PHY 5246: Theoretical Dynamics, Fall Assignment # 7, Solutions. Θ = π 2ψ, (1)

Size: px
Start display at page:

Download "PHY 5246: Theoretical Dynamics, Fall Assignment # 7, Solutions. Θ = π 2ψ, (1)"

Transcription

1 PHY 546: Theoretical Dynamics, Fall 05 Assignment # 7, Solutions Graded Problems Problem ψ ψ ψ Θ b (.a) The scattering angle satisfies the relation Θ π ψ, () where ψ is the angle between the direction of the incoming asymptote and the periapsis (the direction of closest approach), and can be obtained from the equation of the orbit θ r dr r 0 (r ) +θ Em mv 0, () l l (r ) setting θ 0 π for r 0 (the incoming direction), such that θ π θ for r r min, i.e. ψ r min The equation of the hyperbolic orbit is then r Em l dr mv l r. (3) r m m (+ǫcos(θ π)) ( ǫcosθ), (4) l l

2 where ǫ +El /(m ) > E > 0 (eccentricity of the hyperbolic orbit) and ψ is defined by the limit In terms of the scattering angle the previous condition becomes which implies and finally for GMm and γ v 0/(GM). (.b) r cosψ ǫ. (5) ( π cos Θ ) sin Θ ǫ, (6) tan Θ ǫ cot Θ ǫ El m m v 4 0 b (7) cot Θ mv 0 b v 0 b GM b γ cot Θ, (8) Using the notation of your boo, Using the result in (.a), we can write it as dω b sinθ db dθ. (9) dω b sinθ γ sin Θ γ cot Θ sin Θ cos Θ γ sin Θ 4γ sin 4 Θ. (0) (.c) For Θ 80, i.e. for the case of bacward scattering, the differential scattering cross section is dω 4γ v 4 0, () and dω for v 0 0, () dω 0 for v 0. Indeed, for v 0 0 (i.e. if particles approach with very low speed) we have that E 0, i.e. the orbit degenerates into a parabolic orbit and all particles, after having approached the center of force, move bac from where they approached from. Onthe other hand, if v 0 (i.e. if particles approach with very high speed), their inetic energy is very large, the total energy of the orbit is very mildly affected by the center of force potential energy, and the particles orbits are very mildly deflected, such that almost no particles are deflected bacward.

3 (.d) For Θ 0, i.e. for the case of forward scattering, we see that dω, (3) i.e. the cross section for forward scattering seems to be infinite. This is due to the fact that all impact parameters can contribute to the cross section, up to infinity. Of course, the larger the impact parameter of a given trajectory, the milder the deviation of of trajectory from the initial direction. All particles coming in with very large impact parameter are scattered in the forward direction, and, if all impact parameters contribute, the cross section for forward scattering is infinite. The only way to prevent such an unphysical situation is to cut off the impact parameter. Is this a tric? Not quite. Indeed in nature all scattering problems have this property. Objects scattering with large impact parameter do not feel the center of force because this is screened by other interactions (thin for instance to the case of Rutherford scattering and the effect of electrons in screening the nuclei of atoms if the incoming particles are at a distance larger than the atomic distance), and that prevents any forward scattering physical cross section from being infinite. (.e) For Coulomb interaction the only difference is that in all previous formulas can be replaced by Kq q (for K a given constant, in this case proportional to the electron charge square) and we get γ e mv 0 /(Kq q ) E /(Kq q ), such that dω K q q 6E sin 4 Θ. (4) Problem (Goldstein 3.3) Calculate the potential due to a force f(r) r 3. r V(r) dr ( r ) 3 r r r. Using equation (3.96) in Goldstein we can calculate the deflection angle with impact parameter s as sdr Θ(s) π r m Notice that from conservation of energy: π r m r r ( V(r) E ) s sdr r r ( ). E +s E E( ) mv 0 E(r m) + rm mr m θ

4 r m r m + Therefore this integral is l + mr m m rm 4 s me mrm 4 E rm r m E +s. ( ) E +s ( ) rm E +s dr/r Θ(s) π s r m r rm dr/r π s r m ( ) r mr π s [ ( )] rm arccos π s π r m r r m r m ( π s ) s π. (5) r m E +s Now in terms of x Θ/π the above becomes s x ( x) +s E +s s ( x) ( E +s E ) s s [ ( x) ] E ( x). Therefore we can solve for the impact parameter x s E ( x). The differential cross section can be expressed in terms of the scattering angle by eq (3.93) in Goldstein, σ(θ)dθ s ds dθ. (6) sinθ dθ From (5) we can calculate: and inverting this we find dθ ds E +s s s E π +s E +s E π +s s π ( ) 3/ ( ) E 3/, E +s E +s ( ) 3/ ds dθ E π E +s.

5 Plugging this into (6) we get the desired result: Problem 3 σ(θ)dθ s sin(πx) E E ( ) 3/ E π E +s dθ x E ( x) x ( ( x) ) ( ) 3/ [ ] 3/ + ( x) dx E ( x) sin(πx) dx sin(πx) E x x ( x) dx sin(πx). Starting from the relation between the velocity of the incident particle after scattering in the laboratory frame (v ) and in the center-of-mass frame (v ), where V is the velocity of the center of mass, we can derive that v V+v, (7) v cosθ v cosθ+v cosθ v cosθ+v v, (8) as one obtains by projecting Eq. (7) along the direction of the approaching incident particle, and v (v ) +V +v V cosθ cosθ v (v ) V v V, (9) as obtained by squaring Eq. (7). Substituting Eq. (9) into Eq. (8) we can write that cosθ v (v ) +V v V. (0) Furthermore, conservation of momentum (and assuming that the second particle is initially at rest) tells us that m (m +m )V m v 0 V v 0, () m +m while, using the inematic of a two-body system in the center-of-mass frame, we can write that r m m +m r v ṙ m m +m v, () where v ṙ is the relative velocity after the collision. Finally, we can trade velocities for energies by using that: the energy of the incident particle before scattering in the laboratory frame (E 0 ) is E 0 m v 0 v 0 E0 m, (3)

6 the energy of the incoming particle after scattering in the laboratory frame (E ) is from conservation of energy we have that E m v v E m, (4) E i Q E 0 Q E f E CM + µv, (5) where E CM (m +m )V, µ m m (m +m is the reduced mass of the system, and v ṙ is ) the relative velocity after the collision. Using simple manipulations Eq. (5) gives Substituting Eqs. ()-(6) into Eq. (0) we get, cosθ m +m m Non-graded Problems Problem 5 (Goldstein 3.3) The potential has the form µv 0 Q µv v v 0 µ Q. (6) E + m m E0 + E 0 m E { V 0 r > a V 0 r a m Q m E0 E. (7) First consider what happens on the interface with the spherical surface that separates the region with V 0 from the region with V V 0. Given the geometry of the problem, it seems obvious to use spherical coordinates. However, since the problem has azimuthal symmetry, we can use polar coordinates. Notice that the force acting on the incoming particle is all in the ê r direction (given V(r)). Thus the linear momentum in the ê θ direction is conserved. We can then write v v cosθ ê r +v sinθ ê θ v v cosθ ê r +v sinθ ê θ v sinθ v sinθ or v sinθ sinθ v. We can also use conservation of energy for the incoming particle, E mv mv V 0 mv msin θ sin θ v V 0 sin θ sin + V 0 + V 0 θ mv E.

7 ê θ ê R v θ θ θ θ s v θ θ θ a θ θ Thus this has exactly the form of Snell s law! The refractive index is n sinθ sinθ Now refer to figure. The scattering angle is and the impact parameter s satisfies Θ (θ θ ) s asinθ. E +V0 E. (8) We need to derive s s(θ) and insert it into the standard formula for the differential cross-section σ(θ) s ds sinθ dθ. (9) Using (8) we have n sinθ sinθ Inverting this and using some trig. identities we find Now since sinθ s/a we can write sinθ sin(θ Θ ). n sinθ cos Θ cosθ sin Θ sinθ cos Θ cotθ sin Θ. (30) cotθ cosθ sinθ ( s a s/a ) (a ). s

8 Now inserting this relationship into (30), we can solve for s: now we calculate the quantity n cos Θ ( s a (a s ) sin Θ, (a ) cos Θ n s sin Θ, ( ( a cos Θ + s) ) n sin Θ, ) sin Θ s sin Θ + ( cos Θ n a sin Θ + n n cos Θ s ds dθ a n { ( ) sin Θ n + ncos Θ cos Θ (n +) nsin Θ a n sin Θ ( ( ) ncos Θ )( n + ncos Θ n cos Θ ). ). a n sin Θ n + ncos Θ. ( cos Θ Θ ) } +sin Now plugging this last expression into (9) we find the required result, s a n sin Θ ( σ(θ) sin Θ cos Θ ( ) s ncos Θ )( n + ncos Θ n cos Θ ) ( ) a n ncos Θ )( n cos Θ 4cos Θ (. n + ncos ) Θ

I. Elastic collisions of 2 particles II. Relate ψ and θ III. Relate ψ and ζ IV. Kinematics of elastic collisions

I. Elastic collisions of 2 particles II. Relate ψ and θ III. Relate ψ and ζ IV. Kinematics of elastic collisions I. Elastic collisions of particles II. Relate ψ and θ III. Relate ψ and ζ IV. Kinematics of elastic collisions 49 I. Elastic collisions of particles "Elastic": KE is conserved (as well as E tot and momentum

More information

10. Scattering from Central Force Potential

10. Scattering from Central Force Potential University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 215 1. Scattering from Central Force Potential Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

Elastic Collisions. Chapter Center of Mass Frame

Elastic Collisions. Chapter Center of Mass Frame Chapter 11 Elastic Collisions 11.1 Center of Mass Frame A collision or scattering event is said to be elastic if it results in no change in the internal state of any of the particles involved. Thus, no

More information

Chapter 8. Orbits. 8.1 Conics

Chapter 8. Orbits. 8.1 Conics Chapter 8 Orbits 8.1 Conics Conic sections first studied in the abstract by the Greeks are the curves formed by the intersection of a plane with a cone. Ignoring degenerate cases (such as a point, or pairs

More information

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 PHY 7 Classical Mechanics and Mathematical Methods 0-0:50 AM MWF Olin 03 Plan for Lecture :. Brief comment on quiz. Particle interactions 3. Notion of center of mass reference fame 4. Introduction to scattering

More information

Lecture: Scattering theory

Lecture: Scattering theory Lecture: Scattering theory 30.05.2012 SS2012: Introduction to Nuclear and Particle Physics, Part 2 2 1 Part I: Scattering theory: Classical trajectoriest and cross-sections Quantum Scattering 2 I. Scattering

More information

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures):

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures): Elastic Scattering In this section we will consider a problem of scattering of two particles obeying Newtonian mechanics. The problem of scattering can be viewed as a truncated version of dynamic problem

More information

Phys 7221, Fall 2006: Midterm exam

Phys 7221, Fall 2006: Midterm exam Phys 7221, Fall 2006: Midterm exam October 20, 2006 Problem 1 (40 pts) Consider a spherical pendulum, a mass m attached to a rod of length l, as a constrained system with r = l, as shown in the figure.

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 2 Fall 2018 Semester Prof. Matthew Jones Cross Sections Reaction rate: R = L σ The cross section is proportional to the probability of

More information

16. Elastic Scattering Michael Fowler

16. Elastic Scattering Michael Fowler 6 Elastic Scattering Michael Fowler Billiard Balls Elastic means no internal energy modes of the scatterer or of the scatteree are excited so total kinetic energy is conserved As a simple first exercise,

More information

Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010

Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010 Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010 1. (a) Consider the Born approximation as the first term of the Born series. Show that: (i) the Born approximation for the forward scattering amplitude

More information

Lecture 22: Gravitational Orbits

Lecture 22: Gravitational Orbits Lecture : Gravitational Orbits Astronomers were observing the motion of planets long before Newton s time Some even developed heliocentric models, in which the planets moved around the sun Analysis of

More information

Rutherford Backscattering Spectrometry

Rutherford Backscattering Spectrometry Rutherford Backscattering Spectrometry EMSE-515 Fall 2005 F. Ernst 1 Bohr s Model of an Atom existence of central core established by single collision, large-angle scattering of alpha particles ( 4 He

More information

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 5 Scattering theory, Born Approximation SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Scattering amplitude We are going to show here that we can obtain the differential cross

More information

Central Force Problem

Central Force Problem Central Force Problem Consider two bodies of masses, say earth and moon, m E and m M moving under the influence of mutual gravitational force of potential V(r). Now Langangian of the system is where, µ

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one.

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one. Scattering Classical model As a model for the classical approach to collision, consider the case of a billiard ball colliding with a stationary one. The scattering direction quite clearly depends rather

More information

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004 Massachusetts Institute of Technology Department of Physics Course: 8.09 Classical Mechanics Term: Fall 004 Final Examination December 17, 004 Instructions Do not start until you are told to do so. Solve

More information

Atomic Collisions and Backscattering Spectrometry

Atomic Collisions and Backscattering Spectrometry 2 Atomic Collisions and Backscattering Spectrometry 2.1 Introduction The model of the atom is that of a cloud of electrons surrounding a positively charged central core the nucleus that contains Z protons

More information

Use conserved quantities to reduce number of variables and the equation of motion (EOM)

Use conserved quantities to reduce number of variables and the equation of motion (EOM) Physics 106a, Caltech 5 October, 018 Lecture 8: Central Forces Bound States Today we discuss the Kepler problem of the orbital motion of planets and other objects in the gravitational field of the sun.

More information

PHYS 3313 Section 001 Lecture #13

PHYS 3313 Section 001 Lecture #13 PHYS 3313 Section 001 Lecture #13 Wednesday, March 1, 2017 Rutherford Scattering Experiment and Rutherford Atomic Model The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic

More information

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology PHY49: Nuclear & Particle Physics Lecture 3 Homework 1 Nuclear Phenomenology Measuring cross sections in thin targets beam particles/s n beam m T = ρts mass of target n moles = m T A n nuclei = n moles

More information

PHYS 3313 Section 001 Lecture #12

PHYS 3313 Section 001 Lecture #12 PHYS 3313 Section 001 Lecture #12 Monday, Feb. 24, 2014 Rutherford Scattering Experiment and Rutherford Atomic Model The Classic Atomic Model The Bohr Model of the Hydrogen Atom 1 Quiz 2 results Class

More information

Figure 1: Volume of Interaction for Air Molecules

Figure 1: Volume of Interaction for Air Molecules Problem In 866 when atoms and molecules were still quite hypothetical, Joseph Loschmidt used kinetic energy theory to get the first reasonable estimate of molecular size. He used the liquid to gas expansion

More information

Some history. F p. 1/??

Some history. F p. 1/?? Some history F 12 10 18 p. 1/?? F 12 10 18 p. 1/?? Some history 1600: Galileo Galilei 1564 1642 cf. section 7.0 Johannes Kepler 1571 1630 cf. section 3.7 1700: Isaac Newton 1643 1727 cf. section 1.1 1750

More information

Lecture XIX: Particle motion exterior to a spherical star

Lecture XIX: Particle motion exterior to a spherical star Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-7, Pasadena CA 95, USA Dated: January 8, 0 I. OVERVIEW Our next objective is to consider the motion of test

More information

( ) 2. = kq 1 q 2 r 2. Analysis: F E. k q 1. Solution: F E % 8.99!10 9 ( (1.00!10 )4 C )(1.00!10 )5 C ) $ (2.00 m) 2 F E

( ) 2. = kq 1 q 2 r 2. Analysis: F E. k q 1. Solution: F E % 8.99!10 9 ( (1.00!10 )4 C )(1.00!10 )5 C ) $ (2.00 m) 2 F E Section 7.: Coulomb s Law Tutorial 1 Practice, page 33 1. Given: q 1 1.00 10 4 C; q 1.00 10 5 C; r.00 m; k 8.99 10 9 N m /C Required: Analysis: Solution: # N m % 8.99 10 9 ( (1.00 10 )4 C )(1.00 10 )5

More information

3/29/2010. Structure of the Atom. Knowledge of atoms in 1900 CHAPTER 6. Evidence in 1900 indicated that the atom was not a fundamental unit:

3/29/2010. Structure of the Atom. Knowledge of atoms in 1900 CHAPTER 6. Evidence in 1900 indicated that the atom was not a fundamental unit: 3/9/010 CHAPTER 6 Rutherford Scattering 6.1 The Atomic Models of Thomson and Rutherford 6. Definition of Cross Section 6. Rutherford Scattering 6.3 Structure of the Nucleus The opposite of a correct statement

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

The Configuration of the Atom: Rutherford s Model

The Configuration of the Atom: Rutherford s Model CHAPTR 2 The Configuration of the Atom: Rutherford s Model Problem 2.2. (a) When α particles with kinetic energy of 5.00 MeV are scattered at 90 by gold nuclei, what is the impact parameter? (b) If the

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

The Restricted 3-Body Problem

The Restricted 3-Body Problem The Restricted 3-Body Problem John Bremseth and John Grasel 12/10/2010 Abstract Though the 3-body problem is difficult to solve, it can be modeled if one mass is so small that its effect on the other two

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Phsics 151 Lecture 8 Rigid Bod Motion (Chapter 4) What We Did Last Time! Discussed scattering problem! Foundation for all experimental phsics! Defined and calculated cross sections! Differential

More information

Chapter 6. Quantum Theory of the Hydrogen Atom

Chapter 6. Quantum Theory of the Hydrogen Atom Chapter 6 Quantum Theory of the Hydrogen Atom 1 6.1 Schrodinger s Equation for the Hydrogen Atom Symmetry suggests spherical polar coordinates Fig. 6.1 (a) Spherical polar coordinates. (b) A line of constant

More information

Classical Scattering

Classical Scattering Classical Scattering Daniele Colosi Mathematical Physics Seminar Daniele Colosi (IMATE) Classical Scattering 27.03.09 1 / 38 Contents 1 Generalities 2 Classical particle scattering Scattering cross sections

More information

221B Lecture Notes Scattering Theory II

221B Lecture Notes Scattering Theory II 22B Lecture Notes Scattering Theory II Born Approximation Lippmann Schwinger equation ψ = φ + V ψ, () E H 0 + iɛ is an exact equation for the scattering problem, but it still is an equation to be solved

More information

Rutherford Scattering Made Simple

Rutherford Scattering Made Simple Rutherford Scattering Made Simple Chung-Sang Ng Physics Department, Auburn University, Auburn, AL 36849 (November 19, 1993) Rutherford scattering experiment 1 is so important that it is seldom not mentioned

More information

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3 : Solution Set Two Northwestern University, Classical Mechanics Classical Mechanics, Third Ed.- Goldstein October 7, 2015 Contents 1 Problem #1: Projectile Motion. 2 1.1 Cartesian Coordinates....................................

More information

Physics Dec The Maxwell Velocity Distribution

Physics Dec The Maxwell Velocity Distribution Physics 301 7-Dec-2005 29-1 The Maxwell Velocity Distribution The beginning of chapter 14 covers some things we ve already discussed. Way back in lecture 6, we calculated the pressure for an ideal gas

More information

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate PHY49: Nuclear & Particle Physics Lecture 4 Nature of the nuclear force Reminder: Investigate www.nndc.bnl.gov Topics to be covered size and shape mass and binding energy charge distribution angular momentum

More information

Old Dominion University Physics 811 Fall 2008

Old Dominion University Physics 811 Fall 2008 Old Dominion University Physics 811 Fall 008 Projects Structure of Project Reports: 1 Introduction. Briefly summarize the nature of the physical system. Theory. Describe equations selected for the project.

More information

Scattering Cross Sections, Classical and QM Methods

Scattering Cross Sections, Classical and QM Methods Scattering Cross Sections, Classical and QM Methods Jean-Sébastian Tempel Department of Physics and Technology University of Bergen 9. Juni 2007 phys264 - Environmental Optics and Transport of Light and

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

Separation of Variables in Polar and Spherical Coordinates

Separation of Variables in Polar and Spherical Coordinates Separation of Variables in Polar and Spherical Coordinates Polar Coordinates Suppose we are given the potential on the inside surface of an infinitely long cylindrical cavity, and we want to find the potential

More information

5 Home exercise sheet

5 Home exercise sheet 5 Home exercise sheet 5.1 The central force problem and Scattering Exercise 7.1: Yukawa potential The Yukawa potential is 1. Write down the effective potential. U(r) = αe χr r (1) 2. Sketch the effective

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

PHY 5246: Theoretical Dynamics, Fall Assignment # 10, Solutions. (1.a) N = a. we see that a m ar a = 0 and so N = 0. ω 3 ω 2 = 0 ω 2 + I 1 I 3

PHY 5246: Theoretical Dynamics, Fall Assignment # 10, Solutions. (1.a) N = a. we see that a m ar a = 0 and so N = 0. ω 3 ω 2 = 0 ω 2 + I 1 I 3 PHY 54: Theoretical Dynamics, Fall 015 Assignment # 10, Solutions 1 Graded Problems Problem 1 x 3 a ω First we calculate the moments of inertia: ( ) a I 1 = I = m 4 + b, 1 (1.a) I 3 = ma. b/ α The torque

More information

Phys 622 Problems Chapter 6

Phys 622 Problems Chapter 6 1 Problem 1 Elastic scattering Phys 622 Problems Chapter 6 A heavy scatterer interacts with a fast electron with a potential V (r) = V e r/r. (a) Find the differential cross section dσ dω = f(θ) 2 in the

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 5 Collision Theory 5 Introduction 5 Reference Frames and Relative Velocities 5 Relative Velocities 3 5 Center-of-mass Reference Frame 4 53 Kinetic Energy in the Center-of-Mass Reference Frame 5

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

Lecture 41: Highlights

Lecture 41: Highlights Lecture 41: Highlights The goal of this lecture is to remind you of some of the key points that we ve covered this semester Note that this is not the complete set of topics that may appear on the final

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 151 Lecture 7 Scattering Problem (Chapter 3) What We Did Lat Time Dicued Central Force Problem l Problem i reduced to one equation mr = + f () r 3 mr Analyzed qualitative behavior Unbounded,

More information

Fermat s Principle. Fermat s Principle states that a ray of light in a medium will follow the path which takes the least amount of time.

Fermat s Principle. Fermat s Principle states that a ray of light in a medium will follow the path which takes the least amount of time. Homework Fermat s Principle Fermat s Principle states that a ray of light in a medium will follow the path which takes the least amount of time. Solution: The traversal time for the path is T = where ds

More information

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations Central force motion/kepler problem This short note summarizes our discussion in the lectures of various aspects of the motion under central force, in particular, the Kepler problem of inverse square-law

More information

Why Does Uranium Alpha Decay?

Why Does Uranium Alpha Decay? Why Does Uranium Alpha Decay? Consider the alpha decay shown below where a uranium nucleus spontaneously breaks apart into a 4 He or alpha particle and 234 90 Th. 238 92U 4 He + 234 90Th E( 4 He) = 4.2

More information

Solutions: Homework 7

Solutions: Homework 7 Solutions: Homework 7 Ex. 7.1: Frustrated Total Internal Reflection a) Consider light propagating from a prism, with refraction index n, into air, with refraction index 1. We fix the angle of incidence

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 4 Relativistic Dynamics The most important example of a relativistic particle moving in a potential is a charged particle, say an electron, moving in an electromagnetic field, which might be that

More information

Quantum Mechanics in 3-Dimensions

Quantum Mechanics in 3-Dimensions Quantum Mechanics in 3-Dimensions Pavithran S Iyer, 2nd yr BSc Physics, Chennai Mathematical Institute Email: pavithra@cmi.ac.in August 28 th, 2009 1 Schrodinger equation in Spherical Coordinates 1.1 Transforming

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.6 Physical Chemistry II Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.6 Spring 008 Lecture #30

More information

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle Newton s Laws of Motion and Gravity ASTR 2110 Sarazin Space Shuttle Discussion Session This Week Friday, September 8, 3-4 pm Shorter Discussion Session (end 3:40), followed by: Intro to Astronomy Department

More information

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A.

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A. Équations canoniques. Application a la recherche de l équilibre des fils flexibles et des courbes brachystochrones, Mem. Acad. Sci de Toulouse (8) 7 (885), 545-570. CANONICAL EQUATIONS Application to the

More information

PHY 6347 Spring 2018 Homework #10, Due Friday, April 6

PHY 6347 Spring 2018 Homework #10, Due Friday, April 6 PHY 6347 Spring 28 Homework #, Due Friday, April 6. A plane wave ψ = ψ e ik x is incident from z < on an opaque screen that blocks the entire plane z = except for the opening 2 a < x < 2 a, 2 b < y < 2

More information

Pre- Calculus Mathematics Trigonometric Identities and Equations

Pre- Calculus Mathematics Trigonometric Identities and Equations Pre- Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Physics 115/242 The Kepler Problem

Physics 115/242 The Kepler Problem Physics 115/242 The Kepler Problem Peter Young (Dated: April 21, 23) I. INTRODUCTION We consider motion of a planet around the sun, the Kepler problem, see e.g. Garcia, Numerical Methods for Physics, Sec.

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering 22.101 Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering References: M. A. Preston, Physics of the Nucleus (Addison-Wesley, Reading, 1962). E. Segre, Nuclei and Particles

More information

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016 PHYS 500 - Southern Illinois University October 13, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 13, 2016 1 / 10 The Laplacian in Spherical Coordinates The Laplacian is given

More information

Elastic scattering. Elastic scattering

Elastic scattering. Elastic scattering Elastic scattering Now we have worked out how much energy is lost when a neutron is scattered through an angle, θ We would like to know how much energy, on average, is lost per collision In order to do

More information

Physics (2): Problem set 1 solutions

Physics (2): Problem set 1 solutions Physics (2): Problem set solutions PHYS 04 Problem : Two identical charges q = nc are located on the x-axis at positions 2 cm and 2 cm. What is the electric field at the origin (centre between the two

More information

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation Radiation Damping Lecture 18 1 Introduction to the Abraham-Lorentz equation Classically, a charged particle radiates energy if it is accelerated. We have previously obtained the Larmor expression for the

More information

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line.

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line. Assignment Goldstein.3 Prove that the shortest distance between two points in space is a straight line. The distance between two points is given by the integral of the infinitesimal arclength: s = = =

More information

Math 132 Exam 3 Fall 2016

Math 132 Exam 3 Fall 2016 Math 3 Exam 3 Fall 06 multiple choice questions worth points each. hand graded questions worth and 3 points each. Exam covers sections.-.6: Sequences, Series, Integral, Comparison, Alternating, Absolute

More information

Aperture Antennas 1 Introduction

Aperture Antennas 1 Introduction 1 Introduction Very often, we have antennas in aperture forms, for example, the antennas shown below: Pyramidal horn antenna Conical horn antenna 1 Paraboloidal antenna Slot antenna Analysis Method for.1

More information

The two body problem involves a pair of particles with masses m 1 and m 2 described by a Lagrangian of the form:

The two body problem involves a pair of particles with masses m 1 and m 2 described by a Lagrangian of the form: Physics 3550, Fall 2011 Two Body, Central-Force Problem Relevant Sections in Text: 8.1 8.7 Two Body, Central-Force Problem Introduction. I have already mentioned the two body central force problem several

More information

Monte Carlo Radiation Transfer I

Monte Carlo Radiation Transfer I Monte Carlo Radiation Transfer I Monte Carlo Photons and interactions Sampling from probability distributions Optical depths, isotropic emission, scattering Monte Carlo Basics Emit energy packet, hereafter

More information

The Two -Body Central Force Problem

The Two -Body Central Force Problem The Two -Body Central Force Problem Physics W3003 March 6, 2015 1 The setup 1.1 Formulation of problem The two-body central potential problem is defined by the (conserved) total energy E = 1 2 m 1Ṙ2 1

More information

Scattering. 1 Classical scattering of a charged particle (Rutherford Scattering)

Scattering. 1 Classical scattering of a charged particle (Rutherford Scattering) Scattering 1 Classical scattering of a charged particle (Rutherford Scattering) Begin by considering radiation when charged particles collide. The classical scattering equation for this process is called

More information

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt =

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = d (mv) /dt where p =mv is linear momentum of particle

More information

Physics 214 Midterm Exam Solutions Winter 2017

Physics 214 Midterm Exam Solutions Winter 2017 Physics 14 Midterm Exam Solutions Winter 017 1. A linearly polarized electromagnetic wave, polarized in the ˆx direction, is traveling in the ẑ-direction in a dielectric medium of refractive index n 1.

More information

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II August 23, 208 9:00 a.m. :00 p.m. Do any four problems. Each problem is worth 25 points.

More information

Problem Set 2 Solution

Problem Set 2 Solution Problem Set Solution Friday, September 13 Physics 111 Problem 1 Tautochrone A particle slides without friction on a cycloidal track given by x = a(θ sinθ y = a(1 cosθ where y is oriented vertically downward

More information

Using the Definitions of the Trigonometric Functions

Using the Definitions of the Trigonometric Functions 1.4 Using the Definitions of the Trigonometric Functions Reciprocal Identities Signs and Ranges of Function Values Pythagorean Identities Quotient Identities February 1, 2013 Mrs. Poland Objectives Objective

More information

Appendix to Lecture 2

Appendix to Lecture 2 PHYS 652: Astrophysics 1 Appendix to Lecture 2 An Alternative Lagrangian In class we used an alternative Lagrangian L = g γδ ẋ γ ẋ δ, instead of the traditional L = g γδ ẋ γ ẋ δ. Here is the justification

More information

gap trans inc n=1 z Jackson 7.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

gap trans inc n=1 z Jackson 7.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 7.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two plane semi-infinite slabs of the same uniform, isotropic, nonpermeable, lossless dielectric

More information

Motion under the Influence of a Central Force

Motion under the Influence of a Central Force Copyright 004 5 Motion under the Influence of a Central Force The fundamental forces of nature depend only on the distance from the source. All the complex interactions that occur in the real world arise

More information

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path Cyclotron, final The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path K 1 qbr 2 2m 2 = mv = 2 2 2 When the energy of the ions

More information

Appendix B. Solutions to Chapter 2 Problems

Appendix B. Solutions to Chapter 2 Problems Appendix B Solutions to Chapter Problems Problem Problem 4 Problem 3 5 Problem 4 6 Problem 5 6 Problem 6 7 Problem 7 8 Problem 8 8 Problem 9 Problem Problem 3 Problem et f ( ) be a function of one variable

More information

PHYS 450 Fall semester Lecture 05: Dispersion and the Prism Spectrometer. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Fall semester Lecture 05: Dispersion and the Prism Spectrometer. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 450 Fall semester 06 Lecture 05: Dispersion and the Prism Spectrometer Ron Reifenberger Birck Nanotechnology Center Purdue University Lecture 05 Prisms Dispersion of Light n n As early as the 3th

More information

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think:

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think: PART F: EVALUATING INVERSE TRIG FUNCTIONS Think: (Section 4.7: Inverse Trig Functions) 4.82 A trig function such as sin takes in angles (i.e., real numbers in its domain) as inputs and spits out outputs

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

Math Analysis Chapter 5 Notes: Analytic Trigonometric

Math Analysis Chapter 5 Notes: Analytic Trigonometric Math Analysis Chapter 5 Notes: Analytic Trigonometric Day 9: Section 5.1-Verifying Trigonometric Identities Fundamental Trig Identities Reciprocal Identities: 1 1 1 sin u = cos u = tan u = cscu secu cot

More information

Lecture 21 Gravitational and Central Forces

Lecture 21 Gravitational and Central Forces Lecture 21 Gravitational and Central Forces 21.1 Newton s Law of Universal Gravitation According to Newton s Law of Universal Graviation, the force on a particle i of mass m i exerted by a particle j of

More information

SEAFLOOR MAPPING MODELLING UNDERWATER PROPAGATION RAY ACOUSTICS

SEAFLOOR MAPPING MODELLING UNDERWATER PROPAGATION RAY ACOUSTICS 3 Underwater propagation 3. Ray acoustics 3.. Relevant mathematics We first consider a plane wave as depicted in figure. As shown in the figure wave fronts are planes. The arrow perpendicular to the wave

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

Problem 3 Solution Page 1. 1A. Assuming as outlined in the text that the orbit is circular, and relating the radial acceleration

Problem 3 Solution Page 1. 1A. Assuming as outlined in the text that the orbit is circular, and relating the radial acceleration Prolem 3 Solution Page Solution A. Assug as outlined in the text that the orit is circular, and relating the radial acceleration V GM S to the graitational field (where MS is the solar mass we otain Jupiter's

More information