COMPLETE CONFIGURATION AERO-STRUCTURAL OPTIMIZATION USING A COUPLED SENSITIVITY ANALYSIS METHOD

Size: px
Start display at page:

Download "COMPLETE CONFIGURATION AERO-STRUCTURAL OPTIMIZATION USING A COUPLED SENSITIVITY ANALYSIS METHOD"

Transcription

1 COMPLETE CONFIGURATION AERO-STRUCTURAL OPTIMIZATION USING A COUPLED SENSITIVITY ANALYSIS METHOD Joaquim R. R. A. Martins Juan J. Alonso James J. Reuther Department of Aeronautics and Astronautics Stanford University 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

2 Outline Introduction High-fidelity aircraft design optimization The need for aero-structural sensitivities Sensitivity analysis methods Theory Adjoint sensitivity equations Lagged aero-structural adjoint equations Results Optimization problem statement Aero-structural sensitivity validation Optimization results Conclusions 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

3 High-Fidelity Aircraft Design Optimization Start from a baseline geometry provided by a conceptual design tool. Required for transonic configurations where shocks are present. Necessary for supersonic, complex geometry design. High-fidelity analysis needs high-fidelity parameterization, e.g. to smooth shocks, favorable interference. Large number of design variables and complex models inccur a large cost. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

4 Aero-Structural Aircraft Design Optimization Aerodynamics and structures are core disciplines in aircraft design and are very tightly coupled. For traditional designs, aerodynamicists know the spanload distributions that lead to the true optimum from experience and accumulated data. What about unusual designs? Want to simultaneously optimize the aerodynamic shape and structure, since there is a trade-off between aerodynamic performance and structural weight, e.g., Range L ( ) D ln Wi W f 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

5 The Need for Aero-Structural Sensitivities Aerodynamic Optimization Structural Optimization Sequential optimization does not lead to the true optimum Aero-structural optimization requires coupled sensitivities. 1 Lift Aerodynamic optimum (elliptical distribution) Aero structural optimum (maximum range) Aerodynamic Analysis Spanwise coordinate, y/b Optimizer Structural Analysis Student Version of MATLAB Add structural element sizes to the design variables. Including structures in the high-fidelity wing optimization will allow larger changes in the design. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

6 Methods for Sensitivity Analysis Finite-Difference: very popular; easy, but lacks robustness and accuracy; run solver N x times. df f(x n + h) f(x) dx n h + O(h) Complex-Step Method: relatively new; accurate and robust; easy to implement and maintain; run solver N x times. df Im [f(x n + ih)] dx n h + O(h 2 ) (Semi)-Analytic Methods: efficient and accurate; long development time; cost can be independent of N x. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

7 Objective Function and Governing Equations Want to minimize scalar objective function, I = I(x n, y i ), which depends on: x n : vector of design variables, e.g. structural plate thickness. y i : state vector, e.g. flow variables. Physical system is modeled by a set of governing equations: R k (x n, y i (x n )) = 0, where: Same number of state and governing equations, i, k = 1,..., N R N x design variables. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

8 Sensitivity Equations Total sensitivity of the objective function: di = I + I dy i. dx n x n y i dx n Total sensitivity of the governing equations: dr k dx n = R k x n + R k y i dy i dx n = 0. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

9 Solving the Sensitivity Equations Solve the total sensitivity of the governing equations R k y i dy i dx n = R k x n. Substitute this result into the total sensitivity equation where Ψ k is the adjoint vector. di = I I dx n x n y i dy i / dx n { [ ] }}{ 1 Rk R k, x n } y i {{ } Ψ k 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

10 Adjoint Sensitivity Equations Solve the adjoint equations R k y i Ψ k = I y i. Adjoint vector is valid for all design variables. Now the total sensitivity of the the function of interest I is: di dx n = I x n + Ψ k R k x n The partial derivatives are inexpensive, since they don t require the solution of the governing equations. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

11 Aero-Structural Adjoint Equations Two coupled disciplines: Aerodynamics (A k ) and Structures (S l ). R k = [ Ak ], y S i = l [ wi ], Ψ u k = j [ ψk ]. φ l Flow variables, w i, five for each grid point. Structural displacements, u j, three for each structural node. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

12 Aero-Structural Adjoint Equations A k w i S l w i T A k [ψk ] u j S l φ l u j I = w i I. u j A k / w i : a change in one of the flow variables affects only the residuals of its cell and the neighboring ones. A k / u j : residuals. wing deflections cause the mesh to warp, affecting the S l / w i : since S l = K lj u j f l, this is equal to f l / w i. S l / u j : equal to the stiffness matrix, K lj. I/ w i : for C D, obtained from the integration of pressures; for stresses, its zero. I/ u j : for C D, wing displacement changes the surface boundary over which drag is integrated; for stresses, related to σ m = S mj u j. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

13 Lagged Aero-Structural Adjoint Equations Since the factorization of the complete residual sensitivity matrix is impractical, decouple the system and lag the adjoint variables, A k ψ k = I } w i {{ w } i Aerodynamic adjoint S l w i φl, S l φ l = I A k ψk, u j u }{{ j u } j Structural adjoint Lagged adjoint equations are the single discipline ones with an added forcing term that takes the coupling into account. System is solved iteratively, much like the aero-structural analysis. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

14 Total Sensitivity The aero-structural sensitivities of the drag coefficient with respect to wing shape perturbations are, di = I A k S l + ψ k + φ l. dx n x n x n x n I/ x n : C D changes when the boundary over which the pressures are integrated is perturbed; stresses change when nodes are moved. A k / x n : the shape perturbations affect the grid, which in turn changes the residuals; structural variables have no effect on this term. S l / x n : shape perturbations affect the structural equations, so this term is equal to K lj / x n u j f l / x n. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

15 3D Aero-Structural Design Optimization Framework Aerodynamics: FLO107-MB, a parallel, multiblock Navier-Stokes flow solver. Structures: detailed finite element model with plates and trusses. Coupling: high-fidelity, consistent and conservative. Geometry: centralized database for exchanges (jig shape, pressure distributions, displacements.) Coupled-adjoint sensitivity analysis: aerodynamic and structural design variables. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

16 Sensitivity of C D wrt Shape Coupled adjoint Complex step Coupled adjoint, fixed displacements Complex step, fixed displacements dc D / dx n Design variable, n 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

17 Sensitivity of C D wrt Structural Thickness Coupled adjoint Complex step dc D / dx n Design variable, n 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

18 Structural Stress Constraint Lumping To perform structural optimization, we need the sensitivities of all the stresses in the finite-element model with respect to many design variables. There is no method to calculate this matrix of sensitivities efficiently. Therefore, lump stress constraints g m = 1 σ m σ yield 0, using the Kreisselmeier Steinhauser function KS (g m ) = 1 ρ ln ( m e ρg m ), where ρ controls how close the function is to the minimum of the stress constraints. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

19 Sensitivity of KS wrt Shape Coupled adjoint Complex step Coupled adjoint, fixed loads Complex, fixed loads dks / dx n Design variable, n 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

20 Sensitivity of KS wrt Structural Thickness Coupled adjoint Complex step Coupled adjoint, fixed loads Complex, fixed loads 50 dks / dx n Design variable, n 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

21 Computational Cost vs. Number of Variables 1200 Coupled adjoint Finite difference Complex step Normalized time N x N x N x Number of design variables (N x ) 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

22 Supersonic Business Jet Optimization Problem Minimize: I = αc D + βw where C D is that of the cruise condition. Natural laminar flow supersonic business jet Mach = 1.5, Range = 5,300nm 1 count of drag = 310 lbs of weight Subject to: KS(σ m ) 0 where KS is taken from a maneuver condition. With respect to: external shape and internal structural sizes. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

23 Baseline Design 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

24 Aero-Structural Optimization Convergence History Drag (counts) Weight (lbs) KS Drag Weight KS Major iteration number th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

25 Aero-Structural Optimization Results 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

26 Comparison with Sequential Optimization C D (counts) σ max σ yield Weight (lbs) Objective All-at-once approach Baseline , 285 Optimized , Sequential approach Aerodynamic optimization Baseline Optimized Structural optimization Baseline , 285 Optimized , 567 Aero-structural analysis , th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

27 Conclusions Presented a framework for high-fidelity aero-structural design. The computation of sensitivities using the aero-structural adjoint is extremely accurate and efficient. Demonstrated the usefulness of the coupled adjoint by optimizing a supersonic business jet configuration with external shape and internal structural variables. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Atlanta, GA, September

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION Joaquim Rafael Rost Ávila Martins Department of Aeronautics and Astronautics Stanford University Ph.D. Oral Examination, Stanford

More information

Complete Configuration Aero-Structural Optimization Using a Coupled Sensitivity Analysis Method

Complete Configuration Aero-Structural Optimization Using a Coupled Sensitivity Analysis Method AIAA 2002 5402 Complete Configuration Aero-Structural Optimization Using a Coupled Sensitivity Analysis Method Joaquim R. R. A. Martins, Juan J. Alonso Stanford University, Stanford, CA 94305 James J.

More information

AERO-STRUCTURAL WING DESIGN OPTIMIZATION USING HIGH-FIDELITY SENSITIVITY ANALYSIS

AERO-STRUCTURAL WING DESIGN OPTIMIZATION USING HIGH-FIDELITY SENSITIVITY ANALYSIS AERO-STRUCTURAL WING DESIGN OPTIMIZATION USING HIGH-FIDELITY SENSITIVITY ANALYSIS Joaquim R. R. A. Martins and Juan J. Alonso Department of Aeronautics and Astronautics Stanford University, Stanford, CA

More information

High-Fidelity Aero-Structural Design Optimization of a Supersonic Business Jet

High-Fidelity Aero-Structural Design Optimization of a Supersonic Business Jet AIAA 2002 1483 High-Fidelity Aero-Structural Design Optimization of a Supersonic Business Jet Joaquim R. R. A. Martins, Juan J. Alonso Stanford University, Stanford, CA 94305 James J. Reuther NASA Ames

More information

A Crash-Course on the Adjoint Method for Aerodynamic Shape Optimization

A Crash-Course on the Adjoint Method for Aerodynamic Shape Optimization A Crash-Course on the Adjoint Method for Aerodynamic Shape Optimization Juan J. Alonso Department of Aeronautics & Astronautics Stanford University jjalonso@stanford.edu Lecture 19 AA200b Applied Aerodynamics

More information

A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design

A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design Optimization and Engineering, 6, 33 62, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural

More information

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION a dissertation submitted to the department of aeronautics and astronautics and the committee on graduate studies of stanford university

More information

Challenges and Complexity of Aerodynamic Wing Design

Challenges and Complexity of Aerodynamic Wing Design Chapter 1 Challenges and Complexity of Aerodynamic Wing Design Kasidit Leoviriyakit and Antony Jameson Department of Aeronautics and Astronautics Stanford University, Stanford CA kasidit@stanford.edu and

More information

Application of Proper Orthogonal Decomposition (POD) to Design Decomposition Methods

Application of Proper Orthogonal Decomposition (POD) to Design Decomposition Methods Application of Proper Orthogonal Decomposition (POD) to Design Decomposition Methods Patrick LeGresley Department of Aeronautics and Astronautics Stanford University August 25, 2005 Outline Motivation

More information

Drag Computation (1)

Drag Computation (1) Drag Computation (1) Why drag so concerned Its effects on aircraft performances On the Concorde, one count drag increase ( C D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be

More information

Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations

Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations This is a preprint of the following article, which is available from http://mdolab.engin.umich.edu Gaetan K. W. Kenway, Graeme J. Kennedy, and Joaquim R. R. A. Martins, Scalable Parallel Approach for High-

More information

Multidisciplinary Design Optimization of Aerospace Systems

Multidisciplinary Design Optimization of Aerospace Systems Please cite this document as: Martins, Joaquim R. R. A., Multidisciplinary Design Optimization of Aerospace Systems, Advances and Trends in Optimization with Engineering Applications, SIAM, 2017, pp. 249

More information

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond Antony Jameson Department of Aeronautics and Astronautics AIAA Aerospace Sciences Meeting, Reno, NV AIAA Paper 2007-0037

More information

Sensitivity Analysis AA222 - Multidisciplinary Design Optimization Joaquim R. R. A. Martins Durand

Sensitivity Analysis AA222 - Multidisciplinary Design Optimization Joaquim R. R. A. Martins Durand Sensitivity Analysis AA222 - Multidisciplinary Design Optimization Joaquim R. R. A. Martins Durand 165 email: joaquim.martins@stanford.edu 1 Introduction Sensitivity analysis consists in computing derivatives

More information

Applications of adjoint based shape optimization to the design of low drag airplane wings, including wings to support natural laminar flow

Applications of adjoint based shape optimization to the design of low drag airplane wings, including wings to support natural laminar flow Applications of adjoint based shape optimization to the design of low drag airplane wings, including wings to support natural laminar flow Antony Jameson and Kui Ou Aeronautics & Astronautics Department,

More information

An Evaluation of Constraint Aggregation Strategies for Wing Box Mass Minimization

An Evaluation of Constraint Aggregation Strategies for Wing Box Mass Minimization Please cite this document as: A. B. Lambe, J. R. R. A. Martins, and G. J. Kennedy. An evaluation of constraint aggregation strategies for wing box mass minimization. Structural and Multidisciplinary Optimization,

More information

High-Fidelity Multidisciplinary Design Using an Integrated Design Environment

High-Fidelity Multidisciplinary Design Using an Integrated Design Environment High-Fidelity Multidisciplinary Design Using an Integrated Design Environment Antony Jameson and Juan J. Alonso Department of Aeronautics and Astronautics Stanford University, Stanford CA AFOSR Joint Contractors

More information

AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN

AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN 1 26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN Paulo R. Caixeta Jr., Álvaro M. Abdalla, Flávio D. Marques, Fernando

More information

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag Drag () Induced Drag Friction Drag Form Drag Wave Drag Outline Nomenclature and Concepts Farfield Drag Analysis Induced Drag Multiple Lifting Surfaces Zero Lift Drag :Friction and Form Drag Supersonic

More information

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement HONOM 2011 in Trento DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement Institute of Aerodynamics and Flow Technology DLR Braunschweig 11. April 2011 1 / 35 Research

More information

Adjoint Formulations for Topology, Shape and Discrete Optimization

Adjoint Formulations for Topology, Shape and Discrete Optimization 45 th Aerospace Sciences Meeting and Exhibit, January 8 11, 27, Reno, Nevada Adjoint Formulations for Topology, Shape and iscrete Optimization Sriram and Antony Jameson epartment of Aeronautics and Astronautics

More information

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond 45 th Aerospace Sciences Meeting and Exhibit, January 8 11, 2007, Reno, Nevada An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond Antony Jameson Department of Aeronautics

More information

Stability-Constrained Aerodynamic Shape Optimization of a Flying Wing Configuration

Stability-Constrained Aerodynamic Shape Optimization of a Flying Wing Configuration 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference 13-15 September 2010, Fort Worth, Texas AIAA 2010-9199 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference September

More information

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Contours of Pressure.8.6.4...4.6.8 Matthew McMullen Antony Jameson Juan J. Alonso Aero Astro Dept. Stanford

More information

Towards Reduced Order Modeling (ROM) for Gust Simulations

Towards Reduced Order Modeling (ROM) for Gust Simulations Towards Reduced Order Modeling (ROM) for Gust Simulations S. Görtz, M. Ripepi DLR, Institute of Aerodynamics and Flow Technology, Braunschweig, Germany Deutscher Luft und Raumfahrtkongress 2017 5. 7. September

More information

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIAA-2004-0689 Serhat Hosder, Joseph A. Schetz, Bernard Grossman and William H. Mason Virginia Tech Work sponsored by NASA

More information

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW Ms.K.Niranjana 1, Mr.A.Daniel Antony 2 1 UG Student, Department of Aerospace Engineering, Karunya University, (India) 2 Assistant professor,

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement 16th International Conference on Finite Elements in Flow Problems DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement Institute of Aerodynamics and Flow Technology

More information

Airfoil shape optimization using adjoint method and automatic differentiation

Airfoil shape optimization using adjoint method and automatic differentiation Airfoil shape optimization using adjoint method and automatic differentiation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 5665

More information

AERODYNAMIC OPTIMIZATION USING FSI COUPLED ADJOINTS IN SU2

AERODYNAMIC OPTIMIZATION USING FSI COUPLED ADJOINTS IN SU2 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK AERODYNAMIC OPTIMIZATION USING FSI COUPLED ADJOINTS

More information

Computational Modeling of Flutter Constraint for High-Fidelity Aerostructural Optimization

Computational Modeling of Flutter Constraint for High-Fidelity Aerostructural Optimization Computational Modeling of Flutter Constraint for High-Fidelity Aerostructural Optimization Eirikur Jonsson * Charles A. Mader, Joaquim R. R. A. Martins University of Michigan, Ann Arbor, Michigan, United

More information

Toward Practical Aerodynamic Design Through Numerical Optimization

Toward Practical Aerodynamic Design Through Numerical Optimization Toward Practical Aerodynamic Design Through Numerical Optimization David W. Zingg, and Laura Billing, Institute for Aerospace Studies, University of Toronto 4925 Dufferin St., Toronto, Ontario M3H 5T6,

More information

Industrial Applications of Aerodynamic Shape Optimization

Industrial Applications of Aerodynamic Shape Optimization Industrial Applications of Aerodynamic Shape Optimization John C. Vassberg Boeing Technical Fellow Advanced Concepts Design Center Boeing Commercial Airplanes Long Beach, CA 90846, USA Antony Jameson T.

More information

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations

Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Application of Dual Time Stepping to Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations Antony Jameson Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

More information

EFFICIENT AERODYNAMIC OPTIMIZATION USING HIERARCHICAL KRIGING COMBINED WITH GRADIENT

EFFICIENT AERODYNAMIC OPTIMIZATION USING HIERARCHICAL KRIGING COMBINED WITH GRADIENT EFFICIENT AERODYNAMIC OPTIMIZATION USING HIERARCHICAL KRIGING COMBINED WITH GRADIENT Chao SONG, Xudong YANG, Wenping SONG National Key Laboratory of Science and Technology on Aerodynamic Design and Research,

More information

Is My CFD Mesh Adequate? A Quantitative Answer

Is My CFD Mesh Adequate? A Quantitative Answer Is My CFD Mesh Adequate? A Quantitative Answer Krzysztof J. Fidkowski Gas Dynamics Research Colloqium Aerospace Engineering Department University of Michigan January 26, 2011 K.J. Fidkowski (UM) GDRC 2011

More information

High Aspect Ratio Wing Design: Optimal Aerostructural Tradeoffs for the Next Generation of Materials

High Aspect Ratio Wing Design: Optimal Aerostructural Tradeoffs for the Next Generation of Materials AIAA SciTech Forum 13-17 January 2014, National Harbor, Maryland 52nd Aerospace Sciences Meeting 10.2514/6.2014-0596 High Aspect Ratio Wing Design: Optimal Aerostructural Tradeoffs for the Next Generation

More information

Chapter 2. Formulation of Finite Element Method by Variational Principle

Chapter 2. Formulation of Finite Element Method by Variational Principle Chapter 2 Formulation of Finite Element Method by Variational Principle The Concept of Variation of FUNCTIONALS Variation Principle: Is to keep the DIFFERENCE between a REAL situation and an APPROXIMATE

More information

Optimization Framework for Design of Morphing Wings

Optimization Framework for Design of Morphing Wings Optimization Framework for Design of Morphing Wings Jian Yang, Raj Nangia & Jonathan Cooper Department of Aerospace Engineering, University of Bristol, UK & John Simpson Fraunhofer IBP, Germany AIAA Aviation

More information

THE current generation of civilian transport aircraft are typically

THE current generation of civilian transport aircraft are typically JOURNAL OF AIRCRAFT Vol. 47, No. 2, March April 2010 Aerodynamic Structural Design Studies of Low-Sweep Transonic Wings Antony Jameson Stanford University, Stanford, California 94305-3030 John C. Vassberg

More information

The Importance of drag

The Importance of drag Drag Computation The Importance of drag Its effects on aircraft performances On the Concorde, one count drag increase (ΔC D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be taken

More information

Reduced order model of three-dimensional Euler equations using proper orthogonal decomposition basis

Reduced order model of three-dimensional Euler equations using proper orthogonal decomposition basis Journal of Mechanical Science and Technology 24 (2) (2010) 601~608 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-010-0106-0 Reduced order model of three-dimensional Euler equations using proper

More information

A Multi-Dimensional Limiter for Hybrid Grid

A Multi-Dimensional Limiter for Hybrid Grid APCOM & ISCM 11-14 th December, 2013, Singapore A Multi-Dimensional Limiter for Hybrid Grid * H. W. Zheng ¹ 1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy

More information

Derivatives for Time-Spectral Computational Fluid Dynamics using an Automatic Differentiation Adjoint

Derivatives for Time-Spectral Computational Fluid Dynamics using an Automatic Differentiation Adjoint Derivatives for Time-Spectral Computational Fluid Dynamics using an Automatic Differentiation Adjoint Charles A. Mader University of Toronto Institute for Aerospace Studies Toronto, Ontario, Canada Joaquim

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007 A Study of Transonic Flow and Airfoils Presented by: Huiliang Lui 3 th April 7 Contents Background Aims Theory Conservation Laws Irrotational Flow Self-Similarity Characteristics Numerical Modeling Conclusion

More information

Active Flutter Control using an Adjoint Method

Active Flutter Control using an Adjoint Method 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 26, Reno, Nevada AIAA 26-844 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9 12 Jan, 26. Active Flutter Control using an

More information

Optimum aerodynamic design using the Navier-Stokes equations

Optimum aerodynamic design using the Navier-Stokes equations Copyright 1997, American Institute of Aeronautics and Astronautics, Inc. AIAA Meeting Papers on Disc, January 1997 A9715189, AF-AFOSR-91-0391, AIAA Paper 97-0101 Optimum aerodynamic design using the Navier-Stokes

More information

Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD

Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD German Aerospace Center Seminar Krzysztof Fidkowski Department of Aerospace Engineering The University of Michigan May 4, 2009 K. Fidkowski

More information

Supersonic Aerodynamics. Methods and Applications

Supersonic Aerodynamics. Methods and Applications Supersonic Aerodynamics Methods and Applications Outline Introduction to Supersonic Flow Governing Equations Numerical Methods Aerodynamic Design Applications Introduction to Supersonic Flow What does

More information

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations

Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations Matthew McMullen and Antony Jameson and Juan J. Alonso Dept. of Aeronautics & Astronautics Stanford University

More information

Aero-Propulsive-Elastic Modeling Using OpenVSP

Aero-Propulsive-Elastic Modeling Using OpenVSP Aero-Propulsive-Elastic Modeling Using OpenVSP August 8, 213 Kevin W. Reynolds Intelligent Systems Division, Code TI NASA Ames Research Center Our Introduction To OpenVSP Overview! Motivation and Background!

More information

Drag of a thin wing and optimal shape to minimize it

Drag of a thin wing and optimal shape to minimize it Drag of a thin wing and optimal shape to minimize it Alejandro Pozo December 21 st, 211 Outline 1 Statement of the problem 2 Inviscid compressible flows 3 Drag for supersonic case 4 Example of optimal

More information

Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations

Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations In Lee * Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea Hyuk-Jun Kwon Agency

More information

Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results

Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results Krzysztof J. Fidkowski University of Michigan David L. Darmofal Massachusetts Institute of

More information

Solution Algorithms for Viscous Flow

Solution Algorithms for Viscous Flow Solution Algorithms for Viscous Flow Antony Jameson Department of Aeronautics and Astronautics Stanford University, Stanford CA Indian Institute of Science Bangalore, India September 20, 2004 Flo3xx Computational

More information

OPTIMIZATION OF TAPERED WING STRUCTURE WITH AEROELASTIC CONSTRAINT

OPTIMIZATION OF TAPERED WING STRUCTURE WITH AEROELASTIC CONSTRAINT ICAS 000 CONGRESS OPTIMIZATION OF TAPERED WING STRUCTURE WITH AEROELASTIC CONSTRAINT Harijono Djojodihardjo, I Wayan Tjatra, Ismojo Harjanto 3 Computational Aeroelastic Group, Aerospace Engineering Department

More information

DEVELOPMENT OF A THREE-DIMENSIONAL TIGHTLY COUPLED EULER/POTENTIAL FLOW SOLVER FOR TRANSONIC FLOW

DEVELOPMENT OF A THREE-DIMENSIONAL TIGHTLY COUPLED EULER/POTENTIAL FLOW SOLVER FOR TRANSONIC FLOW DEVELOPMENT OF A THREE-DIMENSIONAL TIGHTLY COUPLED EULER/POTENTIAL FLOW SOLVER FOR TRANSONIC FLOW Yeongmin Jo*, Se Hwan Park*, Duck-Joo Lee*, and Seongim Choi *Korea Advanced Institute of Science and Technology,

More information

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics Wind Tunnel Testing Considerations W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics History Pre WWII propeller tip speeds limited airplane speed Props did encounter

More information

The Truth About Elliptic Spanloads or Optimum Spanloads Incorporating Wing Structural Weight

The Truth About Elliptic Spanloads or Optimum Spanloads Incorporating Wing Structural Weight The Truth About Elliptic Spanloads or Optimum Spanloads Incorporating Wing Structural Weight Sergio Iglesias and William H. Mason AIAA Paper 2001-5234 as presented at the 1st AIAA Aircraft Technology,

More information

Configuration Aerodynamics

Configuration Aerodynamics Configuration Aerodynamics William H. Mason Virginia Tech Blacksburg, VA The front cover of the brochure describing the French Exhibit at the Montreal Expo, 1967. January 2018 W.H. Mason CONTENTS i CONTENTS

More information

COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL

COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL COMPUTATION OF CASCADE FLUTTER WITH A COUPLED AERODYNAMIC AND STRUCTURAL MODEL M. SADEGHI AND F. LIU Department of Mechanical and Aerospace Engineering University of California, Irvine, CA 92697-3975,

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Aeroelasticity. Lecture 9: Supersonic Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 9

Aeroelasticity. Lecture 9: Supersonic Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 9 Aeroelasticity Lecture 9: Supersonic Aeroelasticity G. Dimitriadis AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 9 1 Introduction All the material presented up to now concerned incompressible

More information

Aeroelastic Gust Response

Aeroelastic Gust Response Aeroelastic Gust Response Civil Transport Aircraft - xxx Presented By: Fausto Gill Di Vincenzo 04-06-2012 What is Aeroelasticity? Aeroelasticity studies the effect of aerodynamic loads on flexible structures,

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Paul Garabedian s Contributions to Transonic Airfoil and Wing Design

Paul Garabedian s Contributions to Transonic Airfoil and Wing Design Paul Garabedian s Contributions to Transonic Airfoil and Wing Design Antony Jameson October 13, 010 Abstract This note on Paul Garabedian s work on transonic airfoil and wing design is written from the

More information

Nonlinear Frequency Domain Methods Applied to the Euler and Navier-Stokes Equations p.1/50

Nonlinear Frequency Domain Methods Applied to the Euler and Navier-Stokes Equations p.1/50 Nonlinear Frequency Domain Methods Applied to the Euler and Navier-Stokes Equations Matthew McMullen Advisor: Antony Jameson Co-advisor: Juan Alonso Sponsor: Accelerated Strategic Computing Initiative

More information

Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept

Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept Yuichiro Goto, Shigeru Obayashi and Yasuaki Kohama Tohoku University, Sendai, Japan In this paper, a new concept for low-drag,

More information

Dynamic Aeroelastic Scaling of the CRM Wing via Multidisciplinary Optimization

Dynamic Aeroelastic Scaling of the CRM Wing via Multidisciplinary Optimization This work has been supported by the EU project 658570 - NextGen Airliners funded by Marie Skłodowska-Curie actions (MSCA). Dynamic Aeroelastic Scaling of the CRM Wing via Multidisciplinary Optimization

More information

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings. Eugene M. Cliff Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

More information

Numerical Optimization Algorithms

Numerical Optimization Algorithms Numerical Optimization Algorithms 1. Overview. Calculus of Variations 3. Linearized Supersonic Flow 4. Steepest Descent 5. Smoothed Steepest Descent Overview 1 Two Main Categories of Optimization Algorithms

More information

Experimental Aerodynamics. Experimental Aerodynamics

Experimental Aerodynamics. Experimental Aerodynamics Lecture 6: Slender Body Aerodynamics G. Dimitriadis Slender bodies! Wings are only one of the types of body that can be tested in a wind tunnel.! Although wings play a crucial role in aeronautical applications

More information

Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior N. Manoj Abstract The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

Code No: RT41033 R13 Set No. 1 IV B.Tech I Semester Regular Examinations, November - 2016 FINITE ELEMENT METHODS (Common to Mechanical Engineering, Aeronautical Engineering and Automobile Engineering)

More information

STUDY ON THE IMPROVED KRIGING-BASED OPTIMIZATION DESIGN METHOD

STUDY ON THE IMPROVED KRIGING-BASED OPTIMIZATION DESIGN METHOD 7 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES STUDY ON THE IMPROVED KRIGING-BASED OPTIMIZATION DESIGN METHOD Song Wenping, Xu Ruifei, Han Zhonghua (National Key Laboratory of Science and Technology

More information

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils 1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

More information

INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA)

INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA) INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA) Title 3 Column (full page) 2 Column What is Finite Element Analysis? 1 Column Half page The Finite Element Method The Finite Element Method (FEM)

More information

Efficient Hessian Calculation using Automatic Differentiation

Efficient Hessian Calculation using Automatic Differentiation 25th AIAA Applied Aerodynamics Conference, 25-28 June 2007, Miami Efficient Hessian Calculation using Automatic Differentiation Devendra P. Ghate and Michael B. Giles Oxford University Computing Laboratory,

More information

OpenFOAM Simulations for MAV Applications

OpenFOAM Simulations for MAV Applications 16 th Annual CFD Symposium 11th-12th August 2014, Bangalore 1 OpenFOAM Simulations for MAV Applications Syed Zahid*, A. Rajesh, M.B. Subrahmanya, B.N. Rajani *Student, Dept. of Mech. Engg, SDM, Dharwad,

More information

Jun 22-25, 2009/San Antonio, TX

Jun 22-25, 2009/San Antonio, TX 19th AIAA Computational Fluid Dynamics 22-25 June 2009, San Antonio, Texas AIAA 2009-4273 AIAA 2009 4273 An Assessment of Dual-Time Stepping, Time Spectral and Artificial Compressibility based Numerical

More information

Feedback Control of Aerodynamic Flows

Feedback Control of Aerodynamic Flows 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 26, Reno, Nevada AIAA 26-843 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9 12 Jan, 26. Feedback Control of Aerodynamic

More information

Simulation of low Mach number flows

Simulation of low Mach number flows Simulation of low Mach number flows Improvement of accuracy and convergence of the TAU code using time derivative preconditioning Ralf Heinrich, Braunschweig, 9th February 008 Simulation of low Mach number

More information

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus

More information

Aerodynamics Gust Response Prediction

Aerodynamics Gust Response Prediction Aerodynamics Gust Response Prediction Alexis RIGALDO Department of Aerospace and Vehicle Engineering Royal Institute of Technology - SE 114 15 Stockholm, Sweden E-Mail:rigaldo@kth.se Thesis performed within

More information

Study of Preliminary Configuration Design of F-35 using simple CFD

Study of Preliminary Configuration Design of F-35 using simple CFD Study of Preliminary Configuration Design of F-35 using simple CFD http://www.aerospaceweb.org/aircraft/research/x35/pics.shtml David Hall Sangeon Chun David Andrews Center of Gravity Estimation.5873 Conventional

More information

A hybrid adjoint approach applied to RANS equations

A hybrid adjoint approach applied to RANS equations Center for urbulence Research Annual Research Briefs 2013 303 A hybrid adjoint approach applied to RANS equations By. W. R. aylor, F. Palacios, K. Duraisamy AND J. J. Alonso 1. Motivation and objectives

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 009 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

Review and Unification of Methods for Computing Derivatives of Multidisciplinary Systems

Review and Unification of Methods for Computing Derivatives of Multidisciplinary Systems 53rd AAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference2th A 23-26 April 212, Honolulu, Hawaii AAA 212-1589 Review and Unification of Methods for Computing Derivatives of

More information

Royal Aeronautical Society 2016 Applied Aerodynamics Conference Tuesday 19 th Thursday 21 st July Science Centre, Bristol, UK

Royal Aeronautical Society 2016 Applied Aerodynamics Conference Tuesday 19 th Thursday 21 st July Science Centre, Bristol, UK Assessment and validation of aerodynamic performance results for a Natural Laminar Flow transonic wing tested in cryogenic conditions via simulation of turbulent wedges in CFD. Royal Aeronautical Society

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information

AAS/AIAA Astrodynamic Specialists Conference 2-5 August 2010, Toronto, Canada

AAS/AIAA Astrodynamic Specialists Conference 2-5 August 2010, Toronto, Canada AAS/AIAA Astrodynamic Specialists Conference 2-5 August 2010, Toronto, Canada Multidisciplinary Design of a micro-usv for Re-entry Operations E. Minisci, M. Vasile H. Liqiang Space Advanced Research Team

More information

MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag. G. Leng, MDTS, NUS

MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag. G. Leng, MDTS, NUS MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag 2.1. The design of supersonic airfoils For efficient lift generation at subsonic speeds, airfoils look like : So why can t a similar

More information

Methods for the Aerostructural Design and Optimization of Wings with Arbitrary Planform and Payload Distribution

Methods for the Aerostructural Design and Optimization of Wings with Arbitrary Planform and Payload Distribution Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2018 Methods for the Aerostructural Design and Optimization of Wings with Arbitrary Planform and Payload

More information

Adjoint-based aerodynamic shape optimization

Adjoint-based aerodynamic shape optimization IT Licentiate theses 2003-012 Adjoint-based aerodynamic shape optimization OLIVIER AMOIGNON UPPSALA UNIVERSITY Department of Information Technology Adjoint-based aerodynamic shape optimization BY OLIVIER

More information

Analysis of Missile Bodies with Various Cross sections and Enhancement of Aerodynamic Performance

Analysis of Missile Bodies with Various Cross sections and Enhancement of Aerodynamic Performance International Conference on Systems, Science, Control, Communication, Engineering and Technology 115 International Conference on Systems, Science, Control, Communication, Engineering and Technology 2015

More information

NUMERICAL DESIGN AND ASSESSMENT OF A BIPLANE AS FUTURE SUPERSONIC TRANSPORT REVISITING BUSEMANN S BIPLANE

NUMERICAL DESIGN AND ASSESSMENT OF A BIPLANE AS FUTURE SUPERSONIC TRANSPORT REVISITING BUSEMANN S BIPLANE 5 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES NUMERICAL DESIGN AND ASSESSMENT OF A BIPLANE AS FUTURE SUPERSONIC TRANSPORT ------ REVISITING BUSEMANN S BIPLANE ------ Kisa MATSUSHIMA*, Kazuhiro

More information

NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM)

NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM) Journal of Fundamental and Applied Sciences ISSN 1112-9867 Available online at http://www.jfas.info NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM) M. Y. Habib

More information