( ) (where v = pr ) v V

Size: px
Start display at page:

Download "( ) (where v = pr ) v V"

Transcription

1 Problem # The DOF idealized wing whose cross-section is shown in Figure. has leading edge and trailing edge control surfaces. There is no initial angle of attack when the two control surfaces are undeflected. Three lift components act on the idealized wing. Each force has its own location with respect to the shear center pin shown in the figure. Twisting is resisted by the torsional spring with torsional stiffness K T. Figure. The entire assembly is mounted at the end of a long bar a distance r from the center of rotation. This assembly will move upward at a terminal speed v = pr when the surfaces are deflected. The leading edge surface and the trailing edge flap are geared together so that the three lift components are as follows: L = qsc θ + qsc L = qsc Lδ δ 0 ( ) (where v = pr ) v V L 3 = 0.5qSC Lδ δ 0 The rolling moment is M roll = Lr = (L + L + L 3 )r. Problem a) Solve for the twist θ in terms of the aerodynamic derivatives and v/v. b) Solve for the equation for the steady state roll rate p. c) Solve for the reversal dynamic pressure Partial Solution Assume that we are rolling at a constant roll rate Figure. Top view of wing assembly showing rotational rate, p. so that the rolling moment due to the aileron is balanced by a damping in roll moment (see the notes) due to an upward velocity. In this case, the total lift on the surface is L = L + L + L 3

2 or v L = qscl θ CL + CL δo + C δ L δ δ o V 4 The FBD is shown below. Figure.3-Free-body diagram for θ computation Sum moments using +θ as the positive direction (clockwise). Let qsec q =. I get K T The rolling moment is I get θ = v e e C δo 3 Lδ q + q V 4 e e C ( q ) v M roll = Lr = qsrcl θ CL + CL δo + C L δo V δ 4 δ M roll v 5e 4e + e 5 C Lδ q o V + + δ 4e 4 C L = Lr = qcl Sr 0 = ( q ) v pr 5e 4e + e 5 C = = q + V V 4e 4 C Lδ δo v = pr For reversal pr V 5e 4e + e = 0 = q + e

3 The answer is q reversal = SC 5K T 4 ( 5e + e e ) 3 The aileron reversal problem has two meanings and two approaches. In the first case we restrict the upward velocity, v, to be zero and solve for the lift (or rolling moment) generated by an aileron deflection. Reversal is defined as the airspeed (or dynamic pressure) at which the lift is zero. By definition, at reversal in this case, both lift and upward speed are zero, but only because the upward speed, v, is restrained from the beginning and we solve for the value of q to make lift (or moment) zero. In the second case, the upward airspeed (or steady-state roll moment) is constant, unrestrained and non-zero. To have a constant upward speed we must have the lift (or rolling moment) equal to zero. This is a constraint that allows us to solve for v. At reversal, both v and lift (or moment) are zero. We use the v equation to find the value of q at reversal. Because, in the end, no matter which of the two approaches we use for reversal, the reversal dynamic pressure must be the same since both conditions result in a zero upward velocity and zero lift due to aileron deflection. Only the path to reversal is different.

4 Problem A mechanism with a rigid lifting surface (with negligible weight) with the ability to bend and rotate is shown in the figure. Two degrees of rotational freedom describe the motion of this device and are shown as θ and φ on the figure. The mechanism is restrained in twist by a torsion spring. Bending rotation is restrained by a bending spring located as shown. The lift per unit length along the swept y- axis is l ( y) = qncao ( θ φ tan Λ ). The mechanism is loaded by a small weight, W lb., placed as indicated. Problem statement (a) Develop the two equations of static equilibrium for this device. Note that the bending spring reference axis is not at the wing surface mid-chord. Problem. Free body diagram in the θ direction Free body diagram in the φ direction

5 I get ( ) ( ) tan Kθ + Q d e Q d e Λ θ d c e Qb Qb = W K tan φ b φ + Λ where (b) (c) Q = l cos Λ. qcbc Solve for the divergence dynamic pressure in terms of the parameters, appearing in the equations developed in part (a) K θ SeC I get q D = cos Λ d e K θ btan Λ K φ e

6 Problem 3 Flight speed and aircraft weight change during flight. These changes mean that the wing design is non-optimal for major parts of the mission. Design features such as wing camber and twist distribution can be changed in flight by morphing devices that alter the wing shape to bring it back into optimal performance. Wings with active twist control using internal or external active control devices have been proposed and many patents exist. The drawing of the active twist wing shown in Figure 4.. is typical of these types of devices. This homework problem will examine the interactions created by active twist wings by using a simple idealization of a swept wing. Patent drawing of mechanically controlled wing with internal mechanisms The idealized swept wing model shown in the figure below simulates an active twist wing; it consists of the familiar semi-rigid surface restrained by bending and torsion springs to resist rotations φ and θ, respectively, along the swept axis of the idealization. Wing planform dimensions are: swept semi-span, b; and, chord, c. A mechanism contained inside a wing has the effect of applying a torque T o to the end of the wing, as shown in the diagram. This torques can be changed in flight. A feedback system will produce measure the wing bending slope φ and produce a torque according to the control law T = kφ. θ Swept wing model planform and geometry showing wing detached from fuselage. The double arrows on the fuselage joint represent spring reactions. The swept semi-span dimension is b. The wing chord is c, just like on the notes. Problem

7 a) The swept wing/aircraft combination is given an angle of attack o with respect to the free stream. The free body diagrams required to derive the two wing static equilibrium equations is φ shown below. Find the equations of static equilibrium in matrix form in terms of the vector. θ Part (a) solution Answer K q n S b tan c l q n S b l c b φ + Λ φ 0 = qns cl e θ cos Λ ( qnsecl tan Λ k ) ( K qnsecl ) b θ (b) Derive the characteristic equation for neutral static stability. Solve for the divergence dynamic pressure. Answer Kθ Secl qd = b K k b θ cos Λ tan Λ + e Kφ Kφ e (c) Solve for the critical value of the gain k above which (or below which) wing divergence cannot occur. This answer will be a function of sweep angle and other model parameters

8 Problem 4 An oblique wing aircraft has one wing sweptforward and the other wing sweptback, as indicated. The idealized oblique wing model consists of two semi-rigid wing sections attached by two bending springs at the fuselage centerline. There is no torsional degree of freedom for either wing section. An oblique wing has a tendency to develop unsymmetrical lift when clamped at the center. Figure - Oblique wing aircraft and planform view of the idealized oblique wing. The wing pivot is at the ¼ chord. A drawing of this model seen from the perspective A-A is presented in Figure 3. When the wing is rigid, this tendency is not severe. When aeroelasticity is included, the wing deformation can produce a severe lift distribution distortion. In flight this cannot be allowed to occur because the wing would roll. The problem is related to the tendency of the forward swept wing to diverge and the tendency of the aft swept wing to become lift ineffective. The purpose of this problem is to assess the severity of the problem at different dynamic pressures. The figure on the next page shows another view of the model idealization with the perspective labeled A- A in Figure. This view shows the two wing bending degrees of freedom, φ and φ, Figure -Oblique wing lift distribution showing rigid wing lift distribution and flexible lift distribution at high speed. Note that this wing has a sweep opposite to that shown in the figure above the bending springs and the downward weight. Note that in Figure the aircraft roll angle is measured as φ o parallel to the freestream direction. In Figure 3, the component of this roll angle in the wing chordwise direction is Φ ο = φ o cosλ.

9 Problem statement a) The oblique wing is given an angle of attack, measured with respect to the streamwise axis. Let K = K. The wing pivot is at the ¼ chord. Compute the lift on each wing and the roll moment about the centerline of the aircraft as a function of angle of attack o and dynamic pressure. Partial Solution-part (a) Draw the free body diagrams and write the equilibrium equations. The sweptforward aileron rotates down (+) while the sweptback aileron rotates upward (-). Figure 3 - Oblique wing bending freedoms showing the two bending springs. The view is in the chordwise direction, as indicated by the view A-A in Figure. Sweptforward wing FBD φ = qnsbc L C o Lδ + δo cos Λ C qnsbcl K tan Λ

10 Sweptback wing FBD φ = qnsbc L C o Lδ δo cos Λ C qnsbcl K + tan Λ The lift expressions are: CL o δ L = qnscl + δ o cos Λ C q L nsbcl tan Λ K L C o L δ = qnscl δ o cos Λ C q L nsbcl + tan Λ K The moment about the centerline in the direction of positive φ o is: bcosλ bcos Λ M roll = L L qnsbcl qnsbc tan Λ + tan Λ qnsbcl K K = ( o ) qnsbcl qnsbc L tan Λ + tan Λ K K When the spring constants are equal I get:

11 M roll qnsbc = L ( ) o qnsbc tan Λ K qnsbcl qnsbc L tan Λ + tan Λ K K b) Full span ailerons are added to each wing to counteract the roll moment due to aeroelasticity. The aileron deflections are opposite in direction and equal to δ o. Compute the aileron deflection δ o required to make the oblique wing roll moment equal to zero. This deflection will be a function of angle of attack. C L qsbcl Answer δo = o sin Λ C L K δ Note that the aileron deflection expression is negative, telling us to deflect the sweptforward aileron up and the sweptback aileron down. Note also that the dynamic pressure is not multiplied by the cosine of the sweep angle. c) Derive expressions for the angle of attack and the aileron deflection required for an airplane with weight, W. Solution-part (c) The equation for aileron deflection in terms of wing angle of attack is a constraint equation for the aircraft. When we equate the total lift to the aircraft weight we will get a second equation that will enable us to solve for both aileron deflection and required angle of attack. The second equation is: L + L = W W o = qnsc cos + Λ qnsbcl qnsbc tan Λ + tan Λ K K CL δ + qnscl δ o C q L nsbcl qnsbc L tan Λ + tan Λ K K If the spring constants are equal I get the following: C L qsbcl δo = o sin Λ C L K δ and qnsbcl Q = tan Λ K

12 Answer Answer W cosλ W o = = q SC qsc cosλ n Wb C δo = tan Λ 4K C Lδ d) Derive the characteristic equation for fixed wing divergence and find the divergence dynamic pressure. Solution-part (d) qnsbcl qnsbc = 0 = K tan Λ K + tan Λ The sweptforward wing will give a positive value of dynamic pressure. q D = b S CL K sin Λ cos Λ

4-7. Elementary aeroelasticity

4-7. Elementary aeroelasticity a Aeroelasticity Dynamic... Dynamic Static stability... Static 4-7 Istability Load Divergence Control Flutter Buffeting Dynamic distribution reversal response Elementary aeroelasticity Aircraft structures,

More information

Aircraft Design I Tail loads

Aircraft Design I Tail loads Horizontal tail loads Aircraft Design I Tail loads What is the source of loads? How to compute it? What cases should be taken under consideration? Tail small wing but strongly deflected Linearized pressure

More information

Aeroelasticity. Lecture 7: Practical Aircraft Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 7

Aeroelasticity. Lecture 7: Practical Aircraft Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 7 Aeroelasticity Lecture 7: Practical Aircraft Aeroelasticity G. Dimitriadis AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 7 1 Non-sinusoidal motion Theodorsen analysis requires that

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

Virtual Work & Energy Methods. External Energy-Work Transformation

Virtual Work & Energy Methods. External Energy-Work Transformation External Energy-Work Transformation Virtual Work Many structural problems are statically determinate (support reactions & internal forces can be found by simple statics) Other methods are required when

More information

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW Ms.K.Niranjana 1, Mr.A.Daniel Antony 2 1 UG Student, Department of Aerospace Engineering, Karunya University, (India) 2 Assistant professor,

More information

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9 April 15, 2011 Sample Quiz Exam Questions D. A. Caughey Page 1 of 9 These pages include virtually all Quiz, Midterm, Final Examination questions I have used in M&AE 5070 over the years. Note that some

More information

Air Loads. Airfoil Geometry. Upper surface. Lower surface

Air Loads. Airfoil Geometry. Upper surface. Lower surface AE1 Jha Loads-1 Air Loads Airfoil Geometry z LE circle (radius) Chord line Upper surface thickness Zt camber Zc Zl Zu Lower surface TE thickness Camber line line joining the midpoints between upper and

More information

Flight Vehicle Terminology

Flight Vehicle Terminology Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

More information

Torsion of Solid Sections. Introduction

Torsion of Solid Sections. Introduction Introduction Torque is a common load in aircraft structures In torsion of circular sections, shear strain is a linear function of radial distance Plane sections are assumed to rotate as rigid bodies These

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Introduction to Flight Dynamics

Introduction to Flight Dynamics Chapter 1 Introduction to Flight Dynamics Flight dynamics deals principally with the response of aerospace vehicles to perturbations in their flight environments and to control inputs. In order to understand

More information

Optimization Framework for Design of Morphing Wings

Optimization Framework for Design of Morphing Wings Optimization Framework for Design of Morphing Wings Jian Yang, Raj Nangia & Jonathan Cooper Department of Aerospace Engineering, University of Bristol, UK & John Simpson Fraunhofer IBP, Germany AIAA Aviation

More information

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008)

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008) Aerodynamics SYST 460/560 George Mason University Fall 2008 1 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH Copyright Lance Sherry (2008) Ambient & Static Pressure Ambient Pressure Static Pressure 2 Ambient

More information

University of Bristol - Explore Bristol Research

University of Bristol - Explore Bristol Research Stodieck, O. A., Cooper, J. E., & Weaver, P. M. (2016). Interpretation of Bending/Torsion Coupling for Swept, Nonhomogenous Wings. Journal of Aircraft, 53(4), 892-899. DOI: 10.2514/1.C033186 Peer reviewed

More information

Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11. Displacement Method of Analysis Slope Deflection Method Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

More information

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) Homework #2 Due April 17, 2016 This homework focuses on developing a simplified analytical model of the longitudinal dynamics of an aircraft during

More information

Consider a wing of finite span with an elliptic circulation distribution:

Consider a wing of finite span with an elliptic circulation distribution: Question 1 (a) onsider a wing of finite span with an elliptic circulation distribution: Γ( y) Γo y + b = 1, - s y s where s=b/ denotes the wing semi-span. Use this equation, in conjunction with the Kutta-Joukowsky

More information

AE Stability and Control of Aerospace Vehicles

AE Stability and Control of Aerospace Vehicles AE 430 - Stability and ontrol of Aerospace Vehicles Static/Dynamic Stability Longitudinal Static Stability Static Stability We begin ith the concept of Equilibrium (Trim). Equilibrium is a state of an

More information

Figure 3.71 example of spanwise loading due to aileron deflection.

Figure 3.71 example of spanwise loading due to aileron deflection. 3.7 ILERON DESIGN 3.7.1 Introduction It s very important for preliminary design to analyze the roll and turn performances of the aircraft, paying attention on its use and category. the system used for

More information

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3 M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We

More information

Announcements. Equilibrium of a Rigid Body

Announcements. Equilibrium of a Rigid Body Announcements Equilibrium of a Rigid Body Today s Objectives Identify support reactions Draw a free body diagram Class Activities Applications Support reactions Free body diagrams Examples Engr221 Chapter

More information

k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44

k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44 CE 6 ab Beam Analysis by the Direct Stiffness Method Beam Element Stiffness Matrix in ocal Coordinates Consider an inclined bending member of moment of inertia I and modulus of elasticity E subjected shear

More information

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members CH. 5 TRUSSES BASIC PRINCIPLES Typical depth-to-span ratios range from 1:10 to 1:20 - Flat trusses require less overall depth than pitched trusses Spans: 40-200 Spacing: 10 to 40 on center - Residential

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

More information

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD) Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

More information

Aero-Propulsive-Elastic Modeling Using OpenVSP

Aero-Propulsive-Elastic Modeling Using OpenVSP Aero-Propulsive-Elastic Modeling Using OpenVSP August 8, 213 Kevin W. Reynolds Intelligent Systems Division, Code TI NASA Ames Research Center Our Introduction To OpenVSP Overview! Motivation and Background!

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

Reynolds Number Effects on the Performance of Lateral Control Devices

Reynolds Number Effects on the Performance of Lateral Control Devices NASA/TM-2-21541 Reynolds Number Effects on the Performance of Lateral Control Devices Raymond E. Mineck Langley Research Center, Hampton, Virginia October 2 The NASA STI Program Office... in Profile Since

More information

Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

More information

PRINCIPLES OF FLIGHT

PRINCIPLES OF FLIGHT 1 Considering a positive cambered aerofoil, the pitching moment when Cl=0 is: A infinite B positive (nose-up). C negative (nose-down). D equal to zero. 2 The angle between the aeroplane longitudinal axis

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

ν δ - 1 -

ν δ - 1 - ν δ - 1 - δ ν ν δ ν ν - 2 - ρ δ ρ θ θ θ δ τ ρ θ δ δ θ δ δ δ δ τ μ δ μ δ ν δ δ δ - 3 - τ ρ δ ρ δ ρ δ δ δ δ δ δ δ δ δ δ δ - 4 - ρ μ ρ μ ρ ρ μ μ ρ - 5 - ρ τ μ τ μ ρ δ δ δ - 6 - τ ρ μ τ ρ μ ρ δ θ θ δ θ - 7

More information

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2.

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2. Question 1 A pin-jointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical

More information

Moment Distribution Method

Moment Distribution Method Moment Distribution Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Distribution Method. 2) Derive the Moment Distribution Method equations using mechanics

More information

Static Equilibrium. University of Arizona J. H. Burge

Static Equilibrium. University of Arizona J. H. Burge Static Equilibrium Static Equilibrium Definition: When forces acting on an object which is at rest are balanced, then the object is in a state of static equilibrium. - No translations - No rotations In

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

Beams. Beams are structural members that offer resistance to bending due to applied load

Beams. Beams are structural members that offer resistance to bending due to applied load Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

More information

UNIT- I Thin plate theory, Structural Instability:

UNIT- I Thin plate theory, Structural Instability: UNIT- I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading Thin plates having

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag

Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag ABSTRACT EDWARD NICHOLAS SHIPLEY, JUNIOR. Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag. (Under the direction of Dr. Ashok Gopalarathnam.) This thesis presents a

More information

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations:

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations: TOPIC E: OSCILLATIONS EXAMPLES SPRING 2019 Mathematics of Oscillating Systems Q1. Find general solutions for the following differential equations: Undamped Free Vibration Q2. A 4 g mass is suspended by

More information

1. Tasks of designing

1. Tasks of designing 1 Lecture #18(14) Designing calculation of cross section of a highly aspect ratio wing Plan: 1 Tass of designing Distribution of shear force between wing spars Computation of the elastic center 4 Distribution

More information

SLOPE-DEFLECTION METHOD

SLOPE-DEFLECTION METHOD SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are

More information

X-31 Vector Aircraft, Low Speed Stability & Control, Comparisons of Wind Tunnel Data & Theory (Focus on Linear & Panel Codes)

X-31 Vector Aircraft, Low Speed Stability & Control, Comparisons of Wind Tunnel Data & Theory (Focus on Linear & Panel Codes) 39th AIAA Fluid Dynamics Conference 22-25 June 2009, San Antonio, Texas AIAA 2009-3898 27 th AIAA Applied Aerodynamics Conference, 22-25 June. 2009, San Antonio, TX, USA X-31 Vector Aircraft, Low Speed

More information

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Review Lecture AE1108-II: Aerospace Mechanics of Materials Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Aerospace Structures & Materials Faculty of Aerospace Engineering Analysis of an Engineering System

More information

Lecture No. # 09. (Refer Slide Time: 01:00)

Lecture No. # 09. (Refer Slide Time: 01:00) Introduction to Helicopter Aerodynamics and Dynamics Prof. Dr. C. Venkatesan Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture No. # 09 Now, I just want to mention because

More information

Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I

Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I Copyright 00 by Dr. Jan Roskam Year of Print, 00 (Errata Revised August

More information

Internal Internal Forces Forces

Internal Internal Forces Forces Internal Forces ENGR 221 March 19, 2003 Lecture Goals Internal Force in Structures Shear Forces Bending Moment Shear and Bending moment Diagrams Internal Forces and Bending The bending moment, M. Moment

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS

EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Today s Objectives: Students will be able to: EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS a) Identify support reactions, and, b) Draw a free-body diagram. In-Class Activities: Check Homework Reading

More information

SPECIAL CONDITION. Water Load Conditions. SPECIAL CONDITION Water Load Conditions

SPECIAL CONDITION. Water Load Conditions. SPECIAL CONDITION Water Load Conditions Doc. No. : SC-CVLA.051-01 Issue : 1d Date : 04-Aug-009 Page : 1 of 13 SUBJECT : CERTIFICATION SPECIFICATION : VLA.51 PRIMARY GROUP / PANEL : 03 (Structure) SECONDARY GROUPE / PANEL : -- NATURE : SCN VLA.51

More information

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude. Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

More information

Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur

Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur Lecture- 05 Stability: Tail Contribution and Static Margin (Refer Slide Time: 00:15)

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

Sports biomechanics explores the relationship between the body motion, internal forces and external forces to optimize the sport performance.

Sports biomechanics explores the relationship between the body motion, internal forces and external forces to optimize the sport performance. What is biomechanics? Biomechanics is the field of study that makes use of the laws of physics and engineering concepts to describe motion of body segments, and the internal and external forces, which

More information

Wind Tunnel Experiments of Stall Flutter with Structural Nonlinearity

Wind Tunnel Experiments of Stall Flutter with Structural Nonlinearity Wind Tunnel Experiments of Stall Flutter with Structural Nonlinearity Ahmad Faris R.Razaami School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School of Aerospace

More information

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings. Eugene M. Cliff Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

More information

five moments ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture ARCH 614

five moments ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture five moments Moments 1 Moments forces have the tendency to make a body rotate about an axis http://www.physics.umd.edu

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 5 Equilibrium of a Rigid Body Chapter Objectives Develop the equations of equilibrium for a rigid body Concept of the free-body diagram for a rigid body

More information

FORCE ANALYSIS OF MACHINERY. School of Mechanical & Industrial Engineering, AAiT

FORCE ANALYSIS OF MACHINERY. School of Mechanical & Industrial Engineering, AAiT 1 FORCE ANALYSIS OF MACHINERY School of Mechanical & Industrial Engineering, AAiT INTRODUCTION 2 A machine is a device that performs work and, as such, transmits energy by means mechanical force from a

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information

13.4 to "wutter' Substituting these values in Eq. (13.57) we obtain

13.4 to wutter' Substituting these values in Eq. (13.57) we obtain 568 Elementary aeroelasticity where the origin for z is taken at the built-in end and a is a constant term which includes the tip load and the flexural rigidity of the beam. From Eq. (i) d2 V V(L) = 2aL3

More information

AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN

AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN 1 26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN Paulo R. Caixeta Jr., Álvaro M. Abdalla, Flávio D. Marques, Fernando

More information

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction T. Maggio F. Grasso D.P. Coiro This paper has been presented at the EWEA 011, Brussels, Belgium, 14-17 March 011 ECN-M-11-036

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

Use of Compliant Hinges to Tailor Flight Dynamics of Unmanned Aircraft

Use of Compliant Hinges to Tailor Flight Dynamics of Unmanned Aircraft JOURNAL OF AIRCRAFT Use of Compliant Hinges to Tailor Flight Dynamics of Unmanned Aircraft Emily A. Leylek and Mark Costello Georgia Institute of Technology, Atlanta, Georgia 30332 DOI: 10.2514/1.C033056

More information

Lecture 11: The Stiffness Method. Introduction

Lecture 11: The Stiffness Method. Introduction Introduction Although the mathematical formulation of the flexibility and stiffness methods are similar, the physical concepts involved are different. We found that in the flexibility method, the unknowns

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Daniel J. Lesieutre 1 Nielsen Engineering & Research, Inc., Santa Clara, CA, 95054 The nonlinear missile aerodynamic

More information

TrueStructures TM Strain Analysis System

TrueStructures TM Strain Analysis System TrueStructures TM Strain Analysis System Operator's Manual and Sample Lab Procedures TrueStructures TM Strain Analysis System shown with I-Beam, Torsion Tube and Airfoil Test Sections. Copyright March

More information

2.0 Introduction. F i. [Eq. 2.1] M i. [Eq. 2.2]

2.0 Introduction. F i. [Eq. 2.1] M i. [Eq. 2.2] Chapter Statics.0 Introduction A Statics analysis is generally the first step in determining how an engineering system deforms under load, and how the system supports the load internally. For equilibrium,

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics.

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics. KING FAHD UNIVERSITY Department of Aerospace Engineering AE540: Flight Dynamics and Control I Instructor Dr. Ayman Hamdy Kassem What is flight dynamics? Is the study of aircraft motion and its characteristics.

More information

Flight Dynamics and Control

Flight Dynamics and Control Flight Dynamics and Control Lecture 1: Introduction G. Dimitriadis University of Liege Reference material Lecture Notes Flight Dynamics Principles, M.V. Cook, Arnold, 1997 Fundamentals of Airplane Flight

More information

FIFTH INTERNATIONAL CONGRESSON SOUND AND VIBRATION DECEMBER15-18, 1997 ADELAIDE,SOUTHAUSTRALIA

FIFTH INTERNATIONAL CONGRESSON SOUND AND VIBRATION DECEMBER15-18, 1997 ADELAIDE,SOUTHAUSTRALIA FIFTH INTERNATIONAL CONGRESSON SOUND AND VIBRATION DECEMBER15-18, 1997 ADELAIDE,SOUTHAUSTRALIA Aeroelastic Response Of A Three Degree Of Freedom Wing-Aileron System With Structural Non-Linearity S. A.

More information

Multistable Tape-Spring Assemblies for Morphing Aerofoil Applications

Multistable Tape-Spring Assemblies for Morphing Aerofoil Applications 19 th International Conference on Adaptive Structures and Technologies October 6-9, 2008 Ascona, Switzerland ultistable Tape-Spring Assemblies for orphing Aerofoil Applications S. Daynes 1 *, K. D. Potter

More information

02 Introduction to Structural Dynamics & Aeroelasticity

02 Introduction to Structural Dynamics & Aeroelasticity 02 Introduction to Structural Dynamics & Aeroelasticity Vibraciones y Aeroelasticidad Dpto. de Vehículos Aeroespaciales P. García-Fogeda Núñez & F. Arévalo Lozano ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

More information

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 AE 451 Aeronautical Engineering Design I Aerodynamics Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 Lift curve 2 Lift curve slope 3 Subsonic lift curve slope C Lα = 2 + 4 + AR2 β 2 η

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering 4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module No. # 5.4 Lecture No. # 30 Matrix Analysis of Beams and Grids (Refer Slide

More information

The wings and the body shape of Manduca sexta and Agrius convolvuli are compared in

The wings and the body shape of Manduca sexta and Agrius convolvuli are compared in 1 Wing and body shape of Manduca sexta and Agrius convolvuli The wings and the body shape of Manduca sexta and Agrius convolvuli are compared in terms of the aspect ratio of forewing AR fw (wing length

More information

Chapter 2 Basis for Indeterminate Structures

Chapter 2 Basis for Indeterminate Structures Chapter - Basis for the Analysis of Indeterminate Structures.1 Introduction... 3.1.1 Background... 3.1. Basis of Structural Analysis... 4. Small Displacements... 6..1 Introduction... 6.. Derivation...

More information

Torsion Part 3. Statically Indeterminate Systems. Statically Indeterminate Systems. Statically Indeterminate Systems

Torsion Part 3. Statically Indeterminate Systems. Statically Indeterminate Systems. Statically Indeterminate Systems Torsion Part 3 n honest man can feel no pleasure in the exercise of power over his fellow citizens. -Thomas Jefferson In a manner similar to that we used when dealing with axial loads and statically indeterminate

More information

RESEARCH MEMORANDUM NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS UNCLASSIFIED AND DIRECTIONAL AERODYNAMIC CHARACTERISTICS OF FOUR

RESEARCH MEMORANDUM NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS UNCLASSIFIED AND DIRECTIONAL AERODYNAMIC CHARACTERISTICS OF FOUR " I RESEARCH MEMORANDUM SOME EFFECTS OF AILERON DEFLECTION ON THE STATIC LATERAL AND DIRECTIONAL AERODYNAMIC CHARACTERISTICS OF FOUR CONTEMPORARY AIRPLANE MODELS By Willard G. Smith and Peter F. Intrieri

More information

(48) CHAPTER 3: TORSION

(48) CHAPTER 3: TORSION (48) CHAPTER 3: TORSION Introduction: In this chapter structural members and machine parts that are in torsion will be considered. More specifically, you will analyze the stresses and strains in members

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

Engineering Mechanics: Statics. Chapter 7: Virtual Work

Engineering Mechanics: Statics. Chapter 7: Virtual Work Engineering Mechanics: Statics Chapter 7: Virtual Work Introduction Previous chapters-- FBD & zero-force and zero-moment equations -- Suitable when equilibrium position is known For bodies composed of

More information

Levers of the Musculoskeletal System

Levers of the Musculoskeletal System Levers of the Musculoskeletal System Lever system consists of: lever fulcrum load force Three classes of levers 1. first class (a) - pry bars, crowbars 2. second class (b) - wheelbarrow 3. third class

More information

An Experimental Investigation on the Flutter Characteristics of a Model Flying Wing

An Experimental Investigation on the Flutter Characteristics of a Model Flying Wing NATIONAL A RO~i;\:",'Ci,L ESIABI..ISI-lMEN'I LIBRARY R. & M. No. 2626 (HI,509) A.RC. Technical Report An Experimental Investigation on the Flutter Characteristics of a Model Flying Wing By N. C. LAMBOURNE,

More information

UNIT-V MOMENT DISTRIBUTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD UNIT-V MOMENT DISTRIBUTION METHOD Distribution and carryover of moments Stiffness and carry over factors Analysis of continuous beams Plane rigid frames with and without sway Neylor s simplification. Hardy

More information

Lecture #AC 3. Aircraft Lateral Dynamics. Spiral, Roll, and Dutch Roll Modes

Lecture #AC 3. Aircraft Lateral Dynamics. Spiral, Roll, and Dutch Roll Modes Lecture #AC 3 Aircraft Lateral Dynamics Spiral, Roll, and Dutch Roll Modes Copy right 2003 by Jon at h an H ow 1 Spring 2003 16.61 AC 3 2 Aircraft Lateral Dynamics Using a procedure similar to the longitudinal

More information

Stability and Control

Stability and Control Stability and Control Introduction An important concept that must be considered when designing an aircraft, missile, or other type of vehicle, is that of stability and control. The study of stability is

More information

CHAPTER 6: Shearing Stresses in Beams

CHAPTER 6: Shearing Stresses in Beams (130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

Shear of Thin Walled Beams. Introduction

Shear of Thin Walled Beams. Introduction Introduction Apart from bending, shear is another potential structural failure mode of beams in aircraft For thin-walled beams subjected to shear, beam theory is based on assumptions applicable only to

More information

Flight Dynamics, Simulation, and Control

Flight Dynamics, Simulation, and Control Flight Dynamics, Simulation, and Control For Rigid and Flexible Aircraft Ranjan Vepa CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Module 15 Lecture 38 Vibration of Rigid Bodies Part-1 Today,

More information