Technology Cambridge, MA L. Noels* Aerospace

More information

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano ... Our contribution PIPS-PSBB*: Multi-level parallelism for Stochastic

More information

Treecodes for Cosmology Thomas Quinn University of Washington N-Body Shop

Treecodes for Cosmology Thomas Quinn University of Washington N-Body Shop Treecodes for Cosmology Thomas Quinn University of Washington N-Body Shop Outline Motivation Multipole Expansions Tree Algorithms Periodic Boundaries Time integration Gravitational Softening SPH Parallel

More information

Safety assessment for disposal of hazardous waste in abandoned underground mines

Safety assessment for disposal of hazardous waste in abandoned underground mines Safety assessment for disposal of hazardous waste in abandoned underground mines A. Peratta & V. Popov Wessex Institute of Technology, Southampton, UK Abstract Disposal of hazardous chemical waste in abandoned

More information

Multi-point flux approximation L-method in 3D: Numerical convergence and application to two-phase flow through porous media

Multi-point flux approximation L-method in 3D: Numerical convergence and application to two-phase flow through porous media XXXX, 1 41 De Gruyter YYYY Multi-point flux approximation L-method in 3D: Numerical convergence and application to two-phase flow through porous media Markus Wolff, Yufei Cao, Bernd Flemisch, Rainer Helmig

More information

DFNModeler: AN EFFICIENT DISCRETE FRACTURE NETWORK MODELER

DFNModeler: AN EFFICIENT DISCRETE FRACTURE NETWORK MODELER 1 DFNModeler: AN EFFICIENT DISCRETE FRACTURE NETWORK MODELER 0709 Guohai Jin and Jack C. Pashin Geological Survey of Alabama, P. O. Box 869999, Tuscaloosa, AL 35486 ABSTRACT DFNModeler is a Windows application

More information

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering University of Liège Aerospace & Mechanical Engineering Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE Van Dung NGUYEN Innocent NIYONZIMA Aerospace & Mechanical engineering

More information

ON THE MULTIPOINT MIXED FINITE VOLUME METHODS ON QUADRILATERAL GRIDS

ON THE MULTIPOINT MIXED FINITE VOLUME METHODS ON QUADRILATERAL GRIDS ON THE MULTIPOINT MIXED FINITE VOLUME METHODS ON QUADRILATERAL GRIDS VINCENT FONTAINE 1,2 AND ANIS YOUNES 2 1 Laboratoire de Physique des Bâtiments et des Systèmes, Université de La Réunion, 15 avenue

More information

AN UNFITTED METHOD FOR TWO-PHASE FLOW IN FRACTURED POROUS MEDIA

AN UNFITTED METHOD FOR TWO-PHASE FLOW IN FRACTURED POROUS MEDIA XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 AN UNFIED MEHOD FOR WO-PHASE FLOW IN FRACURED POROUS MEDIA A. Fumagalli and A. Scotti

More information

Schwarz-type methods and their application in geomechanics

Schwarz-type methods and their application in geomechanics Schwarz-type methods and their application in geomechanics R. Blaheta, O. Jakl, K. Krečmer, J. Starý Institute of Geonics AS CR, Ostrava, Czech Republic E-mail: stary@ugn.cas.cz PDEMAMIP, September 7-11,

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

J. Sadeghi E. Patelli M. de Angelis

J. Sadeghi E. Patelli M. de Angelis J. Sadeghi E. Patelli Institute for Risk and, Department of Engineering, University of Liverpool, United Kingdom 8th International Workshop on Reliable Computing, Computing with Confidence University of

More information

Yuri Feldman, MUMPS User Days, Grenoble, France, June 2017

Yuri Feldman, MUMPS User Days, Grenoble, France, June 2017 Yuri Feldman, MUMPS User Days, Grenoble, France, June 2017 1 Outline 1. History of using MUMPS 2. Motivation of the Research 3. Governing Equations 4. Numerical Method 5. Direct Numerical Simulations o

More information

Concepts. 3.1 Numerical Analysis. Chapter Numerical Analysis Scheme

Concepts. 3.1 Numerical Analysis. Chapter Numerical Analysis Scheme Chapter 3 Concepts The objective of this work is to create a framework to implement multi-disciplinary finite element applications. Before starting, it is necessary to explain some basic concepts of the

More information

Uncertainty analysis of large-scale systems using domain decomposition

Uncertainty analysis of large-scale systems using domain decomposition Center for Turbulence Research Annual Research Briefs 2007 143 Uncertainty analysis of large-scale systems using domain decomposition By D. Ghosh, C. Farhat AND P. Avery 1. Motivation and objectives A

More information

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers R. Sanchez 1, D. Thomas 2, R. Palacios 1, V. Terrapon 2 1 Department of Aeronautics, Imperial College London 2 Department

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

Numerical modelling of coupled TH processes to facilitate analysis of geothermal reservoirs - Groß Schönebeck as an example-

Numerical modelling of coupled TH processes to facilitate analysis of geothermal reservoirs - Groß Schönebeck as an example- Numerical modelling of coupled TH processes to facilitate analysis of geothermal reservoirs - Groß Schönebeck as an example- N Watanabe 1, G Blöcher 2, M Cacace 2, H Shao 1, O Kolditz 1 1 Helmholtz Centre

More information

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland EnviroInfo 2004 (Geneva) Sh@ring EnviroInfo 2004 Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland Mikhail Kanevski 1, Michel Maignan 1

More information

A Nested Dissection Parallel Direct Solver. for Simulations of 3D DC/AC Resistivity. Measurements. Maciej Paszyński (1,2)

A Nested Dissection Parallel Direct Solver. for Simulations of 3D DC/AC Resistivity. Measurements. Maciej Paszyński (1,2) A Nested Dissection Parallel Direct Solver for Simulations of 3D DC/AC Resistivity Measurements Maciej Paszyński (1,2) David Pardo (2), Carlos Torres-Verdín (2) (1) Department of Computer Science, AGH

More information

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT Second International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management. Mérida, México, March 3-April 2 Numerical Solution of the Two-Dimensional Time-Dependent

More information

Uncertainty Quantification of an ORC turbine blade under a low quantile constrain

Uncertainty Quantification of an ORC turbine blade under a low quantile constrain Available online at www.sciencedirect.com ScienceDirect Energy Procedia 129 (2017) 1149 1155 www.elsevier.com/locate/procedia IV International Seminar on ORC Power Systems, ORC2017 13-15 September 2017,

More information

Dinesh Kumar, Mehrdad Raisee and Chris Lacor

Dinesh Kumar, Mehrdad Raisee and Chris Lacor Dinesh Kumar, Mehrdad Raisee and Chris Lacor Fluid Mechanics and Thermodynamics Research Group Vrije Universiteit Brussel, BELGIUM dkumar@vub.ac.be; m_raisee@yahoo.com; chris.lacor@vub.ac.be October, 2014

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Breaking Computational Barriers: Multi-GPU High-Order RBF Kernel Problems with Millions of Points

Breaking Computational Barriers: Multi-GPU High-Order RBF Kernel Problems with Millions of Points Breaking Computational Barriers: Multi-GPU High-Order RBF Kernel Problems with Millions of Points Michael Griebel Christian Rieger Peter Zaspel Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität

More information

Machine Learning Applied to 3-D Reservoir Simulation

Machine Learning Applied to 3-D Reservoir Simulation Machine Learning Applied to 3-D Reservoir Simulation Marco A. Cardoso 1 Introduction The optimization of subsurface flow processes is important for many applications including oil field operations and

More information

On Portability, Performance and Scalability of a MPI OpenCL Lattice Boltzmann Code

On Portability, Performance and Scalability of a MPI OpenCL Lattice Boltzmann Code On Portability, Performance and Scalability of a MPI OpenCL Lattice Boltzmann Code E Calore, S F Schifano, R Tripiccione Enrico Calore INFN Ferrara, Italy 7 th Workshop on UnConventional High Performance

More information

Raven Facing the Problem of assembling Multiple Models to Speed up the Uncertainty Quantification and Probabilistic Risk Assessment Analyses

Raven Facing the Problem of assembling Multiple Models to Speed up the Uncertainty Quantification and Probabilistic Risk Assessment Analyses 13 th International Conference on Probabilistic Safety Assessment and Management PSAM 13) Raven Facing the Problem of assembling Multiple Models to Speed up the Uncertainty Quantification and Probabilistic

More information

Discrete Element Modeling of Thermo-Hydro-Mechanical Coupling in Enhanced Geothermal Reservoirs

Discrete Element Modeling of Thermo-Hydro-Mechanical Coupling in Enhanced Geothermal Reservoirs PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California Discrete Element Modeling of Thermo-Hydro-Mechanical Coupling in Enhanced Geothermal Reservoirs

More information

Time-dependent Dirichlet Boundary Conditions in Finite Element Discretizations

Time-dependent Dirichlet Boundary Conditions in Finite Element Discretizations Time-dependent Dirichlet Boundary Conditions in Finite Element Discretizations Peter Benner and Jan Heiland November 5, 2015 Seminar Talk at Uni Konstanz Introduction Motivation A controlled physical processes

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

This section develops numerically and analytically the geometric optimisation of

This section develops numerically and analytically the geometric optimisation of 7 CHAPTER 7: MATHEMATICAL OPTIMISATION OF LAMINAR-FORCED CONVECTION HEAT TRANSFER THROUGH A VASCULARISED SOLID WITH COOLING CHANNELS 5 7.1. INTRODUCTION This section develops numerically and analytically

More information

NIMROD Project Overview

NIMROD Project Overview NIMROD Project Overview Christopher Carey - Univ. Wisconsin NIMROD Team www.nimrodteam.org CScADS Workshop July 23, 2007 Project Overview NIMROD models the macroscopic dynamics of magnetized plasmas by

More information

Cost-accuracy analysis of a variational nodal 2D/1D approach to pin resolved neutron transport

Cost-accuracy analysis of a variational nodal 2D/1D approach to pin resolved neutron transport Cost-accuracy analysis of a variational nodal 2D/1D approach to pin resolved neutron transport ZHANG Tengfei 1, WU Hongchun 1, CAO Liangzhi 1, LEWIS Elmer-E. 2, SMITH Micheal-A. 3, and YANG Won-sik 4 1.

More information

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW 7 VIII. BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW A wide variety of natural processes are described using physical laws. A physical law may be expressed by means of an

More information

Second-Order Linear ODEs (Textbook, Chap 2)

Second-Order Linear ODEs (Textbook, Chap 2) Second-Order Linear ODEs (Textbook, Chap ) Motivation Recall from notes, pp. 58-59, the second example of a DE that we introduced there. d φ 1 1 φ = φ 0 dx λ λ Q w ' (a1) This equation represents conservation

More information

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Wayne McGee and Padmanabhan Seshaiyer Texas Tech University, Mathematics and Statistics (padhu@math.ttu.edu) Summary. In

More information

Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models using a Simple 1-D Domain

Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models using a Simple 1-D Domain Code-to-Code Benchmarking of the PORFLOW and GoldSim Contaminant Transport Models using a Simple 1-D Domain - 11191 Robert A. Hiergesell and Glenn A. Taylor Savannah River National Laboratory SRNS Bldg.

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Brian Williams and Rick Picard LA-UR-12-22467 Statistical Sciences Group, Los Alamos National Laboratory Abstract Importance

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 2 - Conduction Heat Transfer 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Agenda Introduction Energy equation in solids Equation solved

More information

A regularized least-squares method for sparse low-rank approximation of multivariate functions

A regularized least-squares method for sparse low-rank approximation of multivariate functions Workshop Numerical methods for high-dimensional problems April 18, 2014 A regularized least-squares method for sparse low-rank approximation of multivariate functions Mathilde Chevreuil joint work with

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

MIXED BOUNDARY VALUE PROBLEMS

MIXED BOUNDARY VALUE PROBLEMS MIXED BOUNDARY VALUE PROBLEMS M. Ragheb 9/19/013 INTRODUCTION Mixed boundary value problems are practical situations that are met in most potential and other mathematical physics problems. In this case

More information

Risk Assessment for CO 2 Sequestration- Uncertainty Quantification based on Surrogate Models of Detailed Simulations

Risk Assessment for CO 2 Sequestration- Uncertainty Quantification based on Surrogate Models of Detailed Simulations Risk Assessment for CO 2 Sequestration- Uncertainty Quantification based on Surrogate Models of Detailed Simulations Yan Zhang Advisor: Nick Sahinidis Department of Chemical Engineering Carnegie Mellon

More information

A FINITE-VOLUME DISCRETIZATION FOR DEFORMATION OF FRACTURED MEDIA

A FINITE-VOLUME DISCRETIZATION FOR DEFORMATION OF FRACTURED MEDIA A FINITE-VOLUME DISCRETIZATION FOR DEFORMATION OF FRACTURED MEDIA Eren Ucar a, Eirik Keilegavlen a, Inga Berre a,b, Jan Martin Nordbotten a,c a Department of Mathematics, University of Bergen, Bergen,

More information

Interface treatment for computational thermo-fluid-structure interaction

Interface treatment for computational thermo-fluid-structure interaction European Trilinos User Group meeting Munich, 03-05 June 2013, Germany Interface treatment for computational thermo-fluid-structure interaction Georg Hammerl Institute for Computational Mechanics Caroline

More information

Monte Carlo Method for Finding the Solution of Dirichlet Partial Differential Equations

Monte Carlo Method for Finding the Solution of Dirichlet Partial Differential Equations Applied Mathematical Sciences, Vol. 1, 2007, no. 10, 453-462 Monte Carlo Method for Finding the Solution of Dirichlet Partial Differential Equations Behrouz Fathi Vajargah Department of Mathematics Guilan

More information

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Yongjia Song James R. Luedtke August 9, 2012 Abstract We study solution approaches for the design of reliably

More information

The Virtual Element Method: an introduction with focus on fluid flows

The Virtual Element Method: an introduction with focus on fluid flows The Virtual Element Method: an introduction with focus on fluid flows L. Beirão da Veiga Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca VEM people (or group representatives): P.

More information

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Paolo Manfredi, Igor S. Stievano, Flavio G. Canavero Department of Electronics and Telecommunications (DET) Politecnico

More information

A hybrid Marquardt-Simulated Annealing method for solving the groundwater inverse problem

A hybrid Marquardt-Simulated Annealing method for solving the groundwater inverse problem Calibration and Reliability in Groundwater Modelling (Proceedings of the ModelCARE 99 Conference held at Zurich, Switzerland, September 1999). IAHS Publ. no. 265, 2000. 157 A hybrid Marquardt-Simulated

More information

4th year Project demo presentation

4th year Project demo presentation 4th year Project demo presentation Colm Ó héigeartaigh CASE4-99387212 coheig-case4@computing.dcu.ie 4th year Project demo presentation p. 1/23 Table of Contents An Introduction to Quantum Computing The

More information

A Risk-based Groundwater Modelling Study for Predicting Thermal Plume Migration from SAGD Well-pads

A Risk-based Groundwater Modelling Study for Predicting Thermal Plume Migration from SAGD Well-pads A Risk-based Groundwater Modelling Study for Predicting Thermal Plume Migration from SAGD Well-pads Rudy Maji, Ph.D., Golder Associates Solaleh Khezri, M.Sc., AB Scientific Intern (Golder Associates) Don

More information

Macroscopic Failure Analysis Based on a Random Field Representations Generated from Material Microstructures

Macroscopic Failure Analysis Based on a Random Field Representations Generated from Material Microstructures Macroscopic Failure Analysis Based on a Random Field Representations Generated from Material Microstructures Reza Abedi Mechanical, Aerospace & Biomedical Engineering University of Tennessee Knoxville

More information

Research on Structure Formation of Plasmas Dominated by Multiple Hierarchical Dynamics

Research on Structure Formation of Plasmas Dominated by Multiple Hierarchical Dynamics Chapter 4 Epoch Making Simulation Research on Structure Formation of Plasmas Dominated by Multiple Hierarchical Dynamics Group Representative Yasuaki Kishimoto Naka Fusion Research Establishment, Japan

More information

Deterministic solution of stochastic groundwater flow equations by nonlocalfiniteelements A. Guadagnini^ & S.P. Neuman^

Deterministic solution of stochastic groundwater flow equations by nonlocalfiniteelements A. Guadagnini^ & S.P. Neuman^ Deterministic solution of stochastic groundwater flow equations by nonlocalfiniteelements A. Guadagnini^ & S.P. Neuman^ Milano, Italy; ^Department of. Hydrology & Water Resources, The University ofarizona,

More information

UNCERTAINTY QUANTIFICATION IN LIQUID COMPOSITE MOULDING PROCESSES

UNCERTAINTY QUANTIFICATION IN LIQUID COMPOSITE MOULDING PROCESSES UNCERTAINTY QUANTIFICATION IN LIQUID COMPOSITE MOULDING PROCESSES Bart Verleye 1, Dirk Nuyens 1, Andrew Walbran 3,2, and Ming Gan 2 1 Dept. Computer Science, KU Leuven, Celestijnenlaan 200A, B-3001 Leuven,

More information

Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty

Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian 1, Omar Ghattas 2, Noémi Petra 3, Georg Stadler 4 1 Department of Mathematics North Carolina State

More information

Scalable Algorithms for Complex Networks

Scalable Algorithms for Complex Networks Scalable Algorithms for Complex Networks Tuhin Sahai United Technologies Research Center University of Connecticut Outline / Acknowledgements Decentralized Clustering Alberto Speranzon (UTRC) Andrzej Banaszuk

More information

SOLVING ELLIPTIC PDES

SOLVING ELLIPTIC PDES university-logo SOLVING ELLIPTIC PDES School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 POISSON S EQUATION Equation and Boundary Conditions Solving the Model Problem 3 THE LINEAR ALGEBRA PROBLEM

More information

An Energy Dissipative Constitutive Model for Multi-Surface Interfaces at Weld Defect Sites in Ultrasonic Consolidation

An Energy Dissipative Constitutive Model for Multi-Surface Interfaces at Weld Defect Sites in Ultrasonic Consolidation An Energy Dissipative Constitutive Model for Multi-Surface Interfaces at Weld Defect Sites in Ultrasonic Consolidation Nachiket Patil, Deepankar Pal and Brent E. Stucker Industrial Engineering, University

More information

Variational Bayesian Inference Techniques

Variational Bayesian Inference Techniques Advanced Signal Processing 2, SE Variational Bayesian Inference Techniques Johann Steiner 1 Outline Introduction Sparse Signal Reconstruction Sparsity Priors Benefits of Sparse Bayesian Inference Variational

More information

Coupling atomistic and continuum modelling of magnetism

Coupling atomistic and continuum modelling of magnetism Coupling atomistic and continuum modelling of magnetism M. Poluektov 1,2 G. Kreiss 2 O. Eriksson 3 1 University of Warwick WMG International Institute for Nanocomposites Manufacturing 2 Uppsala University

More information

Monte-Carlo Simulation of Failure Phenomena using Particle Discretization

Monte-Carlo Simulation of Failure Phenomena using Particle Discretization Monte-Carlo Simulation of Failure Phenomena using Particle Discretization Kenji OGUNI Atsushi WAKAI Muneo HORI Earthquake Research Institute, University of Tokyo Motivation Deformation Failure x a PDF

More information

CONNECTIVITY ANALYSIS OF THE HABANERO ENHANCED GEOTHERMAL SYSTEM

CONNECTIVITY ANALYSIS OF THE HABANERO ENHANCED GEOTHERMAL SYSTEM PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 - February 1, 01 SGP-TR-194 CONNECTIVITY ANALYSIS OF THE HABANERO ENHANCED

More information

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities Heiko Berninger, Ralf Kornhuber, and Oliver Sander FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

Underground nuclear waste storage

Underground nuclear waste storage Underground nuclear waste storage Groundwater flow and radionuclide transport Jan-Olof Selroos Cargese Summer School, July 5, 2018 Contents: Concept for geological disposal of nuclear waste A few words

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

Employing Model Reduction for Uncertainty Visualization in the Context of CO 2 Storage Simulation

Employing Model Reduction for Uncertainty Visualization in the Context of CO 2 Storage Simulation Employing Model Reduction for Uncertainty Visualization in the Context of CO 2 Storage Simulation Marcel Hlawatsch, Sergey Oladyshkin, Daniel Weiskopf University of Stuttgart Problem setting - underground

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Constrained Minimization and Multigrid

Constrained Minimization and Multigrid Constrained Minimization and Multigrid C. Gräser (FU Berlin), R. Kornhuber (FU Berlin), and O. Sander (FU Berlin) Workshop on PDE Constrained Optimization Hamburg, March 27-29, 2008 Matheon Outline Successive

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Introduction to numerical computations on the GPU

Introduction to numerical computations on the GPU Introduction to numerical computations on the GPU Lucian Covaci http://lucian.covaci.org/cuda.pdf Tuesday 1 November 11 1 2 Outline: NVIDIA Tesla and Geforce video cards: architecture CUDA - C: programming

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information