Aeroelasticity in Dynamically Pitching Wind Turbine Airfoils

Size: px
Start display at page:

Download "Aeroelasticity in Dynamically Pitching Wind Turbine Airfoils"

Transcription

1 Aeroelasticity in Dynamically Pitching Wind Turbine Airfoils Andrew Magstadt, John Strike, Michael Hind, Pourya Nikoueeyan, and Jonathan Naughton Dept. of Mechanical Engineering Wind Energy Research Center University of Wyoming, Laramie, WY

2 Motivation Wind turbines are growing larger Market demands cheaper energy Increased blade size (blades proposed ~ m) Decreased relative stiffness Aeroelasticity becomes major concern Varying inflow conditions produce well-known unsteady aerodynamics Shear & turbulence in Atmospheric Boundary Layer Yawed operating conditions Aeroelastic system comprised of nonlinear components Complex & difficult to understand Tough to numerically model Need for experimental investigation Validation of models Elasticity Aerodynamics Inertia

3 Motivation Validation & Verification Wind Turbine Aeroelastic Validation Roadmap / Aero - Elastic Control 2 - D Static More Complexity 2 - D Dynamic 3 - D Static 3 - D Dynamic 3 - D Rotating W W W Naughton 3 / 11 Higher Fidelity Data

4 Objectives & Approach Research Goals Investigate and characterize the effects of elastic compliance Airfoil Response Aerodynamics Understand how compliance affects the wind turbine system Dynamic Loading Stall Flutter, LCOs? Experimental Means Single d-o-f system considered I b k M All forces ~ Order of Magnitude Driven pitch oscillations produce dynamic stall in wind tunnel spring section designed & characterized and compliant systems contrasted

5 Experimental Setup Mechanical System UW s Low Speed Wind Tunnel Operational range up to m/s.61 x.61 x 1.22 m test section.3% free-stream turbulence Airfoil Encoder Pitching System 24V DC driving motor PID algorithm, flywheel, & PWM maintain constant frequency Cam & push rod for sinusoidal pitch cycles Compliance Section Driving Motor Encoder Test Section Pitching Motor Compliance Variable Spring Stiffness 16.2 N.m/rad to 389 N.m/rad Maximum Allowable Differential Φ max = 4.4 o

6 Experimental Setup Instrumentation Position Two rotary encoders Airfoil Encoder Compliance Section Airfoil Driver System response Test Section Pressure Remotely measure unsteady surface pressures Spatial & temporal distributions Lift & moment coefficients Nd:YAG Lasers Flow-field Dual PIV Vector fields merged & phaseaveraged Structure CCD Cameras Driving Motor Encoder Pitching All 3 necessary for understanding Motor the physics of aeroelastic system!

7 Experimental Setup Dynamic Pressure Distribution x/c x/c x/c Case 9: α = o ± 12 Hz (k =.17), k φ = N. m/rad

8 Experimental Setup Test Cases All cases operated under the following test conditions: Chord, C =.3 m Reynolds Number, Re c = 4.4x Flexural Axis, FA = c/4 Moment of Inertia, I = 6.x -3 kg. m 2 Spring stiffness was arrived at by maximizing the differential angle while oscillating & compliant data taken for each case Cases 2-4 suggested flow structure may start to deviate Focus on Case : α = o ± Hz α = 12 o ± Hz

9 Static Equilibrium Mean AoA shifts Aeroelastic Airfoil Response Inertial & Elastic Interactions More extreme AoAs experienced Peak lag Classic harmonic oscillator Aerodynamic Influence Departure from sinusoidal curve Falling slope is steeper than rising Requires further investigation

10 Dynamic Pressure Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

11 Dynamic Pressure Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

12 Dynamic Pressure Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

13 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

14 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

15 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

16 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

17 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

18 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

19 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

20 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

21 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

22 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

23 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

24 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

25 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

26 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

27 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

28 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

29 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

30 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

31 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

32 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

33 Pressure & Flow-field Case : α = 12 o ± Hz (k =.21), k φ = N. m/rad

34 Integrated Case 1. Fully attached 2. Trailing edge stall begins setting up 3. Trailing edge separation initiates w/ secondary vortex 4. Minor TE stall, with weak secondary vortex. 6. Vortices shed Flow reattachment C l C m Angle of Attack, Integrated Case 1. Fully attached 2. Trailing edge stall begins setting up 3. Trailing edge separation initiates w/ secondary vortex evident 4. TE stall. Additional structure in front of TE vortex. Suction side vortices merge 6. Secondary vortex sheds first, primary follows 7. Remnants of merged vortex 8. Flow reattachment Angle of Attack,

35 Analysis of Integrated C l 1. C m Angle of Attack, Evidence of increase in hysteresis -.3 Increased dynamic loading More extreme AoAs -.4 Angle of Attack, Change in aerodynamic structures Exotic stall observed in compliant case may result from non-sinusoidal pitch frequency Moment increase is more involved Result of asymmetric AoA schedule See paper for in-depth explanation Asymmetric AoA schedule Changes in Instantaneous reduced frequency Airfoil sees higher k momentarily and stalls accordingly

36 Summary Fully Attached Intermediate Stall Deep Stall C m -.2 C l 1. C m -.2 C l -.3, Angle of Attack, Angle ( ) of Attack, C m Angle of Attack, Angle ( ) of Attack, Angle of Attack, Asymmetric AoA No stall Asymmetric AoA Strengthened stall Additional structure High c m lowers AoA max Stalls prior to AoA max Deep stall insensitive to small AoA change

37 Conclusions Coupling of surface and flowfield measurements critical to understanding complex flow Presence of compliance affects: AoA schedule Flow structures Dynamic loading Hysteresis increased Lift & Moment increased High sensitivity to operating conditions α = o ± o α = 12 o ± o Varying inflow may push blade into this region Adverse consequences Fatigue of components Possibility of more complex phenomenon with plunge Flutter, LCOs Demonstrate potential for aerodynamic control Minimize negative aspects, possibly improve performance Large gains from little changes Little (intelligent) effort required

38 Funding for this work Acknowledgements Grant number DESC1261 from the Department of Energy monitored by Timothy J. Fitzsimmons A gift from BP Alternative Energy North America, Inc. Background Photo Credit Barrow Offshore Wind Farm, Irish Sea _wind_turbines.jpg Full Work AIAA Paper Magstadt, A. S., Strike, J. A., Hind, M. D., Nikoueeyan, P., and Naughton, J. W., Compliance Effects in Dynamically Pitching Wind Turbine Airfoils, AIAA Paper , Jun , 43rd Fluid Dynamics Conference, San Diego, CA. Chapter DOI:.214/

39 Thank you. Questions?

Simulation of Aeroelastic System with Aerodynamic Nonlinearity

Simulation of Aeroelastic System with Aerodynamic Nonlinearity Simulation of Aeroelastic System with Aerodynamic Nonlinearity Muhamad Khairil Hafizi Mohd Zorkipli School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School

More information

Wind Tunnel Experiments of Stall Flutter with Structural Nonlinearity

Wind Tunnel Experiments of Stall Flutter with Structural Nonlinearity Wind Tunnel Experiments of Stall Flutter with Structural Nonlinearity Ahmad Faris R.Razaami School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School of Aerospace

More information

Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall

Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall Y. Kim, I.P. Castro, and Z.T. Xie Introduction Wind turbines operate in the atmospheric boundary layer and their

More information

Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior N. Manoj Abstract The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is

More information

Fig. 1. Bending-Torsion Foil Flutter

Fig. 1. Bending-Torsion Foil Flutter 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXTRACTING POWER IN JET STREAMS: PUSHING THE PERFORMANCE OF FLAPPING WING TECHNOLOGY M.F. Platzer*, M.A. Ashraf**, J. Young**, and J.C.S. Lai**

More information

Some effects of large blade deflections on aeroelastic stability

Some effects of large blade deflections on aeroelastic stability 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 29, Orlando, Florida AIAA 29-839 Some effects of large blade deflections on aeroelastic stability

More information

DYNAMIC STALL ONSET VARIATION WITH REDUCED FREQUENCY FOR THREE STALL MECHANISMS

DYNAMIC STALL ONSET VARIATION WITH REDUCED FREQUENCY FOR THREE STALL MECHANISMS International Forum on Aeroelasticity and Structural Dynamics IFASD 27 25-28 June 27 Como, Italy DYNAMIC STALL ONSET VARIATION WITH REDUCED FREQUENCY FOR THREE STALL MECHANISMS Boutet Johan, Dimitriadis

More information

Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades the Aerodynamic Offshore Wind, Henning Schmitt, Jörg R. Seume The Science of Making Torque from Wind 2012 October 9-11, 2012 Oldenburg, Germany 1. Motivation and 2. 3. 4. 5. Conclusions and Slide 2 / 12

More information

Reynolds number influence on high agility aircraft vortical flows

Reynolds number influence on high agility aircraft vortical flows Reynolds number influence on high agility aircraft vortical flows TUM-AER project proposal Outline Background and context Previous investigations Proposed ETW measurements Project aims Institute of Aerodynamics

More information

Aeroelastic Gust Response

Aeroelastic Gust Response Aeroelastic Gust Response Civil Transport Aircraft - xxx Presented By: Fausto Gill Di Vincenzo 04-06-2012 What is Aeroelasticity? Aeroelasticity studies the effect of aerodynamic loads on flexible structures,

More information

INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS

INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS ICAS 2002 CONGRESS INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS S. Yarusevych*, J.G. Kawall** and P. Sullivan* *Department of Mechanical and Industrial Engineering, University

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

EXPERIMENTAL INVESTIGATION OF THE DYNAMIC STABILITY DERIVATIVES FOR A FIGHTER MODEL

EXPERIMENTAL INVESTIGATION OF THE DYNAMIC STABILITY DERIVATIVES FOR A FIGHTER MODEL 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL INVESTIGATION OF THE DYNAMIC STABILITY DERIVATIVES FOR A FIGHTER MODEL MR Soltani*, Ali R Davari** *Associate Professor, **PhD Student

More information

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW Ms.K.Niranjana 1, Mr.A.Daniel Antony 2 1 UG Student, Department of Aerospace Engineering, Karunya University, (India) 2 Assistant professor,

More information

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS 54 CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS The baseline characteristics and analysis of NACA 4 series airfoils are presented in this chapter in detail. The correlations for coefficient of lift and

More information

Untersuchungen an einer abgelösten Triebwerksgondel bei gestörter Zuströmung

Untersuchungen an einer abgelösten Triebwerksgondel bei gestörter Zuströmung Fachtagung Lasermethoden in der Strömungsmesstechnik 9. 11. September 2014, Karlsruhe Untersuchungen an einer abgelösten Triebwerksgondel bei gestörter Zuströmung Investigations in a Stalling Nacelle Inlet

More information

Aerodynamic Resonance in Transonic Airfoil Flow. J. Nitzsche, R. H. M. Giepman. Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen

Aerodynamic Resonance in Transonic Airfoil Flow. J. Nitzsche, R. H. M. Giepman. Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen Aerodynamic Resonance in Transonic Airfoil Flow J. Nitzsche, R. H. M. Giepman Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen Source: A. Šoda, PhD thesis, 2006 Slide 2/39 Introduction

More information

Non-Synchronous Vibrations of Turbomachinery Airfoils

Non-Synchronous Vibrations of Turbomachinery Airfoils Non-Synchronous Vibrations of Turbomachinery Airfoils 600 500 NSV Frequency,!, hz 400 300 200 F.R. Flutter 100 SFV 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Rotor Speed,!, RPM Kenneth C. Hall,

More information

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. Velázquez-Araque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University

More information

Aeroelasticity & Experimental Aerodynamics. Lecture 7 Galloping. T. Andrianne

Aeroelasticity & Experimental Aerodynamics. Lecture 7 Galloping. T. Andrianne Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 Dimensional analysis (from L6) Motion of a linear structure in a subsonic, steady flow Described by :

More information

Aero-Propulsive-Elastic Modeling Using OpenVSP

Aero-Propulsive-Elastic Modeling Using OpenVSP Aero-Propulsive-Elastic Modeling Using OpenVSP August 8, 213 Kevin W. Reynolds Intelligent Systems Division, Code TI NASA Ames Research Center Our Introduction To OpenVSP Overview! Motivation and Background!

More information

FIFTH INTERNATIONAL CONGRESSON SOUND AND VIBRATION DECEMBER15-18, 1997 ADELAIDE,SOUTHAUSTRALIA

FIFTH INTERNATIONAL CONGRESSON SOUND AND VIBRATION DECEMBER15-18, 1997 ADELAIDE,SOUTHAUSTRALIA FIFTH INTERNATIONAL CONGRESSON SOUND AND VIBRATION DECEMBER15-18, 1997 ADELAIDE,SOUTHAUSTRALIA Aeroelastic Response Of A Three Degree Of Freedom Wing-Aileron System With Structural Non-Linearity S. A.

More information

Buffeting Response of Ultimate Loaded NREL 5MW Wind Turbine Blade using 3-dimensional CFD

Buffeting Response of Ultimate Loaded NREL 5MW Wind Turbine Blade using 3-dimensional CFD Buffeting Response of Ultimate Loaded NREL 5MW Wind Turbine Blade using 3-dimensional CFD *Byeong-Cheol Kim 1) and Youn-Ju Jeong 2) 1), 2) Structural Engineering Research Division, KICT, Il-San 411-712,

More information

Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels

Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels O.Pires 1, X.Munduate 2, O.Ceyhan 3, M.Jacobs 4, J.Madsen 5 1 National Renewable Energy Centre

More information

Nonlinear buffeting response of bridge deck using the Band Superposition approach: comparison between rheological models and convolution integrals.

Nonlinear buffeting response of bridge deck using the Band Superposition approach: comparison between rheological models and convolution integrals. Nonlinear buffeting response of bridge deck using the Band Superposition approach: comparison between rheological models and convolution integrals. Argentini, T. ), Diana, G. ), Portentoso, M. * ), Rocchi,

More information

Dynamic Stall of an Experimental Wind Turbine Blade

Dynamic Stall of an Experimental Wind Turbine Blade Dynamic Stall of an Experimental Wind Turbine Blade Matthew Melius and Raúl Bayoán Cal Portland State University, Portland, OR USA 9721 Karen Mulleners École Polytechnique Fédérale de Lausanne, CH-115

More information

STUDY OF SHOCK MOVEMENT AND UNSTEADY PRESSURE ON 2D GENERIC MODEL

STUDY OF SHOCK MOVEMENT AND UNSTEADY PRESSURE ON 2D GENERIC MODEL STUDY OF SHOCK MOVEMENT AND UNSTEADY PRESSURE ON D GENERIC MODEL Davy Allegret-Bourdon Chair of Heat and Power Technology Royal Institute of Technology, Stockholm, Sweden davy@energy.kth.se Torsten H.

More information

Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade

Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade HU Guo-yu, SUN Wen-lei, Dong Ping The School of Mechanical Engineering Xinjiang University Urumqi, Xinjiang,

More information

FLUID STRUCTURE INTERACTIONS PREAMBLE. There are two types of vibrations: resonance and instability.

FLUID STRUCTURE INTERACTIONS PREAMBLE. There are two types of vibrations: resonance and instability. FLUID STRUCTURE INTERACTIONS PREAMBLE There are two types of vibrations: resonance and instability. Resonance occurs when a structure is excited at a natural frequency. When damping is low, the structure

More information

Unsteady Force Measurements in Pitching-Plunging Airfoils

Unsteady Force Measurements in Pitching-Plunging Airfoils 39th I Fluid Dynamics Conference - 5 June 9, San ntonio, Texas I 9-431 Unsteady Force easurements in Pitching-Plunging irfoils Luis P Bernal 1 University of ichigan, nn rbor, I 4819, U.S. ichael V. Ol,

More information

Relationship between Unsteady Fluid Force and Vortex Behavior around a Discoid Airfoil Simulating a Hand of Swimmer

Relationship between Unsteady Fluid Force and Vortex Behavior around a Discoid Airfoil Simulating a Hand of Swimmer 45 * Relationship between Unsteady Fluid Force and Vortex Behavior around a Discoid Airfoil Simulating a Hand of Swimmer Hiroaki HASEGAWA, Department of Mechanical Engineering, Akita University Jun WATANABE,

More information

Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction

Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction T. Maggio F. Grasso D.P. Coiro 13th International Conference Wind Engineering (ICWE13), 10-15 July 011, Amsterdam, the Netherlands.

More information

Experimental Study on Flow Control Characteristics of Synthetic Jets over a Blended Wing Body Configuration

Experimental Study on Flow Control Characteristics of Synthetic Jets over a Blended Wing Body Configuration Experimental Study on Flow Control Characteristics of Synthetic Jets over a Blended Wing Body Configuration Byunghyun Lee 1), Minhee Kim 1), Chongam Kim 1), Taewhan Cho 2), Seol Lim 3), and Kyoung Jin

More information

Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow

Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow Denis B. Kholodar, United States Air Force Academy, Colorado Springs, CO 88 Earl H. Dowell, Jeffrey P. Thomas, and Kenneth C. Hall Duke University,

More information

Design of an autonomous flap for load alleviation

Design of an autonomous flap for load alleviation ICAST2014 #053 Design of an autonomous flap for load alleviation Lars O. Bernhammer 1, Jurij Sodja 1, Moti Karpel 2, Roeland De Breuker 1 1 Faculty of Aerospace Engineering, Delft University of Technology,

More information

Chapter three. Two-dimensional Cascades. Laith Batarseh

Chapter three. Two-dimensional Cascades. Laith Batarseh Chapter three Two-dimensional Cascades Laith Batarseh Turbo cascades The linear cascade of blades comprises a number of identical blades, equally spaced and parallel to one another cascade tunnel low-speed,

More information

An Experimental Validation of Numerical Post-Stall Aerodynamic Characteristics of a Wing

An Experimental Validation of Numerical Post-Stall Aerodynamic Characteristics of a Wing Proceedings of ICTACEM 2017 International Conference on Theoretical, Applied, Computational and Experimental Mechanics December 28-30, 2017, IIT Kharagpur, India ICTACEM-2017/XXXX(paper No.) An Experimental

More information

FLOW VISUALIZATION AND PIV MEASUREMENTS OF LAMINAR SEPARATION BUBBLE OSCILLATING AT LOW FREQUENCY ON AN AIRFOIL NEAR STALL

FLOW VISUALIZATION AND PIV MEASUREMENTS OF LAMINAR SEPARATION BUBBLE OSCILLATING AT LOW FREQUENCY ON AN AIRFOIL NEAR STALL 4 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLOW VISUALIZATION AND PIV MEASUREMENTS OF LAMINAR SEPARATION BUBBLE OSCILLATING AT LOW FREQUENCY ON AN AIRFOIL NEAR STALL Hiroyuki Tanaka Department

More information

Aeroelasticity. Lecture 9: Supersonic Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 9

Aeroelasticity. Lecture 9: Supersonic Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 9 Aeroelasticity Lecture 9: Supersonic Aeroelasticity G. Dimitriadis AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 9 1 Introduction All the material presented up to now concerned incompressible

More information

Iterative Learning Control for Smart Rotors in Wind turbines First Results

Iterative Learning Control for Smart Rotors in Wind turbines First Results Iterative Learning Control for Smart Rotors in Wind turbines First Results Owen Tutty 1, Mark Blackwell 2, Eric Rogers 3, Richard Sandberg 1 1 Engineering and the Environment University of Southampton

More information

Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet

Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet energies Article Dynamic Stall Control on Wind Turbine Airfoil via a Co-Flow Jet He-Yong Xu *, Chen-Liang Qiao Zheng-Yin Ye National Key Laboratory Science Technology on Aerodynamic Design Research, Northwestern

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET), Dhaka Lecture-0 Introduction toufiquehasan.buet.ac.bd

More information

Improved numerical simulation of bridge deck aeroelasticity by model validation

Improved numerical simulation of bridge deck aeroelasticity by model validation Improved numerical simulation of bridge deck aeroelasticity by model validation A.Šarkić, R. Höffer Building Aerodynamics Laboratory, Bochum, Germany anina.sarkic@rub.de Abstract In this study, the results

More information

THE EFFECT OF INTERNAL ACOUSTIC EXCITATION ON THE AERODYNAMIC CHARACTERISTICS OF AIRFOIL AT HIGH ANGLE OF ATTACKE

THE EFFECT OF INTERNAL ACOUSTIC EXCITATION ON THE AERODYNAMIC CHARACTERISTICS OF AIRFOIL AT HIGH ANGLE OF ATTACKE Vol.1, Issue.2, pp-371-384 ISSN: 2249-6645 THE EFFECT OF INTERNAL ACOUSTIC EXCITATION ON THE AERODYNAMIC CHARACTERISTICS OF AIRFOIL AT HIGH ANGLE OF ATTACKE Dr. Mohammed W. Khadim Mechanical Engineering

More information

Stall Suppression of a Low-Reynolds-Number Airfoil with a Dynamic Burst Control Plate

Stall Suppression of a Low-Reynolds-Number Airfoil with a Dynamic Burst Control Plate 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 4-7 January 2011, Orlando, Florida AIAA 2011-1180 Stall Suppression of a Low-Reynolds-Number Airfoil with

More information

LES of the trailing-edge flow and noise of a NACA0012 airfoil near stall

LES of the trailing-edge flow and noise of a NACA0012 airfoil near stall Center for Turbulence Research Proceedings of the Summer Program 8 7 LES of the trailing-edge flow and noise of a NACA airfoil near stall By S. Moreau, J. Christophe AND M. Roger Reynolds-averaged Navier-Stokes

More information

Bernoulli's equation: 1 p h t p t. near the far from plate the plate. p u

Bernoulli's equation: 1 p h t p t. near the far from plate the plate. p u UNSTEADY FLOW let s re-visit the Kutta condition when the flow is unsteady: p u p l Bernoulli's equation: 2 φ v 1 + + = () = + p h t p t 2 2 near the far from plate the plate as a statement of the Kutta

More information

Semi-Empirical Modeling of Two-Dimensional and Three-Dimensional Dynamic Stall

Semi-Empirical Modeling of Two-Dimensional and Three-Dimensional Dynamic Stall Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Spring 5-15-2016 Semi-Empirical Modeling

More information

Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap

Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap Journal of Physics: Conference Series OPEN ACCESS Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap To cite this article: W J Zhu et al 2014 J. Phys.: Conf. Ser. 524 012102

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

Experimental Evaluation of Aerodynamics Characteristics of a Baseline Airfoil

Experimental Evaluation of Aerodynamics Characteristics of a Baseline Airfoil Research Paper American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-1, pp-91-96 www.ajer.org Open Access Experimental Evaluation of Aerodynamics Characteristics

More information

DYNAMIC RESPONSE OF AN AIRPLANE ELASTIC STRUCTURE IN TRANSONIC FLOW

DYNAMIC RESPONSE OF AN AIRPLANE ELASTIC STRUCTURE IN TRANSONIC FLOW DYNAMIC RESPONSE OF AN AIRPLANE ELASTIC STRUCTURE IN TRANSONIC FLOW S. Kuzmina*, F. Ishmuratov*, O. Karas*, A.Chizhov* * Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, Russia Keywords: aeroelasticity,

More information

Experimental Investigations on the Performance Degradation of a Low-Reynolds-Number Airfoil with Distributed Leading Edge Roughness

Experimental Investigations on the Performance Degradation of a Low-Reynolds-Number Airfoil with Distributed Leading Edge Roughness 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 4-7 January 2011, Orlando, Florida AIAA 2011-1102 Experimental Investigations on the Performance Degradation

More information

Spatially Resolved Wind Tunnel Wake Measurements at High Angles of Attack and High Reynolds Numbers Using a Laser-Based Velocimeter

Spatially Resolved Wind Tunnel Wake Measurements at High Angles of Attack and High Reynolds Numbers Using a Laser-Based Velocimeter Spatially Resolved Wind Tunnel Wake Measurements at High Angles of Attack and High Reynolds Numbers Using a Laser-Based Velocimeter Daniel R. Cadel and K. Todd Lowe Dept. of Aerospace and Ocean Eng., Virginia

More information

Aeroelasticity of Wind Turbines Blades Using Numerical Simulation

Aeroelasticity of Wind Turbines Blades Using Numerical Simulation Provisional chapter Aeroelasticity of Wind Turbines Blades Using Numerical Simulation Drishtysingh Ramdenee, Adrian Ilinca and Ion Sorin Minea Additional information is available at the end of the chapter

More information

Aeroelastic Wind Tunnel Testing of Very Flexible High-Aspect-Ratio Wings

Aeroelastic Wind Tunnel Testing of Very Flexible High-Aspect-Ratio Wings Aeroelastic Wind Tunnel Testing of Very Flexible High-Aspect-Ratio Wings Justin Jaworski Workshop on Recent Advances in Aeroelasticity, Experiment and Theory July 2, 2010 Problem and Scope High altitude

More information

Numerical Simulations of Self-Sustained Pitch-Heave Oscillations of a NACA0012 Airfoil

Numerical Simulations of Self-Sustained Pitch-Heave Oscillations of a NACA0012 Airfoil Numerical Simulations of Self-Sustained Pitch-Heave Oscillations of a NACA2 Airfoil Simon Lapointe and Guy Dumas Laboratoire de Mécanique des Fluides Numérique, Département de Génie Mécanique, Université

More information

Stability and Control

Stability and Control Stability and Control Introduction An important concept that must be considered when designing an aircraft, missile, or other type of vehicle, is that of stability and control. The study of stability is

More information

Experimental Aerodynamics. Experimental Aerodynamics

Experimental Aerodynamics. Experimental Aerodynamics Lecture 3: Vortex shedding and buffeting G. Dimitriadis Buffeting! All structures exposed to a wind have the tendency to vibrate.! These vibrations are normally of small amplitude and have stochastic character!

More information

Using CFD to Improve Simple Aerodynamic Models for Rotor Codes

Using CFD to Improve Simple Aerodynamic Models for Rotor Codes Using CFD to Improve Simple Aerodynamic Models for Rotor Codes J. Beedy, G. N. Barakos, K. J. Badcock, and B. E. Richards Computational Fluid Dynamics Lab, Department of Aerospace Engineering, University

More information

50 h 3AF International Conference on Applied Aerodynamics March 01 April 2015, Toulouse - France

50 h 3AF International Conference on Applied Aerodynamics March 01 April 2015, Toulouse - France 50 h 3AF International Conference on Applied Aerodynamics 29-30 March 01 April 2015, Toulouse - France FP10-2015-faure Vortex dynamics resulting from the interaction between two NACA 23 012 airfoils Thierry

More information

Unsteady Flow Separation Control over a NACA 0015 using NS-DBD Plasma Actuators THESIS

Unsteady Flow Separation Control over a NACA 0015 using NS-DBD Plasma Actuators THESIS Unsteady Flow Separation Control over a NACA 0015 using NS-DBD Plasma Actuators THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The

More information

The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Excitation mechanism of

The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Excitation mechanism of The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 xcitation mechanism of rain-wind induced vibration of cables: unsteady and

More information

Theoretical Modeling, Experimental Observation, and Reliability Analysis of Flow-induced Oscillations in Offshore Wind Turbine Blades

Theoretical Modeling, Experimental Observation, and Reliability Analysis of Flow-induced Oscillations in Offshore Wind Turbine Blades University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses 2016 Theoretical Modeling, Experimental Observation, and Reliability Analysis of Flow-induced

More information

Interferometry and Computational Studies of an Oscillating Airfoil Compressible Dynamic Stall

Interferometry and Computational Studies of an Oscillating Airfoil Compressible Dynamic Stall Calhoun: The NPS nstitutional Archive Faculty and Researcher Publications Faculty and Researcher Publications Collection 1992 nterferometry and Computational Studies of an Oscillating Airfoil Compressible

More information

FLOW CONTROL USING DBD PLASMA ON BACKWARD-FACING STEP

FLOW CONTROL USING DBD PLASMA ON BACKWARD-FACING STEP 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLOW CONTROL USING DBD PLASMA ON BACKWARD-FACING STEP Jiwoon Song* * Department of Mechanical Engineering, Yonsei University, 120-749, Korea dolguard@yonsei.ac.kr

More information

Aeroelasticity & Experimental Aerodynamics. Lecture 7 Galloping. T. Andrianne

Aeroelasticity & Experimental Aerodynamics. Lecture 7 Galloping. T. Andrianne Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2017-2018 Dimensional analysis (from L6) Motion of a linear structure in a subsonic, steady flow Described by :

More information

ACCURACY OF FAST-RESPONSE PROBES IN UNSTEADY TURBINE FLOWS

ACCURACY OF FAST-RESPONSE PROBES IN UNSTEADY TURBINE FLOWS The 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines ACCURACY OF FAST-RESPONSE PROBES IN UNSTEADY TURBINE FLOWS R. J. Miller Whittle Laboratory University

More information

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS 4th International Symposium on Particle Image Velocimetry Göttingen, Germany, September 7-9, 00 PIV 0 Paper 096 THE EFFECT OF SAMPLE SIZE, TURBULECE ITESITY AD THE VELOCITY FIELD O THE EXPERIMETAL ACCURACY

More information

German Aerospace Center (DLR)

German Aerospace Center (DLR) German Aerospace Center (DLR) AEROGUST M30 Progress Meeting 23-24 November 2017, Bordeaux Presented by P. Bekemeryer / J. Nitzsche With contributions of C. Kaiser 1, S. Görtz 2, R. Heinrich 2, J. Nitzsche

More information

On vortex shedding from an airfoil in low-reynolds-number flows

On vortex shedding from an airfoil in low-reynolds-number flows J. Fluid Mech. (2009), vol. 632, pp. 245 271. c 2009 Cambridge University Press doi:10.1017/s0022112009007058 Printed in the United Kingdom 245 On vortex shedding from an airfoil in low-reynolds-number

More information

02 Introduction to Structural Dynamics & Aeroelasticity

02 Introduction to Structural Dynamics & Aeroelasticity 02 Introduction to Structural Dynamics & Aeroelasticity Vibraciones y Aeroelasticidad Dpto. de Vehículos Aeroespaciales P. García-Fogeda Núñez & F. Arévalo Lozano ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

More information

Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge Flaps: Sensoring and Control. Risø-PhD-Report

Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge Flaps: Sensoring and Control. Risø-PhD-Report Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge Flaps: Sensoring and Control Risø-PhD-Report Peter Bjørn Andersen Risø-PhD-61(EN) February 2010 Author: Peter Bjørn Andersen Title:

More information

ABSTRACT. Thomas Woodrow Sukut, 2d Lt USAF

ABSTRACT. Thomas Woodrow Sukut, 2d Lt USAF ABSTRACT Nonlinear Aeroelastic Analysis of UAVs: Deterministic and Stochastic Approaches By Thomas Woodrow Sukut, 2d Lt USAF Aeroelastic aspects of unmanned aerial vehicles (UAVs) is analyzed by treatment

More information

THE ANALYSIS OF LAMINATE LAY-UP EFFECT ON THE FLUTTER SPEED OF COMPOSITE STABILIZERS

THE ANALYSIS OF LAMINATE LAY-UP EFFECT ON THE FLUTTER SPEED OF COMPOSITE STABILIZERS THE ANALYSIS OF LAMINATE LAY-UP EFFECT ON THE FLUTTER SPEED OF COMPOSITE STABILIZERS Mirko DINULOVIĆ*, Boško RAŠUO* and Branimir KRSTIĆ** * University of Belgrade, Faculty of Mechanical Engineering, **

More information

Dynamic Stall Modeling for Wind Turbines. M. A. Khan

Dynamic Stall Modeling for Wind Turbines. M. A. Khan Dynamic Stall Modeling for Wind Turbines M. A. Khan Dynamic Stall Modeling for Wind Turbines by M. A. Khan to obtain the degree of Master of Science at the Delft University of Technology, to be defended

More information

Introduction to Aeronautics

Introduction to Aeronautics Introduction to Aeronautics ARO 101 Sections 03 & 04 Sep 30, 2015 thru Dec 9, 2015 Instructor: Raymond A. Hudson Week #8 Lecture Material 1 Topics For Week #8 Airfoil Geometry & Nomenclature Identify the

More information

Parallel Computation of Forced Vibration for A Compressor Cascade

Parallel Computation of Forced Vibration for A Compressor Cascade 44th AIAA Aerospace Sciences Meeting and Exhibit 9-2 January 26, Reno, Nevada AIAA 26-628 AIAA Paper 26-628 Parallel Computation of Forced Vibration for A Compressor Cascade Zongjun Hu and Gecheng Zha

More information

An experimental study of the vortex structures in the wake of a piezoelectric flapping plate for Nano Air Vehicle applications

An experimental study of the vortex structures in the wake of a piezoelectric flapping plate for Nano Air Vehicle applications Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 9 An experimental study of the vortex structures in the wake of a piezoelectric flapping plate for Nano Air Vehicle

More information

Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap

Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap Downloaded from orbit.dtu.dk on: Apr 27, 2018 Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap Bergami, Leonardo Publication date: 2008 Document Version Publisher's PDF,

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

International Journal of Modern Trends in Engineering and Research  e-issn No.: , Date: 2-4 July, 2015 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 2-4 July, 2015 CFD Analysis of Airfoil NACA0012 Pritesh S. Gugliya 1, Yogesh R. Jaiswal 2,

More information

An Experimental Investigation on the Asymmetric Wake Formation of an Oscillating Airfoil

An Experimental Investigation on the Asymmetric Wake Formation of an Oscillating Airfoil 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 07-10 January 2013, Grapevine (Dallas/Ft. Worth Region), Texas AIAA 2013-0794 An Experimental Investigation

More information

Development of a probe traversing system for an open test section wind tunnel

Development of a probe traversing system for an open test section wind tunnel Development of a probe traversing system for an open test section wind tunnel Gépészet 2012 Conference 24 th of May, 2012 Section Energy 2. Árpád Varga Mechanical Engineering Modelling MSc, Contractual

More information

Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration

Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration Claudio Marongiu, Renato Tognaccini 2 CIRA, Italian Center for Aerospace Research, Capua (CE), Italy E-mail: c.marongiu@cira.it

More information

COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL

COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL M. SADEGHI AND F. LIU Department of Mechanical and Aerospace Engineering University of California, Irvine, CA 92697-3975,

More information

3D DYNAMIC STALL SIMULATION OF FLOW OVER NACA0012 AIRFOIL AT 10 5 AND 10 6 REYNOLDS NUMBERS

3D DYNAMIC STALL SIMULATION OF FLOW OVER NACA0012 AIRFOIL AT 10 5 AND 10 6 REYNOLDS NUMBERS 3D DYNAMIC STALL SIMULATION OF FLOW OVER NACA0012 AIRFOIL AT 10 5 AND 10 6 REYNOLDS NUMBERS Venkata Ravishankar Kasibhotla Thesis submitted to the faculty of the Virginia Polytechnic Institute and State

More information

Studies on the Transition of the Flow Oscillations over an Axisymmetric Open Cavity Model

Studies on the Transition of the Flow Oscillations over an Axisymmetric Open Cavity Model Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 83-90 Research India Publications http://www.ripublication.com/aasa.htm Studies on the Transition of the Flow

More information

Lecture No. # 09. (Refer Slide Time: 01:00)

Lecture No. # 09. (Refer Slide Time: 01:00) Introduction to Helicopter Aerodynamics and Dynamics Prof. Dr. C. Venkatesan Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture No. # 09 Now, I just want to mention because

More information

Fluid structure interaction of a parked wind turbine airfoil

Fluid structure interaction of a parked wind turbine airfoil Fluid structure interaction of a parked wind turbine airfoil O. Guerri Centre de Développement des Energies Renouvelables BP 62, Bouzaréah, CP 16 34, Alger, Algérie o_guerri@yahoo.com Résumé Le problème

More information

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture 10 th Symposimum on Overset Composite Grids and Solution Technology, NASA Ames Research Center Moffett Field, California, USA 1 Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible

More information

Flow Control around Bluff Bodies by Attached Permeable Plates

Flow Control around Bluff Bodies by Attached Permeable Plates Flow Control around Bluff Bodies by Attached Permeable Plates G. M. Ozkan, H. Akilli Abstract The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use

More information

Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency I. H. Tuncer, M. Kay

Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency I. H. Tuncer, M. Kay Czech Technical University in Prague Acta Polytechnica Vol. 44 No. 1/2004 Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency I. H. Tuncer, M. Kay A numerical optimization algorithm

More information

Unsteady Force Generation and Vortex Dynamics of Pitching and Plunging Flat Plates at Low Reynolds Number

Unsteady Force Generation and Vortex Dynamics of Pitching and Plunging Flat Plates at Low Reynolds Number 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 4-7 January 2011, Orlando, Florida AIAA 2011-220 Unsteady Force Generation and Vortex Dynamics of Pitching

More information

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES THERMAL SCIENCE, Year, Vol. 8, No. 5, pp. 87-9 87 PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES by Cheng-Xu TU, a,b Fu-Bin BAO

More information

Wind tunnel sectional tests for the identification of flutter derivatives and vortex shedding in long span bridges

Wind tunnel sectional tests for the identification of flutter derivatives and vortex shedding in long span bridges Fluid Structure Interaction VII 51 Wind tunnel sectional tests for the identification of flutter derivatives and vortex shedding in long span bridges J. Á. Jurado, R. Sánchez & S. Hernández School of Civil

More information

Effect of Pivot Point on Aerodynamic Force and Vortical Structure of Pitching Flat Plate Wings

Effect of Pivot Point on Aerodynamic Force and Vortical Structure of Pitching Flat Plate Wings 5st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 7 - January 23, Grapevine (Dallas/Ft. Worth Region), Texas AIAA 23-792 Effect of Pivot Point on Aerodynamic

More information

AIAA Nomenclature

AIAA Nomenclature AIAA Atmospheric and Space Environments Conference 2-5 August 2010, Toronto, Ontario Canada AIAA 2010-7983 Computational Prediction of Propeller Performance in Icing Conditions Greg Busch 1 and Michael

More information

STRUCTURAL PITCH FOR A PITCH-TO-VANE CONTROLLED WIND TURBINE ROTOR

STRUCTURAL PITCH FOR A PITCH-TO-VANE CONTROLLED WIND TURBINE ROTOR ECN-C--03-087 STRUCTURAL PITCH FOR A PITCH-TO-VANE CONTROLLED WIND TURBINE ROTOR DAMPBLADE project, task 3.4: Design application, sensitivity analysis and aeroelastic tailoring C. Lindenburg M.H. Hansen

More information

Experimental and Computational Investigation of a Small-Scale Vertical Axis Wind Turbine with Dynamic Blade Pitching

Experimental and Computational Investigation of a Small-Scale Vertical Axis Wind Turbine with Dynamic Blade Pitching Experimental and Computational Investigation of a Small-Scale Vertical Axis Wind Turbine with Dynamic Blade Pitching Moble Benedict Department of Aerospace Engineering, Texas A and M University, College

More information

ADVERSE REYNOLDS NUMBER EFFECT ON MAXIMUM LIFT OF TWO DIMENSIONAL AIRFOILS

ADVERSE REYNOLDS NUMBER EFFECT ON MAXIMUM LIFT OF TWO DIMENSIONAL AIRFOILS ICAS 2 CONGRESS ADVERSE REYNOLDS NUMBER EFFECT ON MAXIMUM LIFT OF TWO DIMENSIONAL AIRFOILS Kenji YOSHIDA, Masayoshi NOGUCHI Advanced Technology Aircraft Project Center NATIONAL AEROSPACE LABORATORY 6-

More information