Optimization Framework for Design of Morphing Wings

Size: px
Start display at page:

Download "Optimization Framework for Design of Morphing Wings"

Transcription

1 Optimization Framework for Design of Morphing Wings Jian Yang, Raj Nangia & Jonathan Cooper Department of Aerospace Engineering, University of Bristol, UK & John Simpson Fraunhofer IBP, Germany AIAA Aviation 214 Atlanta 16-2 July 214

2 Traditional Aircraft Design Single point for the design Minimum weight Maximum C L /C D Suboptimal elsewhere

3 Aircraft Morphing Morphing, when applied to aerospace vehicles, is a technology or set of technologies applied to a vehicle that allow its characteristics to be changed to achieve better performance or to allow the vehicle to complete tasks it could not otherwise do. Jason Bowman, AFRL/VSSV 3

4 Configuration Morphing Change in planform Aircraft control Aircraft performance Change in mission High aspect-ratio glide Attack mode MFX 1, Span & Sweep 4

5 Configuration Morphing Baseline (Joshi et al., 24, AIAA) 5

6 Performance Morphing Change in structural properties Stiffness Camber Leading / trailing edge shape Aircraft control Aircraft performance Lift / drag Roll control Loads NASA, Active Flexible Wing (AFW) 6 NASA, Active Aeroelastic Wing (AAW)

7 Variable Stiffness Morphing Range of different adaptive stiffness methodologies to be explored Vary EI x, EI y, GJ, flexural axis using changes in internal structure Changes to spar orientation, rib position, spar cap position used in several previous EU projects 3AS, SMorph, NOVEMOR 7

8 Aims Develop an inverse design approach - optimise internal wing stiffness distribution - morphing capability. Meet optimal aerodynamic shape throughout the flight envelope Define the required changes in stiffness / elastic axis Minimize the amount of morphing Minimize the weight Satisfy any other constraints to be defined progressively

9 Inverse Design Approach Define required aerodynamic distributions Define required wing shapes Twist / camber / bending Optimise weight to determine stiffness distributions Evaluate required stiffness changes Determine morphing concept(s) to achieve stiffness changes 9

10 chordwise loading z/c x Wing Aerodynamic shape Via Lifting Surface VL or DL (lattice) (Lamar) mean camber for minimum drag Planform dimensions wing vortex panels Aspect ratio (AR) 12 Taper ratio.5 Sweep angle 1 degrees Semi-span 2 meters y 1.1 Mean camber lines x/c 2 y 4 6 Camber lines required to achieve M.74 loading x/c

11 Required CL 2 Aerodynamic shape design - Lifting Surface, Mach Effect CL vs Mach ΔCp distributions Cp M= Mach number Cp x/c y/s M= y/s x/c M=.4 Design for 4 different test cases thin lifting surface Cp x/c 1.5 y/s 1

12 x Aerodynamic shape Super-Critical (twist & Camber) - Panel & Euler (AR=12, Ma=.74) vortex panels Non-D y

13 Cp Aerodynamic shape Different approaches,.5 C L Euler x/s M.74, pressure distribution Cp Lifting Surface x/c y/s x 3 5 y Panel

14 Structural model t H Cross section t L t R d b c

15 Weight Optimisation Minimize weight Consider deflection/stress constraints & minimum gauge of design variables. Use optimality criteria method

16 Application: Aero design camber Cp Cp x Mach.74 Mach.6 Mach.4 Mach.25 16

17 C p (using M.74 camber) Mach.6 Mach.4 Mach.25 Cp Cp x 17

18 Spanwise loadings - effect of M CLL c/cav Xcp Non-D by CL Enlarged.74M camber. Evaluated at different test cases 18

19 Local AoA required to achieve reference loading of M.74 with M.74 camber 19

20 C p Distributions before --- & after adding twist --- Mach.6 Mach.4 Mach.25 Cp Cp x -3% Note -3% 2

21 weight (kg) y Structural Optimisation, (a) 5.74M solution process (b) Initial design Convergence Iteration number x Weight Convergence - fast Flex. axis varies as function of t R / t L 21

22 Predicted Jig shapes & Twist, different M Using M.74 camber Achieving M.74 pressure dist using wingbox twist only Mach.74 Mach.6 Mach.4 Mach.25 22

23 Morphing required (Twist only example from half span) Elastic twist GJ GJ 23

24 Morphing required (Twist & camber morphing example) Elastic twist GJ GJ 24

25 Morphing required (Twist & camber morphing example) Elastic twist GJ GJ Twist Note Strong Reduction Elastic twist GJ GJ Twist & camber 25

26 x Camber morphing case TE Morph: to achieve desired spanwise loading and reduce RBM y LE area TE area Wingbox area 26

27 LE morphing effects LE Morph: to reduce leading edge suction and flow separation 27

28 LE morphing 28

29 Mean camber shape Variations from M.74 to M.25 case 29

30 Conclusions Multiple point design useful for enhancing aircraft efficiency Adaptive wing / morphing concepts reviewed An inverse design approach to optimise the internal stiffness distribution & morphing capabilities Application to a regional aircraft wing Weight reductions achieved via structural optimisation Required morphing examined to meet the multi-design points Need a lot of twist morphing to achieve required shape over flight envelope Use of camber morphing reduces the amount of required twist 3

31 Ongoing Work Continue with aerodynamic shape determination Configuration / flight conditions (Panel, Euler) Winglet Controls Implement inverse approach on coupled-beam model, using more advanced Aero Panel & Euler, Bodies Determine required stiffness variations in terms of morphing approaches Investigate reasonable morphing requirements 31

32 Cp z PANAIR Results M.25, varying twist x y x 3 y 5 1

33 Euler results Design M.74 Off-design, Mach.6 33

Aero-Propulsive-Elastic Modeling Using OpenVSP

Aero-Propulsive-Elastic Modeling Using OpenVSP Aero-Propulsive-Elastic Modeling Using OpenVSP August 8, 213 Kevin W. Reynolds Intelligent Systems Division, Code TI NASA Ames Research Center Our Introduction To OpenVSP Overview! Motivation and Background!

More information

Air Loads. Airfoil Geometry. Upper surface. Lower surface

Air Loads. Airfoil Geometry. Upper surface. Lower surface AE1 Jha Loads-1 Air Loads Airfoil Geometry z LE circle (radius) Chord line Upper surface thickness Zt camber Zc Zl Zu Lower surface TE thickness Camber line line joining the midpoints between upper and

More information

A beam reduction method for wing aeroelastic design optimisation with detailed stress constraints

A beam reduction method for wing aeroelastic design optimisation with detailed stress constraints A beam reduction method for wing aeroelastic design optimisation with detailed stress constraints O. Stodieck, J. E. Cooper, S. A. Neild, M. H. Lowenberg University of Bristol N.L. Iorga Airbus Operations

More information

X-31 Vector Aircraft, Low Speed Stability & Control, Comparisons of Wind Tunnel Data & Theory (Focus on Linear & Panel Codes)

X-31 Vector Aircraft, Low Speed Stability & Control, Comparisons of Wind Tunnel Data & Theory (Focus on Linear & Panel Codes) 39th AIAA Fluid Dynamics Conference 22-25 June 2009, San Antonio, Texas AIAA 2009-3898 27 th AIAA Applied Aerodynamics Conference, 22-25 June. 2009, San Antonio, TX, USA X-31 Vector Aircraft, Low Speed

More information

AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN

AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN 1 26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN Paulo R. Caixeta Jr., Álvaro M. Abdalla, Flávio D. Marques, Fernando

More information

( ) (where v = pr ) v V

( ) (where v = pr ) v V Problem # The DOF idealized wing whose cross-section is shown in Figure. has leading edge and trailing edge control surfaces. There is no initial angle of attack when the two control surfaces are undeflected.

More information

University of Bristol - Explore Bristol Research

University of Bristol - Explore Bristol Research Stodieck, O. A., Cooper, J. E., & Weaver, P. M. (2016). Interpretation of Bending/Torsion Coupling for Swept, Nonhomogenous Wings. Journal of Aircraft, 53(4), 892-899. DOI: 10.2514/1.C033186 Peer reviewed

More information

Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion

Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion Technical Paper DOI:10.5139/IJASS.2011.12.1.63 Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion Yoo-Yeon Jung* School of Mechanical and Aerospace Engineering, Seoul National University,

More information

Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag

Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag ABSTRACT EDWARD NICHOLAS SHIPLEY, JUNIOR. Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag. (Under the direction of Dr. Ashok Gopalarathnam.) This thesis presents a

More information

Adaptive Linear Quadratic Gaussian Optimal Control Modification for Flutter Suppression of Adaptive Wing

Adaptive Linear Quadratic Gaussian Optimal Control Modification for Flutter Suppression of Adaptive Wing Adaptive Linear Quadratic Gaussian Optimal Control Modification for Flutter Suppression of Adaptive Wing Nhan T. Nguyen NASA Ames Research Center, Moffett Field, CA 9435 Sean Swei NASA Ames Research Center,

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

Efficient Modelling of a Nonlinear Gust Loads Process for Uncertainty Quantification of Highly Flexible Aircraft

Efficient Modelling of a Nonlinear Gust Loads Process for Uncertainty Quantification of Highly Flexible Aircraft Efficient Modelling of a Nonlinear Gust Loads Process for Uncertainty Quantification of Highly Flexible Aircraft SciTech, 8 th -12 th January 2018 Kissimmee, Florida Robert Cook, Chris Wales, Ann Gaitonde,

More information

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIAA-2004-0689 Serhat Hosder, Joseph A. Schetz, Bernard Grossman and William H. Mason Virginia Tech Work sponsored by NASA

More information

A First Order Model of a Variable Camber Wing for a Civil Passenger Aircraft

A First Order Model of a Variable Camber Wing for a Civil Passenger Aircraft A First Order Model of a Variable Camber Wing for a Civil Passenger Aircraft Tristan Martindale A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand,

More information

The Wright Stuff. Engineering Analysis. Aaron Lostutter Adam Nelessen Brandon Perez Zev Vallance Jacob Vincent. November 2012

The Wright Stuff. Engineering Analysis. Aaron Lostutter Adam Nelessen Brandon Perez Zev Vallance Jacob Vincent. November 2012 The Wright Stuff Engineering Analysis November 2012 Aaron Lostutter Adam Nelessen Brandon Perez Zev Vallance Jacob Vincent 1 Agenda Static Analysis Aerodynamic Systems Propulsion Systems Structural & Material

More information

Design of a Morphing Wing : Modeling and Experiments

Design of a Morphing Wing : Modeling and Experiments Design of a Morphing Wing : Modeling and Experiments Manoranjan Majji, Othon K. Rediniotis and John L. Junkins Texas A& M University, College Station, TX, 77843-3141, United States This paper details the

More information

AERO-STRUCTURAL WING DESIGN OPTIMIZATION USING HIGH-FIDELITY SENSITIVITY ANALYSIS

AERO-STRUCTURAL WING DESIGN OPTIMIZATION USING HIGH-FIDELITY SENSITIVITY ANALYSIS AERO-STRUCTURAL WING DESIGN OPTIMIZATION USING HIGH-FIDELITY SENSITIVITY ANALYSIS Joaquim R. R. A. Martins and Juan J. Alonso Department of Aeronautics and Astronautics Stanford University, Stanford, CA

More information

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude. Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

More information

The Truth About Elliptic Spanloads or Optimum Spanloads Incorporating Wing Structural Weight

The Truth About Elliptic Spanloads or Optimum Spanloads Incorporating Wing Structural Weight The Truth About Elliptic Spanloads or Optimum Spanloads Incorporating Wing Structural Weight Sergio Iglesias and William H. Mason AIAA Paper 2001-5234 as presented at the 1st AIAA Aircraft Technology,

More information

Aeroelasticity. Lecture 7: Practical Aircraft Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 7

Aeroelasticity. Lecture 7: Practical Aircraft Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 7 Aeroelasticity Lecture 7: Practical Aircraft Aeroelasticity G. Dimitriadis AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 7 1 Non-sinusoidal motion Theodorsen analysis requires that

More information

MORPHING CHARACTERISTICS OF CHIRAL CORE AIRFOILS

MORPHING CHARACTERISTICS OF CHIRAL CORE AIRFOILS MORPHING CHARACTERISTICS OF CHIRAL CORE AIRFOILS Alessandro Spadoni, Massimo Ruzzene School of Aerospace Engineering Georgia Institute of Technology Atlanta GA - USA Chrystel Remillat, Fabrizio Scarpa,

More information

Aeroelastic Gust Response

Aeroelastic Gust Response Aeroelastic Gust Response Civil Transport Aircraft - xxx Presented By: Fausto Gill Di Vincenzo 04-06-2012 What is Aeroelasticity? Aeroelasticity studies the effect of aerodynamic loads on flexible structures,

More information

OPTIMIZATION OF TAPERED WING STRUCTURE WITH AEROELASTIC CONSTRAINT

OPTIMIZATION OF TAPERED WING STRUCTURE WITH AEROELASTIC CONSTRAINT ICAS 000 CONGRESS OPTIMIZATION OF TAPERED WING STRUCTURE WITH AEROELASTIC CONSTRAINT Harijono Djojodihardjo, I Wayan Tjatra, Ismojo Harjanto 3 Computational Aeroelastic Group, Aerospace Engineering Department

More information

Uncertainty Quantification in Gust Loads Analysis of a Highly Flexible Aircraft Wing

Uncertainty Quantification in Gust Loads Analysis of a Highly Flexible Aircraft Wing Uncertainty Quantification in Gust Loads Analysis of a Highly Flexible Aircraft Wing IFASD 2017 25 th - 28 th June 2017, Como R. G. Cook, C. Wales, A. L. Gaitonde, D. P. Jones and Jonathan Cooper University

More information

Model to Evaluate the Aerodynamic Energy Requirements of Active Materials in Morphing Wings

Model to Evaluate the Aerodynamic Energy Requirements of Active Materials in Morphing Wings Model to Evaluate the Aerodynamic Energy Requirements of Active Materials in Morphing Wings Gregory W. Pettit Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

More information

German Aerospace Center (DLR)

German Aerospace Center (DLR) German Aerospace Center (DLR) AEROGUST M30 Progress Meeting 23-24 November 2017, Bordeaux Presented by P. Bekemeryer / J. Nitzsche With contributions of C. Kaiser 1, S. Görtz 2, R. Heinrich 2, J. Nitzsche

More information

Optimum Design of a PID Controller for the Adaptive Torsion Wing Using GA

Optimum Design of a PID Controller for the Adaptive Torsion Wing Using GA 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference20th AI 23-26 April 2012, Honolulu, Hawaii AIAA 2012-1739 Optimum Design of a PID Controller for the Adaptive Torsion

More information

Aeroelastic Wind Tunnel Testing of Very Flexible High-Aspect-Ratio Wings

Aeroelastic Wind Tunnel Testing of Very Flexible High-Aspect-Ratio Wings Aeroelastic Wind Tunnel Testing of Very Flexible High-Aspect-Ratio Wings Justin Jaworski Workshop on Recent Advances in Aeroelasticity, Experiment and Theory July 2, 2010 Problem and Scope High altitude

More information

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction T. Maggio F. Grasso D.P. Coiro This paper has been presented at the EWEA 011, Brussels, Belgium, 14-17 March 011 ECN-M-11-036

More information

MULTIDISCPLINARY OPTIMIZATION AND SENSITIVITY ANALYSIS OF FLUTTER OF AN AIRCRAFT WING WITH UNDERWING STORE IN TRANSONIC REGIME

MULTIDISCPLINARY OPTIMIZATION AND SENSITIVITY ANALYSIS OF FLUTTER OF AN AIRCRAFT WING WITH UNDERWING STORE IN TRANSONIC REGIME MULTIDISCPLINARY OPTIMIZATION AND SENSITIVITY ANALYSIS OF FLUTTER OF AN AIRCRAFT WING WITH UNDERWING STORE IN TRANSONIC REGIME A thesis submitted in partial fulfillment of the requirements for the degree

More information

University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005

University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005 University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005 Answer both questions. Question 1 is worth 30 marks and question

More information

The future of non-linear modelling of aeroelastic gust interaction

The future of non-linear modelling of aeroelastic gust interaction The future of non-linear modelling of aeroelastic gust interaction C. J. A. Wales, C. Valente, R. G. Cook, A. L. Gaitonde, D. P. Jones, J. E. Cooper University of Bristol AVIATION, 25 29 June 2018 Hyatt

More information

Low-Order Aero-Structural Analysis Using OpenVSP and ASWing

Low-Order Aero-Structural Analysis Using OpenVSP and ASWing Low-Order Aero-Structural Analysis Using OpenVSP and ASWing Erik Olson, Ph.D. NASA-Langley Research Center Quinten Henricks, B.S. Ohio State University OpenVSP Workshop 2017 Outline Background & Motivation

More information

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics Chapter 5 Wing design - selection of wing parameters Lecture 0 Topics 5..4 Effects of geometric parameters, Reynolds number and roughness on aerodynamic characteristics of airfoils 5..5 Choice of airfoil

More information

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Daniel J. Lesieutre 1 Nielsen Engineering & Research, Inc., Santa Clara, CA, 95054 The nonlinear missile aerodynamic

More information

Six Degree of Freedom Dynamical Model of a. Morphing Aircraft

Six Degree of Freedom Dynamical Model of a. Morphing Aircraft AIAA Atmospheric Flight Mechanics Conference 10-13 August 2009, Chicago, Illinois AIAA 2009-5849 Six Degree of Freedom Dynamical Model of a Morphing Aircraft Adam Niksch, John Valasek, Thomas W. Strganac,

More information

Configuration Aerodynamics

Configuration Aerodynamics Configuration Aerodynamics William H. Mason Virginia Tech Blacksburg, VA The front cover of the brochure describing the French Exhibit at the Montreal Expo, 1967. January 2018 W.H. Mason CONTENTS i CONTENTS

More information

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture 10 th Symposimum on Overset Composite Grids and Solution Technology, NASA Ames Research Center Moffett Field, California, USA 1 Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible

More information

AN ENHANCED CORRECTION FACTOR TECHNIQUE FOR AERODYNAMIC INFLUENCE COEFFICIENT METHODS

AN ENHANCED CORRECTION FACTOR TECHNIQUE FOR AERODYNAMIC INFLUENCE COEFFICIENT METHODS AN ENHANCED CORRECTION ACTOR TECHNIQUE OR AERODYNAMIC INLUENCE COEICIENT METHODS Ioan Jadic, Dayton Hartley and Jagannath Giri Raytheon Aircraft Company, Wichita, Kansas 67-85 Phone: 36-676-436 E-mail:

More information

Onboard Estimation of Impaired Aircraft Performance Envelope

Onboard Estimation of Impaired Aircraft Performance Envelope Onboard Estimation of Impaired Aircraft Performance Envelope P. K. Menon *, J. Kim, P. Sengupta, S. S. Vaddi, B. Yang **, J. Kwan Optimal Synthesis Inc., Los Altos, CA 94022-2777 A methodology for estimating

More information

Complete Configuration Aero-Structural Optimization Using a Coupled Sensitivity Analysis Method

Complete Configuration Aero-Structural Optimization Using a Coupled Sensitivity Analysis Method AIAA 2002 5402 Complete Configuration Aero-Structural Optimization Using a Coupled Sensitivity Analysis Method Joaquim R. R. A. Martins, Juan J. Alonso Stanford University, Stanford, CA 94305 James J.

More information

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW Ms.K.Niranjana 1, Mr.A.Daniel Antony 2 1 UG Student, Department of Aerospace Engineering, Karunya University, (India) 2 Assistant professor,

More information

1. Tasks of designing

1. Tasks of designing 1 Lecture #18(14) Designing calculation of cross section of a highly aspect ratio wing Plan: 1 Tass of designing Distribution of shear force between wing spars Computation of the elastic center 4 Distribution

More information

MODELLING OF A WARPING WING FOR ENERGY CONSUMPTION MINIMIZATION

MODELLING OF A WARPING WING FOR ENERGY CONSUMPTION MINIMIZATION MODELLING OF A WARPING WING FOR ENERGY CONSUMPTION MINIMIZATION M. Bolinches i Gisbert, A. J. Keane, A. J. Forrester University of Southampton m.bolinches_i_gisbert@soton.ac.uk; Andy.Keane@soton.ac.uk;

More information

Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics. Erik D. Olson. NASA Langley Research Center, Hampton, VA 23681

Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics. Erik D. Olson. NASA Langley Research Center, Hampton, VA 23681 Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics Erik D. Olson NASA Langley Research Center, Hampton, VA 23681 This paper lays out a comprehensive methodology for computing a

More information

An Experimental Validation of Numerical Post-Stall Aerodynamic Characteristics of a Wing

An Experimental Validation of Numerical Post-Stall Aerodynamic Characteristics of a Wing Proceedings of ICTACEM 2017 International Conference on Theoretical, Applied, Computational and Experimental Mechanics December 28-30, 2017, IIT Kharagpur, India ICTACEM-2017/XXXX(paper No.) An Experimental

More information

High-Fidelity Aero-Structural Design Optimization of a Supersonic Business Jet

High-Fidelity Aero-Structural Design Optimization of a Supersonic Business Jet AIAA 2002 1483 High-Fidelity Aero-Structural Design Optimization of a Supersonic Business Jet Joaquim R. R. A. Martins, Juan J. Alonso Stanford University, Stanford, CA 94305 James J. Reuther NASA Ames

More information

Optimum Spanloads Incorporating Wing Structural Considerations And Formation Flying

Optimum Spanloads Incorporating Wing Structural Considerations And Formation Flying Optimum Spanloads Incorporating Wing Structural Considerations And Formation Flying Sergio Iglesias Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment

More information

High Aspect Ratio Wing Design: Optimal Aerostructural Tradeoffs for the Next Generation of Materials

High Aspect Ratio Wing Design: Optimal Aerostructural Tradeoffs for the Next Generation of Materials AIAA SciTech Forum 13-17 January 2014, National Harbor, Maryland 52nd Aerospace Sciences Meeting 10.2514/6.2014-0596 High Aspect Ratio Wing Design: Optimal Aerostructural Tradeoffs for the Next Generation

More information

Use of Compliant Hinges to Tailor Flight Dynamics of Unmanned Aircraft

Use of Compliant Hinges to Tailor Flight Dynamics of Unmanned Aircraft JOURNAL OF AIRCRAFT Use of Compliant Hinges to Tailor Flight Dynamics of Unmanned Aircraft Emily A. Leylek and Mark Costello Georgia Institute of Technology, Atlanta, Georgia 30332 DOI: 10.2514/1.C033056

More information

THE ANALYSIS OF LAMINATE LAY-UP EFFECT ON THE FLUTTER SPEED OF COMPOSITE STABILIZERS

THE ANALYSIS OF LAMINATE LAY-UP EFFECT ON THE FLUTTER SPEED OF COMPOSITE STABILIZERS THE ANALYSIS OF LAMINATE LAY-UP EFFECT ON THE FLUTTER SPEED OF COMPOSITE STABILIZERS Mirko DINULOVIĆ*, Boško RAŠUO* and Branimir KRSTIĆ** * University of Belgrade, Faculty of Mechanical Engineering, **

More information

Balance and Pressure Measurements at High Subsonic Speeds on a Model of a Swept-Wing Aircraft (Hawker P.I 0 5 2)and some Comparisons with Flight Data

Balance and Pressure Measurements at High Subsonic Speeds on a Model of a Swept-Wing Aircraft (Hawker P.I 0 5 2)and some Comparisons with Flight Data R. & M. No. 3165 (16,o5a) A.R.C. Teebniead gopo~ MINISTRY OF AVIATION AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA Balance and Pressure Measurements at High Subsonic Speeds on a Model of a Swept-Wing

More information

EVALUATION OF TRANSONIC BUFFETING ONSET BOUNDARY ESTIMATED BY TRAILING EDGE PRESSURE DIVERGENCE AND RMS DATA OF WING VIBRATION

EVALUATION OF TRANSONIC BUFFETING ONSET BOUNDARY ESTIMATED BY TRAILING EDGE PRESSURE DIVERGENCE AND RMS DATA OF WING VIBRATION EVALUATION OF TRANSONIC BUFFETING ONSET BOUNDARY ESTIMATED BY TRAILING EDGE PRESSURE DIVERGENCE AND RMS DATA OF WING VIBRATION Rodrigo Sorbilli C. de Sousa, Roberto da Motta Girardi Roberto Gil Annes da

More information

Aeroelastic Analysis Of Membrane Wings

Aeroelastic Analysis Of Membrane Wings Aeroelastic Analysis Of Membrane Wings Soumitra P. Banerjee and Mayuresh J. Patil Virginia Polytechnic Institute and State University, Blacksburg, Virginia 46-3 The physics of flapping is very important

More information

Statistic and Dynamic Analysis of Typical Wing Structure of Aircraft using Nastran.

Statistic and Dynamic Analysis of Typical Wing Structure of Aircraft using Nastran. Statistic and Dynamic Analysis of Typical Wing Structure of Aircraft using Nastran. 1 Mr. Pritish Chitte, 2 Mr. P. K. Jadhav, 3 Mr. S. S. Bansode ABSTRACT The paper is about preliminary sizing and analysis

More information

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings. Eugene M. Cliff Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

More information

A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet

A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet AIAA Paper 2004-2208, 2004 A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet Ge-Cheng Zha and Craig D. Paxton Dept. of Mechanical & Aerospace Engineering University of Miami Coral

More information

Wings and Bodies in Compressible Flows

Wings and Bodies in Compressible Flows Wings and Bodies in Compressible Flows Prandtl-Glauert-Goethert Transformation Potential equation: 1 If we choose and Laplace eqn. The transformation has stretched the x co-ordinate by 2 Values of at corresponding

More information

A Numerical Study of Circulation Control on a Flapless UAV

A Numerical Study of Circulation Control on a Flapless UAV Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-xxxx A Numerical Study of Circulation Control on a Flapless UAV Huaixun Ren 1, Weimin

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE

More information

Consider a wing of finite span with an elliptic circulation distribution:

Consider a wing of finite span with an elliptic circulation distribution: Question 1 (a) onsider a wing of finite span with an elliptic circulation distribution: Γ( y) Γo y + b = 1, - s y s where s=b/ denotes the wing semi-span. Use this equation, in conjunction with the Kutta-Joukowsky

More information

F-35: A case study. Eugene Heim Leifur Thor Leifsson Evan Neblett. AOE 4124 Configuration Aerodynamics Virginia Tech April 2003

F-35: A case study. Eugene Heim Leifur Thor Leifsson Evan Neblett. AOE 4124 Configuration Aerodynamics Virginia Tech April 2003 F-35: A case study Eugene Heim Leifur Thor Leifsson Evan Neblett AOE 4124 Configuration Aerodynamics Virginia Tech April 2003 Course: AOE 4124 Configuration Aerodynamics Project: A case study of the F-35

More information

Reynolds Number Effects on the Performance of Lateral Control Devices

Reynolds Number Effects on the Performance of Lateral Control Devices NASA/TM-2-21541 Reynolds Number Effects on the Performance of Lateral Control Devices Raymond E. Mineck Langley Research Center, Hampton, Virginia October 2 The NASA STI Program Office... in Profile Since

More information

SIMULATION STUDIES OF MICRO AIR VEHICLE

SIMULATION STUDIES OF MICRO AIR VEHICLE Journal of KONES Powertrain and Transport, Vol. 22, No. 4 2015 SIMULATION STUDIES OF MICRO AIR VEHICLE Krzysztof Sibilski, Andrzej Zyluk, Miroslaw Kowalski Air Force Institute of Technology Ksiecia Boleslawa

More information

Virtual Work & Energy Methods. External Energy-Work Transformation

Virtual Work & Energy Methods. External Energy-Work Transformation External Energy-Work Transformation Virtual Work Many structural problems are statically determinate (support reactions & internal forces can be found by simple statics) Other methods are required when

More information

Challenges and Complexity of Aerodynamic Wing Design

Challenges and Complexity of Aerodynamic Wing Design Chapter 1 Challenges and Complexity of Aerodynamic Wing Design Kasidit Leoviriyakit and Antony Jameson Department of Aeronautics and Astronautics Stanford University, Stanford CA kasidit@stanford.edu and

More information

Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university

Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university Dynamic Response of an Aircraft to Atmospheric Turbulence Cissy Thomas Civil Engineering Dept, M.G university cissyvp@gmail.com Jancy Rose K Scientist/Engineer,VSSC, Thiruvananthapuram, India R Neetha

More information

Stability Characteristics of Supersonic Natural Laminar Flow Wing Design Concept

Stability Characteristics of Supersonic Natural Laminar Flow Wing Design Concept 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09-12 January 2012, Nashville, Tennessee AIAA 2012-0021 Stability Characteristics of Supersonic Natural Laminar

More information

Aeroelasticity in Dynamically Pitching Wind Turbine Airfoils

Aeroelasticity in Dynamically Pitching Wind Turbine Airfoils Aeroelasticity in Dynamically Pitching Wind Turbine Airfoils Andrew Magstadt, John Strike, Michael Hind, Pourya Nikoueeyan, and Jonathan Naughton Dept. of Mechanical Engineering Wind Energy Research Center

More information

Drag Computation (1)

Drag Computation (1) Drag Computation (1) Why drag so concerned Its effects on aircraft performances On the Concorde, one count drag increase ( C D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be

More information

CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING

CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING Sun Tae Kim*, Youngtae Kim**, Tae Kyu Reu* *Agency for Defense Development,

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

Dynamic Response of Highly Flexible Flying Wings

Dynamic Response of Highly Flexible Flying Wings AIAA JOURNAL Vol. 49, No., February 11 Dynamic Response of Highly Flexible Flying Wings Weihua Su and Carlos E. S. Cesnik University of Michigan, Ann Arbor, Michigan 4819-14 DOI: 1.14/1.J496 This paper

More information

Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight

Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight DOI:.139/EUCASS17-7 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight Fábio Cruz Ribeiro*, Adson

More information

Investigation potential flow about swept back wing using panel method

Investigation potential flow about swept back wing using panel method INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT Volume 7, Issue 4, 2016 pp.317-326 Journal homepage: www.ijee.ieefoundation.org Investigation potential flow about swept back wing using panel method Wakkas

More information

COMPLETE CONFIGURATION AERO-STRUCTURAL OPTIMIZATION USING A COUPLED SENSITIVITY ANALYSIS METHOD

COMPLETE CONFIGURATION AERO-STRUCTURAL OPTIMIZATION USING A COUPLED SENSITIVITY ANALYSIS METHOD COMPLETE CONFIGURATION AERO-STRUCTURAL OPTIMIZATION USING A COUPLED SENSITIVITY ANALYSIS METHOD Joaquim R. R. A. Martins Juan J. Alonso James J. Reuther Department of Aeronautics and Astronautics Stanford

More information

Correction of the wall interference effects in wind tunnel experiments

Correction of the wall interference effects in wind tunnel experiments Correction of the wall interference effects in wind tunnel experiments G. Lombardi', M.V. Salvetti', M. Morelli2 I Department of Aerospace Engineering, Utliversity of Pisa, Italy '~ediurn Speed Wind Tunnel,

More information

Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations

Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations In Lee * Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea Hyuk-Jun Kwon Agency

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering 5. Aircraft Performance 5.1 Equilibrium Flight In order to discuss performance, stability, and control, we must first establish the concept of equilibrium flight.

More information

THE current generation of civilian transport aircraft are typically

THE current generation of civilian transport aircraft are typically JOURNAL OF AIRCRAFT Vol. 47, No. 2, March April 2010 Aerodynamic Structural Design Studies of Low-Sweep Transonic Wings Antony Jameson Stanford University, Stanford, California 94305-3030 John C. Vassberg

More information

The wings and the body shape of Manduca sexta and Agrius convolvuli are compared in

The wings and the body shape of Manduca sexta and Agrius convolvuli are compared in 1 Wing and body shape of Manduca sexta and Agrius convolvuli The wings and the body shape of Manduca sexta and Agrius convolvuli are compared in terms of the aspect ratio of forewing AR fw (wing length

More information

The Fighter of the 21 st Century. Presented By Michael Weisman Configuration Aerodynamics 4/23/01

The Fighter of the 21 st Century. Presented By Michael Weisman Configuration Aerodynamics 4/23/01 The Fighter of the 21 st Century Presented By Michael Weisman Configuration Aerodynamics 4/23/01 1 Joint Strike Fighter (JSF) Program Its purpose is to develop and field an affordable and highly common

More information

CEAS DragNet 00 Potsdam 1 von 8

CEAS DragNet 00 Potsdam 1 von 8 Induced Drag Reduction with the WINGGRID Device Ulrich* and Lucas La Roche, La Roche Consulting Heilighüsli 18, CH-8053 Zürich, email: ularoch@attglobal.net Summary The WINGGRID is a nonplanar, multiple

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering 4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,

More information

Study of Preliminary Configuration Design of F-35 using simple CFD

Study of Preliminary Configuration Design of F-35 using simple CFD Study of Preliminary Configuration Design of F-35 using simple CFD http://www.aerospaceweb.org/aircraft/research/x35/pics.shtml David Hall Sangeon Chun David Andrews Center of Gravity Estimation.5873 Conventional

More information

OPTIMISATION OF THE DESIGN OF UAV WING

OPTIMISATION OF THE DESIGN OF UAV WING International Journal on Design and Manufacturing Technologies, Vol.4, No.2, July 2010 47 Abstract OPTIMISATION OF THE DESIGN OF UAV WING Alexander J 1., Prakash S 2., Augustine BSM 3 1,2,3 Department

More information

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD) Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

More information

Random Problems. Problem 1 (30 pts)

Random Problems. Problem 1 (30 pts) Random Problems Problem (3 pts) An untwisted wing with an elliptical planform has an aspect ratio of 6 and a span of m. The wing loading (defined as the lift per unit area of the wing) is 9N/m when flying

More information

Design and Dynamic Analysis of a Variable-Sweep, Variable-Span Morphing UAV

Design and Dynamic Analysis of a Variable-Sweep, Variable-Span Morphing UAV Dissertations and Theses 12-2014 Design and Dynamic Analysis of a Variable-Sweep, Variable-Span Morphing UAV Nirmit Prabhakar Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional

More information

The effect of laminate lay-up on the flutter speed of composite wings

The effect of laminate lay-up on the flutter speed of composite wings The effect of laminate lay-up on the flutter speed of composite wings Guo, S.J. 1 ; Bannerjee, J.R. ; Cheung, C.W. 1 Dept. of Aerospace, Automobile and Design Eng. University of Hertfordshire, Hatfield,

More information

Multidisciplinary Design Optimization Of A Helicopter Rotor Blade

Multidisciplinary Design Optimization Of A Helicopter Rotor Blade Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2010 Multidisciplinary Design Optimization Of A Helicopter Rotor Blade Michael G. Leahy Ryerson University Follow this and additional

More information

University of Bristol - Explore Bristol Research

University of Bristol - Explore Bristol Research Castellani, M., Cooper, J. E., & Lemmens, Y. (217). Nonlinear Static Aeroelasticity of High Aspect Ratio Wing Aircraft by FEM and Multibody Methods. Journal of Aircraft, 54(2), 548-56. https://doi.org/1.2514/1.c33825

More information

Unsteady flow over flexible wings at different low Reynolds numbers

Unsteady flow over flexible wings at different low Reynolds numbers EPJ Web of Conferences 114, 02030 (2016) DOI: 10.1051/ epjconf/ 2016114 02030 C Owned by the authors, published by EDP Sciences, 2016 Unsteady flow over flexible wings at different low Reynolds numbers

More information

COMPUTATIONAL STUDY ON THE INFLUENCE OF DYNAMIC STALL ON THE UNSTEADY AERODYNAMICS OF FLAPPING WING ORNITHOPTER

COMPUTATIONAL STUDY ON THE INFLUENCE OF DYNAMIC STALL ON THE UNSTEADY AERODYNAMICS OF FLAPPING WING ORNITHOPTER COMPUTATIONAL STUDY ON THE INFLUENCE OF DYNAMIC STALL ON THE UNSTEADY AERODYNAMICS OF FLAPPING WING ORNITHOPTER Alif Syamim Syazwan Ramli and Harijono Djojodihardjo Department of Aerospace Engineering,

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /6.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /6. Ai, Q., & Weaver, P. M. (217). A Multi-stable Spanwise Twist Morphing Trailing Edge. In 25th AIAA/AHS Adaptive Structures Conference. [AIAA 217-55] Inc, AIAA. DOI: 1.2514/6.217-55 Peer reviewed version

More information

Numerical Simulation of Unsteady Aerodynamic Coefficients for Wing Moving Near Ground

Numerical Simulation of Unsteady Aerodynamic Coefficients for Wing Moving Near Ground ISSN -6 International Journal of Advances in Computer Science and Technology (IJACST), Vol., No., Pages : -7 Special Issue of ICCEeT - Held during -5 November, Dubai Numerical Simulation of Unsteady Aerodynamic

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /6.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /6. Castellani, M., Cooper, J. E., & Lemmens, Y. (216). Nonlinear Static Aeroelasticity of High Aspect Ratio Wing Aircraft by FEM and Multibody Methods. In 15th Dynamics Specialists Conference [(AIAA 216-1573]

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

Vishwakarma Institute of Technology. Honors in Aerospace Engineering

Vishwakarma Institute of Technology. Honors in Aerospace Engineering Page 1 of 15 Bansilal Ramnath Agarwal Charitable Trust s Vishwakarma Institute of Technology (An Autonomous Institute affiliated to Savitribai Phule Pune University formerly University of Pune) Structure

More information

Adaptive Winglet Design, Analysis and Optimisation of the Cant Angle for Enhanced MAV Performance

Adaptive Winglet Design, Analysis and Optimisation of the Cant Angle for Enhanced MAV Performance Adaptive Winglet Design, Analysis and Optimisation of the Cant Angle for Enhanced MAV Performance Chen-Ming Kuo and Christian Boller University of Saarland, Materials Science & Technology Dept. Chair of

More information