On the Analysis of Tuberculosis Studies with Intermittent Missing Sputum Data

Size: px
Start display at page:

Download "On the Analysis of Tuberculosis Studies with Intermittent Missing Sputum Data"

Transcription

1 On the Analysis of Tuberculosis Studies with Intermittent Missing Sputum Data Daniel Scharfstein Johns Hopkins University July 12, 2013

2 Happy Birthday!

3 Collaborators Andrea Rotnitzky Maria Abraham Aidan McDermott Lawrence Geiter Richard Chaisson

4 Observed Data Moxifloxacin Ethambutol

5 Example of Patient Data Visit Line L R+1 S 1 Culture Results? +? -? Converter? N N??? Y Y Y 3 6 {3, 4, 6}

6 Observed Data Moxifloxacin Ethambutol

7 Example of Patient Data Visit Line L R+1 S 1 Culture Results? +? -? Converter? N N??? Y Y Y 3 6 {3, 4, 6} Need assumptions on the distribution of time of culture conversion given observed data. 3: V3 -, V5 -; 4: V3+, V5-; 6: V5+ Forward time: visit 3, visit 5 given 3-, visit 5 given 3+ Reverse time: visit 5, visit 3 given 5-

8 Example of Patient Data Visit Line L R+1 S 1 Culture Results? +? -? Converter? N N??? Y Y Y 3 6 {3, 4, 6} 3 Culture Results? +? Converter? N N N N N Y Y Y 6 6 {6} 5 Culture Results? +? Converter? N N? Y Y Y Y Y 3 4 {3, 4}

9 Example of Patient Data Visit Line L R+1 S 1 Culture Results? +? -? Converter? N N??? Y Y Y 3 6 {3, 4, 6} 3 Culture Results? +? Converter? N N N N N Y Y Y 6 6 {6} 5 Culture Results? +? Converter? N N? Y Y Y Y Y 3 4 {3, 4} 7 Culture Results? Converter? N N N Y Y Y Y Y 4 4 {4} 9 Culture Results? Converter? N N Y Y Y Y Y Y 3 3 {3}

10 Benchmark Assumptions We postulate that P[T = r + 1 O = o] = P[T = r + 1 O = o (r) ] (1) P[T = k T k, O = o] = P[T = k O = o (k 1) ] (2)

11 Sensitivity Analysis P[T = r + 1 O = o] = P[T = r + 1 O = o(r) ] exp(α) h r+1 (o (r) ; α) P[T = k T k, O = o] = P[T = k O = o(k 1) ] exp(α) h k (o (k 1) ; α) (3) (4)

12 Curse of Dimensionality Need to estimate for each realization O = o with S > 1, P[T = k O = o (k 1) ] These probabilities cannot be estimated non-parametrically. Postulate a parametric model for the law of the observed data O given baseline covariates X. This model induces parametric models for P[T = k O = o (k 1) ], that ultimately enable estimation of P[T = k O = o] by borrowing information across strata O = o (k 1).

13 Model for Observed Data O k = (M c k, C obs k, M s k, S obs k ); O = ( X, O K ). Model the law of O given X by modeling the distribution of O k given O k 1 and X for all k = 1,..., K. logit{p[m c k = 1 O k 1, X ]} = a(k, O k 1, X ; γ (a) ) logit{p[c obs k = 1 M c k = 0, O k 1, X ]} = b(k, O k 1, X ; γ (b) ) logit{p[mk s = 1 Mk c, Ck obs, O k 1, X ]} = c(k, Mk c, Ck obs, O k 1, X ; γ (c) ) logit{p[s obs k = 1 Mk s = 0, Mk c, Ck obs, O k 1, X ]} = d(k, Mk c, Ck obs, O k 1, X ; γ (d) )

14 Inference We can express for all realizations O = o with S > 1, the conditional probability P[T = k O = o (k 1) ] as a given functions of o (k 1) and γ = (γ (a), γ (b), γ (c), γ (d) ). We can express P[T = r + 1 O = o] and P[T = k T k, O = o] as given functions, P[T = r + 1 O = o; γ; α] and P[T = k T k, O = o; γ; α] of o, γ and α.

15 Inference Estimate γ by γ using maximum likelihood. Estimate P[T = k] by 1 P[T n i=1 i = k; α] where P[T i = k; α] equals 0 if k / S i, equals 1 if S = 1 and k S i, equals P[T = R i + 1 O = O i ; γ; α] if S i > 1 and k = R i + 1, and equals {1 P[T = R i + 1 O = O i ; γ; α]} (1 P[T = s T s, O = O i ; γ; α]) k<s<r i +1 k S i P[T = k T k, O = O i ; γ; α] if S i > 1 and k S i, k < R i + 1. Confidence intervals by non-parametric bootstrap.

16 Data Analysis Treatment groups were not balanced with respect to the cavitation status at baseline; 81.1% and 56.9% have cavitation in the moxifloxacin and ethambutol arms, respectively. Estimate for each treatment group, the distribution of time of culture conversion by a weighted average of cavitation-specific distribution of time of culture conversion. Weights are taken to be the marginal (i.e., not conditional on treatment arm) proportion of patients with and without cavitation at baseline, respectively.

17 Data Analysis Under benchmark assumption, the estimated probabilities of being a culture converter at or by week 8 are 92.5% and 75.5% in the moxafloxacin and ethmabutol arms, respectively. Estimated difference is 17.0% (95% CI: [4.5%,29.3%]). Benchmark analysis suggests a statistically significant difference in culture conversion at or by week 8 in favor of moxifloxacin.

18 Data Analysis Moxifloxacin Ethambutol Probability Probability α 1 α 0

19 Data Analysis α 1 (Moxifloxacin) Moxifloxacin α 0 (Ethambutol)

20 Data Analysis Moxifloxacin Ethambutol Probability Probability Visit Visit

21 Data Analysis Moxifloxacin Ethambutol Signed Distance Signed Distance α 1 α 0

22 Data Analysis Compare the treatment-specific distributions of time to culture conversion. Estimate a common treatment effect over time, using Cox(1972) logistic model for discrete survival data. This model assumes that h z (k) 1 h z (k) = τ k exp(βz) k = 1...., 8, z = 0, 1 where h z (k) = P z [T = k T k] and τ 1,..., τ 8 0. exp(β) is the ratio of the odds of first becoming a culture converter at visit k given culture conversion at or after visit k comparing moxifloxacin to ethambutol.

23 Data Analysis For each choice of α 0 and α 1, we minimize the following objective function: 1 8 z=0 k=1 { } 2 ĥz (k) 1 ĥz(k) τ k exp(βz) with respect τ 1,..., τ 8 0 and β, where ĥ z (k) = P z [T = k T k]. For each choice of α 0 and α 1, this method finds the closest fitting logistic model to the data : { ĥ z (k) : k = 1,..., 8, z = 0, 1}. Even if the model is incorrectly specified, still provides a valid test of the null hypothesis of no treatment effect.

24 Data Analysis Under benchmark assumption, the estimated hazard ratio is 3.41 (95% CI: [1.16,16.90]), indicating that patients treated with moxifloxacin have a statistically significant shorter time of culture conversion than those treated with ethambutol.

25 Data Analysis α Moxafloxacin α 0

26 Discussion Roshamon Coarsening at Random Everything is relative. Sensitivity analysis parameters are not scientifically interpretable. Look at induced distributions Requires scientific judgement.

ON THE ANALYSIS OF TUBERCULOSIS STUDIES WITH INTERMITTENT MISSING SPUTUM DATA

ON THE ANALYSIS OF TUBERCULOSIS STUDIES WITH INTERMITTENT MISSING SPUTUM DATA Submitted to the Annals of Applied Statistics arxiv: arxiv:0000.0000 ON THE ANALYSIS OF TUBERCULOSIS STUDIES WITH INTERMITTENT MISSING SPUTUM DATA By Daniel Scharfstein, Andrea Rotnitzky, Maria Abraham

More information

ON THE ANALYSIS OF TUBERCULOSIS STUDIES WITH INTERMITTENT MISSING SPUTUM DATA

ON THE ANALYSIS OF TUBERCULOSIS STUDIES WITH INTERMITTENT MISSING SPUTUM DATA Submitted to the Annals of Applied Statistics arxiv: arxiv:0000.0000 ON THE ANALYSIS OF TUBERCULOSIS STUDIES WITH INTERMITTENT MISSING SPUTUM DATA By Daniel Scharfstein, Andrea Rotnitzky, Maria Abraham

More information

Global Sensitivity Analysis for Repeated Measures Studies with Informative Drop-out: A Semi-Parametric Approach

Global Sensitivity Analysis for Repeated Measures Studies with Informative Drop-out: A Semi-Parametric Approach Global for Repeated Measures Studies with Informative Drop-out: A Semi-Parametric Approach Daniel Aidan McDermott Ivan Diaz Johns Hopkins University Ibrahim Turkoz Janssen Research and Development September

More information

Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials

Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Progress, Updates, Problems William Jen Hoe Koh May 9, 2013 Overview Marginal vs Conditional What is TMLE? Key Estimation

More information

Global Sensitivity Analysis for Repeated Measures Studies with. Informative Drop-out: A Fully Parametric Approach

Global Sensitivity Analysis for Repeated Measures Studies with. Informative Drop-out: A Fully Parametric Approach Global Sensitivity Analysis for Repeated Measures Studies with Informative Drop-out: A Fully Parametric Approach Daniel Scharfstein (dscharf@jhsph.edu) Aidan McDermott (amcdermo@jhsph.edu) Department of

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Anastasios (Butch) Tsiatis Department of Statistics North Carolina State University http://www.stat.ncsu.edu/

More information

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Overview In observational and experimental studies, the goal may be to estimate the effect

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics

Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Residuals for the

More information

36 th Annual Meeting Preconference Workshop P3 Handout

36 th Annual Meeting Preconference Workshop P3 Handout 36 th Annual Meeting Preconference Workshop P3 Handout Global Sensitivity Analysis of Randomized Trials with Missing Data Daniel Scharfstein Johns Hopkins University dscharf@jhu.edu May 17, 2015 1 / 75

More information

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 Department of Statistics North Carolina State University Presented by: Butch Tsiatis, Department of Statistics, NCSU

More information

High-Throughput Sequencing Course

High-Throughput Sequencing Course High-Throughput Sequencing Course DESeq Model for RNA-Seq Biostatistics and Bioinformatics Summer 2017 Outline Review: Standard linear regression model (e.g., to model gene expression as function of an

More information

Investigating mediation when counterfactuals are not metaphysical: Does sunlight exposure mediate the effect of eye-glasses on cataracts?

Investigating mediation when counterfactuals are not metaphysical: Does sunlight exposure mediate the effect of eye-glasses on cataracts? Investigating mediation when counterfactuals are not metaphysical: Does sunlight exposure mediate the effect of eye-glasses on cataracts? Brian Egleston Fox Chase Cancer Center Collaborators: Daniel Scharfstein,

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2009 Paper 248 Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Kelly

More information

β j = coefficient of x j in the model; β = ( β1, β2,

β j = coefficient of x j in the model; β = ( β1, β2, Regression Modeling of Survival Time Data Why regression models? Groups similar except for the treatment under study use the nonparametric methods discussed earlier. Groups differ in variables (covariates)

More information

In contrast, parametric techniques (fitting exponential or Weibull, for example) are more focussed, can handle general covariates, but require

In contrast, parametric techniques (fitting exponential or Weibull, for example) are more focussed, can handle general covariates, but require Chapter 5 modelling Semi parametric We have considered parametric and nonparametric techniques for comparing survival distributions between different treatment groups. Nonparametric techniques, such as

More information

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion

Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Pairwise rank based likelihood for estimating the relationship between two homogeneous populations and their mixture proportion Glenn Heller and Jing Qin Department of Epidemiology and Biostatistics Memorial

More information

Chapter 4. Parametric Approach. 4.1 Introduction

Chapter 4. Parametric Approach. 4.1 Introduction Chapter 4 Parametric Approach 4.1 Introduction The missing data problem is already a classical problem that has not been yet solved satisfactorily. This problem includes those situations where the dependent

More information

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

Semiparametric Regression

Semiparametric Regression Semiparametric Regression Patrick Breheny October 22 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Introduction Over the past few weeks, we ve introduced a variety of regression models under

More information

Bootstrapping Sensitivity Analysis

Bootstrapping Sensitivity Analysis Bootstrapping Sensitivity Analysis Qingyuan Zhao Department of Statistics, The Wharton School University of Pennsylvania May 23, 2018 @ ACIC Based on: Qingyuan Zhao, Dylan S. Small, and Bhaswar B. Bhattacharya.

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS3301 / MAS8311 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-10 1 13 The Cox proportional hazards model 13.1 Introduction In the

More information

Logistic regression model for survival time analysis using time-varying coefficients

Logistic regression model for survival time analysis using time-varying coefficients Logistic regression model for survival time analysis using time-varying coefficients Accepted in American Journal of Mathematical and Management Sciences, 2016 Kenichi SATOH ksatoh@hiroshima-u.ac.jp Research

More information

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES Cox s regression analysis Time dependent explanatory variables Henrik Ravn Bandim Health Project, Statens Serum Institut 4 November 2011 1 / 53

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

Generalized logit models for nominal multinomial responses. Local odds ratios

Generalized logit models for nominal multinomial responses. Local odds ratios Generalized logit models for nominal multinomial responses Categorical Data Analysis, Summer 2015 1/17 Local odds ratios Y 1 2 3 4 1 π 11 π 12 π 13 π 14 π 1+ X 2 π 21 π 22 π 23 π 24 π 2+ 3 π 31 π 32 π

More information

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Right censored

More information

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What? You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?) I m not goin stop (What?) I m goin work harder (What?) Sir David

More information

The Logit Model: Estimation, Testing and Interpretation

The Logit Model: Estimation, Testing and Interpretation The Logit Model: Estimation, Testing and Interpretation Herman J. Bierens October 25, 2008 1 Introduction to maximum likelihood estimation 1.1 The likelihood function Consider a random sample Y 1,...,

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Philosophy and Features of the mstate package

Philosophy and Features of the mstate package Introduction Mathematical theory Practice Discussion Philosophy and Features of the mstate package Liesbeth de Wreede, Hein Putter Department of Medical Statistics and Bioinformatics Leiden University

More information

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A. Linero and M. Daniels UF, UT-Austin SRC 2014, Galveston, TX 1 Background 2 Working model

More information

DOUBLY ROBUST NONPARAMETRIC MULTIPLE IMPUTATION FOR IGNORABLE MISSING DATA

DOUBLY ROBUST NONPARAMETRIC MULTIPLE IMPUTATION FOR IGNORABLE MISSING DATA Statistica Sinica 22 (2012), 149-172 doi:http://dx.doi.org/10.5705/ss.2010.069 DOUBLY ROBUST NONPARAMETRIC MULTIPLE IMPUTATION FOR IGNORABLE MISSING DATA Qi Long, Chiu-Hsieh Hsu and Yisheng Li Emory University,

More information

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017 Introduction to Regression Analysis Dr. Devlina Chatterjee 11 th August, 2017 What is regression analysis? Regression analysis is a statistical technique for studying linear relationships. One dependent

More information

Accelerated Failure Time Models

Accelerated Failure Time Models Accelerated Failure Time Models Patrick Breheny October 12 Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 1 / 29 The AFT model framework Last time, we introduced the Weibull distribution

More information

Multi-state Models: An Overview

Multi-state Models: An Overview Multi-state Models: An Overview Andrew Titman Lancaster University 14 April 2016 Overview Introduction to multi-state modelling Examples of applications Continuously observed processes Intermittently observed

More information

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL The Cox PH model: λ(t Z) = λ 0 (t) exp(β Z). How do we estimate the survival probability, S z (t) = S(t Z) = P (T > t Z), for an individual with covariates

More information

Extensions of Cox Model for Non-Proportional Hazards Purpose

Extensions of Cox Model for Non-Proportional Hazards Purpose PhUSE Annual Conference 2013 Paper SP07 Extensions of Cox Model for Non-Proportional Hazards Purpose Author: Jadwiga Borucka PAREXEL, Warsaw, Poland Brussels 13 th - 16 th October 2013 Presentation Plan

More information

Logistic Regressions. Stat 430

Logistic Regressions. Stat 430 Logistic Regressions Stat 430 Final Project Final Project is, again, team based You will decide on a project - only constraint is: you are supposed to use techniques for a solution that are related to

More information

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Xuelin Huang Department of Biostatistics M. D. Anderson Cancer Center The University of Texas Joint Work with Jing Ning, Sangbum

More information

Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes

Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes Kosuke Imai Department of Politics Princeton University July 31 2007 Kosuke Imai (Princeton University) Nonignorable

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 4: and multivariable regression Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease Epidemiology Department Yale School of Public Health Fatma.shebl@yale.edu

More information

Survival Analysis I (CHL5209H)

Survival Analysis I (CHL5209H) Survival Analysis Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca February 3, 2015 21-1 Time matching/risk set sampling/incidence density sampling/nested design 21-2 21-3

More information

Group Sequential Designs: Theory, Computation and Optimisation

Group Sequential Designs: Theory, Computation and Optimisation Group Sequential Designs: Theory, Computation and Optimisation Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj 8th International Conference

More information

Global Sensitivity Analysis of Randomized Trials with Missing Data

Global Sensitivity Analysis of Randomized Trials with Missing Data Global Sensitivity Analysis of Randomized Trials with Missing Data FDA Shortcourse Daniel Scharfstein Johns Hopkins University dscharf@jhu.edu May 8, 2017 1 / 149 Funding Acknowledgments FDA PCORI 2 /

More information

Simple logistic regression

Simple logistic regression Simple logistic regression Biometry 755 Spring 2009 Simple logistic regression p. 1/47 Model assumptions 1. The observed data are independent realizations of a binary response variable Y that follows a

More information

Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs

Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs Discussion of Missing Data Methods in Longitudinal Studies: A Review by Ibrahim and Molenberghs Michael J. Daniels and Chenguang Wang Jan. 18, 2009 First, we would like to thank Joe and Geert for a carefully

More information

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks Y. Xu, D. Scharfstein, P. Mueller, M. Daniels Johns Hopkins, Johns Hopkins, UT-Austin, UF JSM 2018, Vancouver 1 What are semi-competing

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH The First Step: SAMPLE SIZE DETERMINATION THE ULTIMATE GOAL The most important, ultimate step of any of clinical research is to do draw inferences;

More information

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University July 31, 2018

More information

Likelihood Construction, Inference for Parametric Survival Distributions

Likelihood Construction, Inference for Parametric Survival Distributions Week 1 Likelihood Construction, Inference for Parametric Survival Distributions In this section we obtain the likelihood function for noninformatively rightcensored survival data and indicate how to make

More information

Mantel-Haenszel Test Statistics. for Correlated Binary Data. Department of Statistics, North Carolina State University. Raleigh, NC

Mantel-Haenszel Test Statistics. for Correlated Binary Data. Department of Statistics, North Carolina State University. Raleigh, NC Mantel-Haenszel Test Statistics for Correlated Binary Data by Jie Zhang and Dennis D. Boos Department of Statistics, North Carolina State University Raleigh, NC 27695-8203 tel: (919) 515-1918 fax: (919)

More information

Hypothesis testing (cont d)

Hypothesis testing (cont d) Hypothesis testing (cont d) Ulrich Heintz Brown University 4/12/2016 Ulrich Heintz - PHYS 1560 Lecture 11 1 Hypothesis testing Is our hypothesis about the fundamental physics correct? We will not be able

More information

Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times

Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times Patrick J. Heagerty PhD Department of Biostatistics University of Washington 1 Biomarkers Review: Cox Regression Model

More information

Understanding the Cox Regression Models with Time-Change Covariates

Understanding the Cox Regression Models with Time-Change Covariates Understanding the Cox Regression Models with Time-Change Covariates Mai Zhou University of Kentucky The Cox regression model is a cornerstone of modern survival analysis and is widely used in many other

More information

The nltm Package. July 24, 2006

The nltm Package. July 24, 2006 The nltm Package July 24, 2006 Version 1.2 Date 2006-07-17 Title Non-linear Transformation Models Author Gilda Garibotti, Alexander Tsodikov Maintainer Gilda Garibotti Depends

More information

Homework Solutions Applied Logistic Regression

Homework Solutions Applied Logistic Regression Homework Solutions Applied Logistic Regression WEEK 6 Exercise 1 From the ICU data, use as the outcome variable vital status (STA) and CPR prior to ICU admission (CPR) as a covariate. (a) Demonstrate that

More information

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements [Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements Aasthaa Bansal PhD Pharmaceutical Outcomes Research & Policy Program University of Washington 69 Biomarkers

More information

A Flexible Bayesian Approach to Monotone Missing. Data in Longitudinal Studies with Nonignorable. Missingness with Application to an Acute

A Flexible Bayesian Approach to Monotone Missing. Data in Longitudinal Studies with Nonignorable. Missingness with Application to an Acute A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies with Nonignorable Missingness with Application to an Acute Schizophrenia Clinical Trial Antonio R. Linero, Michael J. Daniels

More information

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models 26 March 2014 Overview Continuously observed data Three-state illness-death General robust estimator Interval

More information

Statistics 262: Intermediate Biostatistics Regression & Survival Analysis

Statistics 262: Intermediate Biostatistics Regression & Survival Analysis Statistics 262: Intermediate Biostatistics Regression & Survival Analysis Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Introduction This course is an applied course,

More information

Test of Association between Two Ordinal Variables while Adjusting for Covariates

Test of Association between Two Ordinal Variables while Adjusting for Covariates Test of Association between Two Ordinal Variables while Adjusting for Covariates Chun Li, Bryan Shepherd Department of Biostatistics Vanderbilt University May 13, 2009 Examples Amblyopia http://www.medindia.net/

More information

Lecture 14: Introduction to Poisson Regression

Lecture 14: Introduction to Poisson Regression Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu 8 May 2007 1 / 52 Overview Modelling counts Contingency tables Poisson regression models 2 / 52 Modelling counts I Why

More information

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview Modelling counts I Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu Why count data? Number of traffic accidents per day Mortality counts in a given neighborhood, per week

More information

Continuous Time Survival in Latent Variable Models

Continuous Time Survival in Latent Variable Models Continuous Time Survival in Latent Variable Models Tihomir Asparouhov 1, Katherine Masyn 2, Bengt Muthen 3 Muthen & Muthen 1 University of California, Davis 2 University of California, Los Angeles 3 Abstract

More information

Part III Measures of Classification Accuracy for the Prediction of Survival Times

Part III Measures of Classification Accuracy for the Prediction of Survival Times Part III Measures of Classification Accuracy for the Prediction of Survival Times Patrick J Heagerty PhD Department of Biostatistics University of Washington 102 ISCB 2010 Session Three Outline Examples

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Global Sensitivity Analysis for Repeated Measures Studies with. Informative Drop-out: A Semi-Parametric Approach

Global Sensitivity Analysis for Repeated Measures Studies with. Informative Drop-out: A Semi-Parametric Approach Biometrics 000, 000 000 DOI: 000 000 0000 Global Sensitivity Analysis for Repeated Measures Studies with Informative Drop-out: A Semi-Parametric Approach Daniel Scharfstein 1,, Aidan McDermott 1, Ivan

More information

BMI 541/699 Lecture 22

BMI 541/699 Lecture 22 BMI 541/699 Lecture 22 Where we are: 1. Introduction and Experimental Design 2. Exploratory Data Analysis 3. Probability 4. T-based methods for continous variables 5. Power and sample size for t-based

More information

G-ESTIMATION OF STRUCTURAL NESTED MODELS (CHAPTER 14) BIOS G-Estimation

G-ESTIMATION OF STRUCTURAL NESTED MODELS (CHAPTER 14) BIOS G-Estimation G-ESTIMATION OF STRUCTURAL NESTED MODELS (CHAPTER 14) BIOS 776 1 14 G-Estimation ( G-Estimation of Structural Nested Models 14) Outline 14.1 The causal question revisited 14.2 Exchangeability revisited

More information

Biost 518 Applied Biostatistics II. Purpose of Statistics. First Stage of Scientific Investigation. Further Stages of Scientific Investigation

Biost 518 Applied Biostatistics II. Purpose of Statistics. First Stage of Scientific Investigation. Further Stages of Scientific Investigation Biost 58 Applied Biostatistics II Scott S. Emerson, M.D., Ph.D. Professor of Biostatistics University of Washington Lecture 5: Review Purpose of Statistics Statistics is about science (Science in the broadest

More information

Lecture 12: Effect modification, and confounding in logistic regression

Lecture 12: Effect modification, and confounding in logistic regression Lecture 12: Effect modification, and confounding in logistic regression Ani Manichaikul amanicha@jhsph.edu 4 May 2007 Today Categorical predictor create dummy variables just like for linear regression

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 8 P-values When reporting results, we usually report p-values in place of reporting whether or

More information

Global Sensitivity Analysis of Randomized Trials with Missing Data

Global Sensitivity Analysis of Randomized Trials with Missing Data Global Sensitivity Analysis of Randomized Trials with Missing Data ASA Webinar Daniel Scharfstein Johns Hopkins University dscharf@jhu.edu September 20, 2016 1 / 163 Funding Acknowledgments FDA PCORI 2

More information

The influence of categorising survival time on parameter estimates in a Cox model

The influence of categorising survival time on parameter estimates in a Cox model The influence of categorising survival time on parameter estimates in a Cox model Anika Buchholz 1,2, Willi Sauerbrei 2, Patrick Royston 3 1 Freiburger Zentrum für Datenanalyse und Modellbildung, Albert-Ludwigs-Universität

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Sensitivity analysis and distributional assumptions

Sensitivity analysis and distributional assumptions Sensitivity analysis and distributional assumptions Tyler J. VanderWeele Department of Health Studies, University of Chicago 5841 South Maryland Avenue, MC 2007, Chicago, IL 60637, USA vanderweele@uchicago.edu

More information

Lecture Discussion. Confounding, Non-Collapsibility, Precision, and Power Statistics Statistical Methods II. Presented February 27, 2018

Lecture Discussion. Confounding, Non-Collapsibility, Precision, and Power Statistics Statistical Methods II. Presented February 27, 2018 , Non-, Precision, and Power Statistics 211 - Statistical Methods II Presented February 27, 2018 Dan Gillen Department of Statistics University of California, Irvine Discussion.1 Various definitions of

More information

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY?

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? TUTORIAL ON SAMPLE SIZE AND POWER CALCULATIONS FOR INEQUALITY TESTS. John Zavrakidis j.zavrakidis@nki.nl May 28, 2018 J.Zavrakidis Sample and

More information

Global Sensitivity Analysis for Repeated Measures Studies with Informative Drop-Out: A Semi-Parametric Approach

Global Sensitivity Analysis for Repeated Measures Studies with Informative Drop-Out: A Semi-Parametric Approach Biometrics 74, 207 29 March 208 DOI: 0./biom.2729 Global Sensitivity Analysis for Repeated Measures Studies with Informative Drop-Out: A Semi-Parametric Approach Daniel Scharfstein,,* Aidan McDermott,

More information

Multi-period credit default prediction with time-varying covariates. Walter Orth University of Cologne, Department of Statistics and Econometrics

Multi-period credit default prediction with time-varying covariates. Walter Orth University of Cologne, Department of Statistics and Econometrics with time-varying covariates Walter Orth University of Cologne, Department of Statistics and Econometrics 2 20 Overview Introduction Approaches in the literature The proposed models Empirical analysis

More information

Inference in Randomized Trials with Death and Missingness

Inference in Randomized Trials with Death and Missingness Biometrics 000, 000 000 DOI: 000 000 0000 Inference in Randomized Trials with Death and Missingness Chenguang Wang 1,, Daniel O. Scharfstein 2, Elizabeth Colantuoni 2, Timothy D. Girard 3, and Ying Yan

More information

Lecture 8 Stat D. Gillen

Lecture 8 Stat D. Gillen Statistics 255 - Survival Analysis Presented February 23, 2016 Dan Gillen Department of Statistics University of California, Irvine 8.1 Example of two ways to stratify Suppose a confounder C has 3 levels

More information

Empirical Likelihood Methods for Two-sample Problems with Data Missing-by-Design

Empirical Likelihood Methods for Two-sample Problems with Data Missing-by-Design 1 / 32 Empirical Likelihood Methods for Two-sample Problems with Data Missing-by-Design Changbao Wu Department of Statistics and Actuarial Science University of Waterloo (Joint work with Min Chen and Mary

More information

Lecture 10: Introduction to Logistic Regression

Lecture 10: Introduction to Logistic Regression Lecture 10: Introduction to Logistic Regression Ani Manichaikul amanicha@jhsph.edu 2 May 2007 Logistic Regression Regression for a response variable that follows a binomial distribution Recall the binomial

More information

Survival Regression Models

Survival Regression Models Survival Regression Models David M. Rocke May 18, 2017 David M. Rocke Survival Regression Models May 18, 2017 1 / 32 Background on the Proportional Hazards Model The exponential distribution has constant

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY OF CALIFORNIA, SAN DIEGO Estimation of the primary hazard ratio in the presence of a secondary covariate with non-proportional hazards An undergraduate honors thesis submitted to the Department

More information

Targeted Maximum Likelihood Estimation in Safety Analysis

Targeted Maximum Likelihood Estimation in Safety Analysis Targeted Maximum Likelihood Estimation in Safety Analysis Sam Lendle 1 Bruce Fireman 2 Mark van der Laan 1 1 UC Berkeley 2 Kaiser Permanente ISPE Advanced Topics Session, Barcelona, August 2012 1 / 35

More information

Published online: 10 Apr 2012.

Published online: 10 Apr 2012. This article was downloaded by: Columbia University] On: 23 March 215, At: 12:7 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 172954 Registered office: Mortimer

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

A New Two Sample Type-II Progressive Censoring Scheme

A New Two Sample Type-II Progressive Censoring Scheme A New Two Sample Type-II Progressive Censoring Scheme arxiv:609.05805v [stat.me] 9 Sep 206 Shuvashree Mondal, Debasis Kundu Abstract Progressive censoring scheme has received considerable attention in

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification Todd MacKenzie, PhD Collaborators A. James O Malley Tor Tosteson Therese Stukel 2 Overview 1. Instrumental variable

More information

GOV 2001/ 1002/ E-2001 Section 10 1 Duration II and Matching

GOV 2001/ 1002/ E-2001 Section 10 1 Duration II and Matching GOV 2001/ 1002/ E-2001 Section 10 1 Duration II and Matching Mayya Komisarchik Harvard University April 13, 2016 1 Heartfelt thanks to all of the Gov 2001 TFs of yesteryear; this section draws heavily

More information

Asymptotic equivalence of paired Hotelling test and conditional logistic regression

Asymptotic equivalence of paired Hotelling test and conditional logistic regression Asymptotic equivalence of paired Hotelling test and conditional logistic regression Félix Balazard 1,2 arxiv:1610.06774v1 [math.st] 21 Oct 2016 Abstract 1 Sorbonne Universités, UPMC Univ Paris 06, CNRS

More information

Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming. and Optimal Stopping

Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming. and Optimal Stopping Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming and Optimal Stopping Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

More information

Introduction to mtm: An R Package for Marginalized Transition Models

Introduction to mtm: An R Package for Marginalized Transition Models Introduction to mtm: An R Package for Marginalized Transition Models Bryan A. Comstock and Patrick J. Heagerty Department of Biostatistics University of Washington 1 Introduction Marginalized transition

More information