Spring 2012, P627, YK Friday, January 27, 2012

Size: px
Start display at page:

Download "Spring 2012, P627, YK Friday, January 27, 2012"

Transcription

1 7 Spring 1, P67, YK Friday, January 7, 1

2 Topic Software Talk date Kubra PC+VM Rachel Dark Matter PC+VM Joel Mac+? Chris PC+VM Kyle Linux +VM Possible project talk dates: pril 18,,3,5,7 Projects: Proton decay, Muon g,, Sterile neutrinos, Hidden photons, axions, WISP (sub ev), Dark matter detection, bar with spallation target, eutron and atomic EDM, Measurement of CPV phase in oscillations, Collider experiment,

3 Links for Root and Geant4 on Windows OS Required for both: us/products/1 editions/visual cpp express Root: version 53 (VC++ 1 MSI Installer) Geant4: Set environment variables: System >dvanced >Environment Variables (Just point to unzipped folder of data set) Officially Supported Platforms: Free Micro$oft programs for.edu students: In case of further questions to Eric Flumerfelt [eflumerf@utk.edu]

4 umber of essential kinematical parameters of the reaction. n particles For generic process with participating n particles: n 4-vectors = 4 n numbers - n masses Ei - pi = mi (if masses are known) - 4 energy and momentum conservation eqs. - 3 arbitrary xyz,, shifts in 3D momentum space - 3 arbitrary rotations in 3D momentum space # = 4n-n = 3n-1 E.g. n = 3 (1 decay) no free kinematical variables (everything is determined by masses) If n = 4 (13 decay, or scattering) # = (e.g. energy of incoming particle in Lab + scatt. angle) If n= 5 (e.g. n+ p p+ + p) # = 5 and reaction needs to be analyzed in 5-D space p -

5 The image part with relationship ID rid11 was not found in the file. Transformation of distribution functions. If f( p) -some practical experimental "distribution function" in 3D space 3 d = f ( p) dp dp dp = f ( p) d p x y z # of particles in d p of momentum space f( p ) will be transformed by Lorentz transformation d remains invariant when p and f ( p) are transformed to another coordinate system 3 See Landau - II 1 for the prove of invariance of d p E d invarinat = f ( p) E must be invariant 3 d p E invariant 3 f ( p) d -invariant dp E f ( p ) = f ( p) when p = L( v) p E Lorentz transform

6 inv 3 d p dv p p dp dw p E de dw p de dw = = = = = E E E c E c d = p + m c p dp= by differentiating E E E c c 3 3 Phase-space distribution: d = f ( r, p) d p d x when f ( r, p ) = L( v) f( r, p) invariant Summary of Lorentz transformation invariants: invariant see LL-II 1 invariant 3 d p E f( p) E p de dw f ( r, p)

7 Cross section in potential scattering (like Coulomb field) symmetric trajectory radial turning point Scattering angle in CMS is determined: (a) by particular potential (interact. dynamics) (b) particle starting velocity at ( ) (c) by relative position of particles in collision (impact parameter) c = p -j Potential U(r) is provided by the scattering center located at point O (at the center of inertia of two particles) rmin=o can be determined from radicand = Ur () M + = mr E infinite motion; see LL1 (14.7) E mv = T = > ; (conserved) M = mrv m - reduced mass r - impact parameter

8 Scattering of beam of particles on the scattering center d particles with v n Beam with area scattering center U(r) d surface density particle in the beam; [ n] d dc = dc n dsc = n pr dr dc 1 cm é cc+ cù «érr+ drù ë û ë û is monotonic one-value function of :, d, drc ( ) dsc = pr dr = pr( c) dc dc dsc dsc or dc called effective differential scattering cross section at angle c (per interval d c) in CMS

9 The image part with relationship ID rid7 was not found in the file. Let one particle be incident on the target with surface density of scattering centers n n = n l V s = p( r + r ) 1 Probability for 1 particle to interact is n (if n is small) then the beam of particles is incident on a target (assume that transversally target is larger than the beam area) int = sn For particles in the beam: D = - sn d d =- snvdx =-snvdx n - is volume density V of scattering centers

10 d =-sn dx V l ln s V =- n x =-sn ln =-sn = e -sn passed target with no interactions -sn -sn int = - = - e (1 e )» (1-1 + sn) = sn int Similar for x section for some particular final state or scattering at angle in interval d

11 Differential and total x-sections ds Lab Lab ç 3 çèmv cos q ø Lab æ a ö dw = ç ds æ a ö = dw ç çèmv 3 Lab ø Lab cos 1 q differential cross section d d d d d de d d de Can total X section be? total cross section

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions)

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions) Spring 01, P67, YK Monday January 30, 01 8 Obsrvabl particl dtction ffcts ar : (most) du to long rang m forcs i.. via atomic collisions or du to short rang nuclar collisions or through dcay ( = wak intractions)

More information

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2 George Mason University Physics 540 Spring 2011 Contents Notes on Relativistic Kinematics 1 Introduction 2 2 Lorentz Transformations 2 2.1 Position-time 4-vector............................. 3 2.2 Velocity

More information

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 PHY 7 Classical Mechanics and Mathematical Methods 0-0:50 AM MWF Olin 03 Plan for Lecture :. Brief comment on quiz. Particle interactions 3. Notion of center of mass reference fame 4. Introduction to scattering

More information

Problem Set # 2 SOLUTIONS

Problem Set # 2 SOLUTIONS Wissink P640 Subatomic Physics I Fall 007 Problem Set # SOLUTIONS 1. Easy as π! (a) Consider the decay of a charged pion, the π +, that is at rest in the laboratory frame. Most charged pions decay according

More information

Lorentz invariant scattering cross section and phase space

Lorentz invariant scattering cross section and phase space Chapter 3 Lorentz invariant scattering cross section and phase space In particle physics, there are basically two observable quantities : Decay rates, Scattering cross-sections. Decay: p p 2 i a f p n

More information

Methods and tools used in experimental particle and nuclear physics. Lectures handouts:

Methods and tools used in experimental particle and nuclear physics. Lectures handouts: 1 section: 627001 Spring 2012 January 11, 2012 Methods and tools used in experimental particle and nuclear physics. Instructor: Yuri Kamyshkov e-mail: kamyshkov@utk.edu tel. office 974-6777 Office Nielsen

More information

Light element IBA by Elastic Recoil Detection and Nuclear Reaction Analysis R. Heller

Light element IBA by Elastic Recoil Detection and Nuclear Reaction Analysis R. Heller Text optional: Institute Prof. Dr. Hans Mousterian www.fzd.de Mitglied der Leibniz-Gemeinschaft Light element IBA by Elastic Recoil Detection and Nuclear Reaction Analysis R. Heller IBA Techniques slide

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Ch., Problem 3 After acceleration through 0 MV both the electron and proton will each have a kinetic energy of 0 MeV. For the electron, E K + mc 0:5 M

Ch., Problem 3 After acceleration through 0 MV both the electron and proton will each have a kinetic energy of 0 MeV. For the electron, E K + mc 0:5 M Physics 3304 Assignment solutions Grading: The problems that will be graded in detail for this assignment are Ch., number 35 and Ch. 3, number 9 èeach worth 5 points totalè. You will receive point for

More information

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012 L18.pdf Spring 2010, P627, YK February 22, 2012 18 T2 Nuclear Information Service at LANL: http://t2.lanl.gov/data/ ENDF/B VI Neutron Data : http://t2.lanl.gov/cgi bin/nuclides/endind Thermal neutron x

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

GET STARTED ON THE WEB WITH HYPATIA AND OPloT

GET STARTED ON THE WEB WITH HYPATIA AND OPloT GET STARTED ON THE WEB WITH HYPATIA AND OPloT You will now analyze up to 50 particle collisions (events) by using the visualization application HYPATIA. From these collisions, you shall try to find the

More information

Part A-type questions

Part A-type questions PHYS306: lecture 8 th February 008 Part A-type questions. You toss an apple horizontally at 8.7 m/s from a height of.6 m. Simultaneously, you drop a peach from the same height. How long does each take

More information

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Problem 2 has nothing to do with what we have done in class. It introduces somewhat strange coordinates called rapidity and pseudorapidity

More information

QFT. Unit 11: Cross Sections and Decay Rates

QFT. Unit 11: Cross Sections and Decay Rates QFT Unit 11: Cross Sections and Decay Rates Decays and Collisions n When it comes to elementary particles, there are only two things that ever really happen: One particle decays into stuff Two particles

More information

10. Scattering from Central Force Potential

10. Scattering from Central Force Potential University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 215 1. Scattering from Central Force Potential Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Lecture 7 1. Relativistic Mechanics Charged particle in magnetic field 2. Relativistic Kinematics

More information

QGP Physics from Fixed Target to LHC

QGP Physics from Fixed Target to LHC QGP Physics from Fixed Target to LHC 2. Kinematic Variables Prof. Dr. Klaus Reygers, Prof. Dr. Johanna Stachel Physikalisches Institut, Universität Heidelberg SS 2015 1 May 5, 2015: First collisions at

More information

Chapter 21 Chapter 24. Electric Potential. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 24. Electric Potential. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 24 Electric Potential Copyright 24-1 What is Physics? Experimentally, physicists and engineers discovered that the electric force is conservative and thus has an associated electric

More information

General Physics I. Lecture 6: Conservation of Momentum. Prof. WAN, Xin 万歆.

General Physics I. Lecture 6: Conservation of Momentum. Prof. WAN, Xin 万歆. General Physics I Lecture 6: Conservation of Momentum Prof. WAN, Xin 万歆 xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Importance of conservation laws in physics Applications of the conservation

More information

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics Particle Detectors Summer Student Lectures 2010 Werner Riegler, CERN, werner.riegler@cern.ch History of Instrumentation History of Particle Physics The Real World of Particles Interaction of Particles

More information

핵입자물리특강 고에너지물리실험방법론 김선기 2014 년 2 학기

핵입자물리특강 고에너지물리실험방법론 김선기 2014 년 2 학기 핵입자물리특강 고에너지물리실험방법론 김선기 2014 년 2 학기 References W.R.Leo, Techniques for Nuclear and Particle Physics Experiments G. F. Knoll, Radiation Detection and Measurement T. Ferbel, Experimental Techniques in High

More information

HIGH ENERGY ASTROPHYSICS - Lecture 7. PD Frank Rieger ITA & MPIK Heidelberg Wednesday

HIGH ENERGY ASTROPHYSICS - Lecture 7. PD Frank Rieger ITA & MPIK Heidelberg Wednesday HIGH ENERGY ASTROPHYSICS - Lecture 7 PD Frank Rieger ITA & MPIK Heidelberg Wednesday 1 (Inverse) Compton Scattering 1 Overview Compton Scattering, polarised and unpolarised light Di erential cross-section

More information

Physics 2210 Fall smartphysics Exam 3 Review smartphysics units /04/2015

Physics 2210 Fall smartphysics Exam 3 Review smartphysics units /04/2015 Physics 22 Fall 25 smartphysics Exam 3 Review smartphysics units -3 /4/25 Review Problem The figure shown extends from x = to x = and is bounded on the left by the y-axis, on the bottom by the x-axis,

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

The IBS/CAPP research plan

The IBS/CAPP research plan The IBS/CAPP research plan YkS, March 018 The axion is a consequence of the most elegant solution, suggested by Alberto Peccei and Helen Quinn in the 1970 s, to the strong CP problem, i.e., why the experimental

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2 Lecture 11 Weak interactions, Cabbibo-angle angle SS2011: Introduction to Nuclear and Particle Physics, Part 2 1 Neutrino-lepton reactions Consider the reaction of neutrino-electron scattering: Feynman

More information

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule

Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule Kern- und Teilchenphysik I Lecture 2: Fermi s golden rule (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Mr. Davide Lancierini http://www.physik.uzh.ch/de/lehre/phy211/hs2017.html

More information

Dark Matter Search with Belle II

Dark Matter Search with Belle II Dark Matter Search with Belle II Enrico Graziani INFN Roma 3 on behalf of the Belle II Collaboration OUTLINE OF THE TALK Belle II and SuperKEKB Search of the invisible dark photon Search of ALP Search

More information

Lecture 6-4 momentum transfer and the kinematics of two body scattering

Lecture 6-4 momentum transfer and the kinematics of two body scattering Lecture 6-4 momentum transfer and the kinematics of two body scattering E. Daw March 26, 2012 1 Review of Lecture 5 Last time we figured out the physical meaning of the square of the total 4 momentum in

More information

PHY 5246: Theoretical Dynamics, Fall Assignment # 7, Solutions. Θ = π 2ψ, (1)

PHY 5246: Theoretical Dynamics, Fall Assignment # 7, Solutions. Θ = π 2ψ, (1) PHY 546: Theoretical Dynamics, Fall 05 Assignment # 7, Solutions Graded Problems Problem ψ ψ ψ Θ b (.a) The scattering angle satisfies the relation Θ π ψ, () where ψ is the angle between the direction

More information

Particle Physics Homework Assignment 4

Particle Physics Homework Assignment 4 Particle Physics Homework Assignment 4 Prof. Costas Foudas March 01 Problem 1: Show the the momentum, p of a particle moving in a circular trajectory of radius, R, in a magnetic field, B, is given by:

More information

THEORETICAL COMPETITION. 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points)

THEORETICAL COMPETITION. 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points) Question 1 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points) Consider n=2 moles of ideal Helium gas at a pressure P 0, volume V 0 and temperature T 0 = 300 K placed in a vertical cylindrical container

More information

J09M.1 - Coupled Pendula

J09M.1 - Coupled Pendula Part I - Mechanics J09M.1 - Coupled Pendula J09M.1 - Coupled Pendula Two simple pendula, each of length l and mass m, are coupled by a spring of force constant k. The spring is attached to the rods of

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

Lecture 5.7 Compressible Euler Equations

Lecture 5.7 Compressible Euler Equations Lecture 5.7 Compressible Euler Equations Nomenclature Density u, v, w Velocity components p E t H u, v, w e S=c v ln p - c M Pressure Total energy/unit volume Total enthalpy Conserved variables Internal

More information

Classical Scattering

Classical Scattering Classical Scattering Daniele Colosi Mathematical Physics Seminar Daniele Colosi (IMATE) Classical Scattering 27.03.09 1 / 38 Contents 1 Generalities 2 Classical particle scattering Scattering cross sections

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 22 Fermi Theory Standard Model of Particle Physics SS 22 2 Standard Model of Particle Physics SS 22 Fermi Theory Unified description of all kind

More information

1st year Relativity - Notes on Lectures 6, 7 & 8

1st year Relativity - Notes on Lectures 6, 7 & 8 1st year Relativity - Notes on Lectures 6, 7 & 8 Lecture Six 1. Let us consider momentum Both Galilean and relativistic mechanics define momentum to be: p = mv and p i = P = a constant i i.e. Total momentum

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 5 : Electron-Proton Elastic Scattering Prof. M.A. Thomson Michaelmas 2011 149 i.e. the QED part of ( q q) Electron-Proton Scattering In this

More information

The Quark-Parton Model

The Quark-Parton Model The Quark-Parton Model Before uarks and gluons were generally acceted Feynman roosed that the roton was made u of oint-like constituents artons Both Bjorken Scaling and the Callan-Gross relationshi can

More information

Vectors in Special Relativity

Vectors in Special Relativity Chapter 2 Vectors in Special Relativity 2.1 Four - vectors A four - vector is a quantity with four components which changes like spacetime coordinates under a coordinate transformation. We will write the

More information

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices Week 7: Ch. 0 Spec. w/ Scintillation Ctrs. multiplier Devices Spectroscopy with Scint. Counters -- gamma-ray interactions, reprise -- observed spectra --- spectral components, backscatter --- summing --

More information

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I. FRIDAY, May 5, :00 12:00

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I. FRIDAY, May 5, :00 12:00 Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I FRIDAY, May 5, 2017 10:00 12:00 ROOM 245 PHYSICS RESEARCH BUILDING INSTRUCTIONS: This examination consists

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

Synchrotron Power Cosmic rays are astrophysical particles (electrons, protons, and heavier nuclei) with extremely high energies. Cosmic-ray electrons in the galactic magnetic field emit the synchrotron

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Fermi Theory Standard Model of Particle Physics SS 23 2 Standard Model of Particle Physics SS 23 Weak Force Decay of strange particles Nuclear

More information

Experimental Particle Physics Informal Lecture & Seminar Series Lecture 1 Detectors Overview

Experimental Particle Physics Informal Lecture & Seminar Series Lecture 1 Detectors Overview Experimental Particle Physics Informal Lecture & Seminar Series 2013 Lecture 1 Detectors Overview Detectors in Particle Physics Let s talk about detectors for a bit. Let s do this with Atlas and CMS in

More information

New Measurements of ψ(3770) Resonance Parameters & DD-bar Cross Section at BES-II & CLEO-c

New Measurements of ψ(3770) Resonance Parameters & DD-bar Cross Section at BES-II & CLEO-c New Measurements of ψ(3770) Resonance Parameters & DD-bar Cross Section at BES-II & CLEO-c The review talk is based on the talks given at ICHEP 04 by Anders Ryd, Ian Shipsey, Gang Rong 1 Outline Introduction

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 4 Relativistic Dynamics The most important example of a relativistic particle moving in a potential is a charged particle, say an electron, moving in an electromagnetic field, which might be that

More information

Hidden Sector particles at SNS

Hidden Sector particles at SNS Hidden Sector particles at SNS 1 S E N S I T I V I T Y T O A X I O N S A N D A X I O N - L I K E P A R T I C L E S. A T H A N S H A T Z I K O U T E L I S Y U R I E F R E M E N K O U N I V E R S I T Y O

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 13, 2016 3:10PM to 5:10PM Modern Physics Section 4. Relativity and Applied Quantum Mechanics Two hours are permitted

More information

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Final Exam Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading

More information

GET STARTED ON THE WEB WITH HYPATIA AND OPloT

GET STARTED ON THE WEB WITH HYPATIA AND OPloT GET STARTED ON THE WEB WITH HYPATIA AND OPloT You will now analyze up to 50 particle collisions (events) by using the visualization application HYPATIA. From these collisions, you shall try to find the

More information

Collider overview and kinematics

Collider overview and kinematics 1 Collider overview and kinematics QCD studies at colliders 2 ee - ep - pp QCD collider studies Short Long distance Q: large momentum scale PEP, PETRA, Cornell, LEP, SLD, NLC SLAC, FNAL, CERN, HERA, erhic

More information

Collider Searches for Dark Matter

Collider Searches for Dark Matter Collider Searches for Dark Matter AMELIA BRENNAN COEPP-CAASTRO WORKSHOP 1 ST MARCH 2013 Introduction Enough introductions to dark matter (see yesterday) Even though we don t know if DM interacts with SM,

More information

G4beamline A beam/particle simulation program based on Geant4. Muons, Inc. Innovation in research

G4beamline A beam/particle simulation program based on Geant4. Muons, Inc. Innovation in research G4beamline A beam/particle simulation program based on Geant4. Muons, Inc. Innovation in research G4beamline goals G4beamline is intended to perform simulations as realistically as possible. With validation

More information

INTRODUCING CHANNELING EFFECT

INTRODUCING CHANNELING EFFECT INTRODUCING CHANNELING EFFECT Enrico Bagli on the behalf of G4CMP working group Motivation Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of application include

More information

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt =

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = d (mv) /dt where p =mv is linear momentum of particle

More information

We begin our discussion of special relativity with a power point presentation, available on the website.

We begin our discussion of special relativity with a power point presentation, available on the website. Special Relativity We begin our discussion of special relativity with a power point presentation, available on the website.. Spacetime From the power point presentation, you know that spacetime is a four

More information

Virtual particles - the ultimate source of any force

Virtual particles - the ultimate source of any force Virtual particles - the ultimate source of any force Lecture notes Jan Rak Jyväskylä University, HIP, Finland October 23, 204 Jan Rak (Jyväskylä University, HIP, Finland) Virtual particles - the ultimate

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART III: QUANTUM MECHANICS

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART III: QUANTUM MECHANICS Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART III: QUANTUM MECHANICS Friday, January 8, 2016 10 AM 12 noon Room 245, Physics Research Building INSTRUCTIONS:

More information

Massachusetts Institute of Technology Physics Department. Physics 8.20 IAP 2005 Special Relativity January 28, 2005 FINAL EXAM

Massachusetts Institute of Technology Physics Department. Physics 8.20 IAP 2005 Special Relativity January 28, 2005 FINAL EXAM Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Special Relativity January 28, 2005 FINAL EXAM Instructions You have 2.5 hours for this test. Papers will be picked up promptly

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

2013 Purdue University 1

2013 Purdue University 1 Lab #11 Collisions: Rutherford Scattering OBJECTIVES In this lab you will: Use the energy and momentum principles to analyze the problem of Rutherford scattering, and estimate the initial conditions to

More information

CHAPTER 3 Describing Relationships

CHAPTER 3 Describing Relationships CHAPTER 3 Describing Relationships 3.1 Scatterplots and Correlation The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Scatterplots and Correlation Learning

More information

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C) Nm:... Bch:... TOPIC: II. ( + ) d cos ( ) co( ) n( ) ( ) n (D) non of hs. n sc d sc + sc é ësc sc ù û sc sc é ë ù û (D) non of hs. sc cosc d logn log (n ) co (log ) log log (n ) (D) n (log ). cos log(

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Laws of Conservation 2.1 INTRODUCTION. 2.2 CONSERVATIVE AND NON CONSERVATIVE FORCES Conservative Force. Properties of Conservative Force

Laws of Conservation 2.1 INTRODUCTION. 2.2 CONSERVATIVE AND NON CONSERVATIVE FORCES Conservative Force. Properties of Conservative Force CHAPTER 2 Laws of Conservation 2.1 INTRODUCTION Laws of conservation are generally the consequences of some underlying symmetry in the universe. In Physics, we come across a number of conservation laws

More information

PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS

PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS Section A A1. (Based on previously seen problem) Displacement as function of time: x(t) = A sin ωt Frequency f = ω/2π. Velocity of mass is v(t) = dx

More information

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Accelerator Physics NMI and Synchrotron Radiation G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Graduate Accelerator Physics Fall 17 Oscillation Frequency nq I n i Z c E Re Z 1 mode has

More information

Differentiating Functions & Expressions - Edexcel Past Exam Questions

Differentiating Functions & Expressions - Edexcel Past Exam Questions - Edecel Past Eam Questions. (a) Differentiate with respect to (i) sin + sec, (ii) { + ln ()}. 5-0 + 9 Given that y =, ¹, ( -) 8 (b) show that = ( -). (6) June 05 Q. f() = e ln, > 0. (a) Differentiate

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

Physics 225 Relativity and Math Applications. Fall Unit 7 The 4-vectors of Dynamics

Physics 225 Relativity and Math Applications. Fall Unit 7 The 4-vectors of Dynamics Physics 225 Relativity and Math Applications Fall 2011 Unit 7 The 4-vectors of Dynamics N.C.R. Makins University of Illinois at Urbana-Champaign 2010 Physics 225 7.2 7.2 Physics 225 7.3 Unit 7: The 4-vectors

More information

Efficiency of the CMS Level-1 Trigger to. Selected Physics Channels

Efficiency of the CMS Level-1 Trigger to. Selected Physics Channels Efficiency of the CMS Level-1 Trigger to Selected Physics Channels C. Sulkko University of Colorado, Boulder, CO D. Acosta University of Florida, Gainesville, FL Abstract The efficiency of the Compact

More information

Particle Accelerators

Particle Accelerators Experimental Methods of Particle Physics Particle Accelerators Andreas Streun, PSI andreas.streun@psi.ch https://ados.web.psi.ch/empp-streun Andreas Streun, PSI 1 Particle Accelerators 1. Introduction

More information

ME 595M: Monte Carlo Simulation

ME 595M: Monte Carlo Simulation ME 595M: Monte Carlo Simulation T.S. Fisher Purdue University 1 Monte Carlo Simulation BTE solutions are often difficult to obtain Closure issues force the use of BTE moments Inherent approximations Ballistic

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Momentum and Energy Conservation Albert Einstein 879-955 Review: Transforming Velocity Remember: u = dx dt x = γ ν (x + vt ) t = γ ν ( v c 2 x + t ) From this

More information

Decay rates and Cross section. Ashfaq Ahmad National Centre for Physics

Decay rates and Cross section. Ashfaq Ahmad National Centre for Physics Decay rates and Cross section Ashfaq Ahmad National Centre for Physics 11/17/2014 Ashfaq Ahmad 2 Outlines Introduction Basics variables used in Exp. HEP Analysis Decay rates and Cross section calculations

More information

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system Magnets and Lattices - Accelerator building blocks - Transverse beam dynamics - coordinate system Both electric field and magnetic field can be used to guide the particles path. r F = q( r E + r V r B

More information

Since the cylinder rolls without slipping, the point of contact with the ground is the instantaneous center. r Ë Á 1 2ˆ = = = r

Since the cylinder rolls without slipping, the point of contact with the ground is the instantaneous center. r Ë Á 1 2ˆ = = = r PROBEM 7.7 A 0-kg uniform cylindrical roller, initially at rest, is acted upon by a 90-N force as shown. Knowing that the body rolls without slipping, determine (a) the velocity of its center G after it

More information

EVENT SELECTION CRITERIA OPTIMIZATION FOR THE DISCOVERY OF NEW PHYSICS WITH THE ATLAS EXPERIMENT

EVENT SELECTION CRITERIA OPTIMIZATION FOR THE DISCOVERY OF NEW PHYSICS WITH THE ATLAS EXPERIMENT EVENT SELECTION CRITERIA OPTIMIZATION FOR THE DISCOVERY OF NEW PHYSICS WITH THE ATLAS EXPERIMENT In large experiments, the researchers must analyze millions of events and choose the candidates for discovery.

More information

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters:

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters: Lecture 2 & 3 Particles going through matter PDG chapter 27 Kleinknecht chapters: 1.2.1 for charged particles 1.2.2 for photons 1.2.3 bremsstrahlung for electrons Collider Detectors PDG chapter 28 Kleinknecht

More information

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Physics of particles H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Introduction Dose The ideal dose distribution ideal Dose: Energy deposited Energy/Mass Depth [J/kg] [Gy] Introduction

More information

Slowing down the neutrons

Slowing down the neutrons Slowing down the neutrons Clearly, an obvious way to make a reactor work, and to make use of this characteristic of the 3 U(n,f) cross-section, is to slow down the fast, fission neutrons. This can be accomplished,

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Friday, January 13, 2012 3:10PM to 5:10PM General Physics (Part II) Section 6. Two hours are permitted for the completion of this section

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals

Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals Alex Fomin Laboratoire de l Accélérateur Linéaire Université Paris-Sud/IN2P3, Orsay, France NSC

More information

1. Download the comma separated(.csv) file at: Or go to the opendata homepage and

1. Download the comma separated(.csv) file at:  Or go to the opendata homepage and These are instructions for creating an invariant mass histogram using EXCEL and CERN s open data. The data is from dimuon decay and will peak at around 90 GeV for the Z boson. This is actual data from

More information

Physics 231a Problem Set Number 1 Due Wednesday, October 6, 2004

Physics 231a Problem Set Number 1 Due Wednesday, October 6, 2004 Physics 231a Problem Set Number 1 Due Wednesday, October 6, 2004 Note: Some problems may be review for some of you. If the material of the problem is already well-known to you, such that doing the problem

More information

Double parton scattering studies in CMS

Double parton scattering studies in CMS CBPF-Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil E-mail: gilvan@cern.ch he double parton scattering (DPS) process in proton-proton collisions at a center-of-mass energy of 7 and 3 ev

More information

Subatomic Physics: Particle Physics Study Guide

Subatomic Physics: Particle Physics Study Guide Subatomic Physics: Particle Physics Study Guide This is a guide of what to revise for the exam. The other material we covered in the course may appear in uestions but it will always be provided if reuired.

More information

Physics 161 Homework 2 - Solutions Wednesday August 31, 2011

Physics 161 Homework 2 - Solutions Wednesday August 31, 2011 Physics 161 Homework 2 - s Wednesday August 31, 2011 Make sure your name is on every page, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

Lecture 9 - Applications of 4 vectors, and some examples

Lecture 9 - Applications of 4 vectors, and some examples Lecture 9 - Applications of 4 vectors, and some examples E. Daw April 4, 211 1 Review of invariants and 4 vectors Last time we learned the formulae for the total energy and the momentum of a particle in

More information

Beginning Modern Quantum

Beginning Modern Quantum Beginning Modern Quantum Born s probability interpretation The indeterminacy ( uncertainty ) principle The Schroedinger equation The Copenhagen interpretation 419 Term Paper Abstract due today Homework

More information