Welcome back to PHY 3305

Size: px
Start display at page:

Download "Welcome back to PHY 3305"

Transcription

1 Welcome back to PHY 3305 Today s Lecture: Momentum and Energy Conservation Albert Einstein

2 Review: Transforming Velocity Remember: u = dx dt x = γ ν (x + vt ) t = γ ν ( v c 2 x + t ) From this we can derive the following relations. (Exercise for the student). u = u + v and u = u v + vu c 2 vu c 2

3 Momentum In classical physics, pi = p f Is momentum conserved in classical physics when you apply the Galilean Transformation? YES!

4 Momentum Consider the collision of two objects of mass m and m 2. In frame S: In frame S : m u i + m 2 u 2i = m u f + m 2 u 2f m u i + m 2 u 2i = m u f + m 2 u 2f Use Galilean velocity transformation to rewrite u in terms of u. (u = u - v) m (u i v)+m 2 (u 2i v) =m (u f v)+m 2 (u 2f v) m u i + m 2 u 2i = m u f + m 2 u 2f Momentum conservation is invariant under Galilean Transformation

5 What if we use the relativistic Lorentz Transformations instead? In frame S : m u i + m 2 u 2i = m u f + m 2 u 2f Use our velocity transformation u = u v vu c 2 m ( u i v )+m 2 ( u 2i v? u 2i v )=m ( u f v u c 2 c f v )+m 2 ( u 2f v u 2f v 2 c 2 u i v c 2 ) Momentum is not conserved!

6 If p = mu is wrong, what is the correct form? - We need to to reduce to p = mu at low speeds. (experimental evidence tells us so) Do we know of a quantity which behaves this way, which we could multiply by mu? γ u = u2 c 2 So, we can postulate that p = γ u mu

7 Examine our relationship for relativistic momentum in the S reference frame. P 0 tot = X i µ 0 m i µ 0 i u = u v vu µ 0 = c 2 q u 0 v =( uv c 2 ) v µ = = uv uv c 2 c 2 X = v P tot v v X i X ( i µ 0 i m iu i v uv c 2 i Any ideas on what it might be? X uv c 2 ) µ vm i u i v uv c 2 i µ 0 i m i X ( µ i m i So, it seems that that this quantity must also be conserved. i uv c 2 ) µ vm i

8 Energy If we multiply by c 2 we get something with units of energy. E = mc 2 A consequence is that mass measures energy. If an object is stationary, its total energy is The kinetic energy is then E internal = mc 2 KE = energy moving - energy at rest KE = µ mc 2 mc 2 =( µ )mc 2

9 Energy Einstein sought an expression for the total energy of a body in motion. Starting with conservation of energy, he made some arguments about what must happen as a consequence of relativity. E = constant + 2 mu2 What he found was E 2 =(mc 2 ) 2 +(pc) 2

10 Examine Energy Postulates tell us the laws of physics are invariant for observers in relative motion. Classically: E b + E 2b = E a + E 2a p b + p 2b = p a + p 2a E = E(0) + 2 mu2 p = mu Where energy comes to us from definition of work. W = Fdx = ( dp dt )dx = m( du dt )(udt) = mudu = C + 2 mu2

11 Generalize energy and momentum in order to deduce the correct relativistic form: p = M(u) E = E(u) M & E are unknown functions of the motion of the relative frames. We do know that E & p should approach their classical values as u approaches 0. lim u 0 M(u) =mu lim u 0 E(u) u 2 = 2 mu2

12 Momentum: We already saw that this is straight forward. Energy: p = M(u) =γ u mu More tricky due to the nonlinear dependence on velocity of the body in the frame (u 2 ). Use Binomial Expansion for γ ν. γ u =+ 2 u 2 c 2 + O(u4 )

13 Remember - we want something that as u approaches 0 gives γ u =+ 2 u 2 c 2 + O(u4 ) E = E(u) Try γ u. constant + 2 mu2 c 2 E = γ u E(0) In the low velocity limit lim u 0 E(u) E(0) + 2 E(0)u2 c 2 Which leads us to conclude E(0) = mc 2

14 E = mc 2 for an object at rest. This is remarkable. It says that the total energy of a body at rest can be described by its mass. When energy is given off by an object, its mass decreases correspondingly by m = E c 2

15 Last Detail What if the object is moving? Is there a general equation we can use for an object in any inertial reference frame? E 2 = γ 2 ue(0) 2 = γ 2 u(mc 2 ) 2 = u2 c 2 (mc 2 ) 2 E = γ u E(0) E(0) = mc 2 Use the Binomial Expansion of /(-x 2 ) to expand (x = u/c). E(u) 2 =(mc 2 ) 2 ( + u2 c 2 + u4 c ) E(u) 2 = m 2 c 4 + m 2 u 2 c 2 + m 2 u 4 + m 2 u 6 ( c 2 )+... E(u) 2 =(mc 2 ) 2 + m 2 u 2 c 2 ( + u2 c 2 + u4 c ) E(u) 2 =(mc 2 ) 2 +(γ u mu) 2 c 2 =(mc 2 ) 2 + p 2 c 2

16 As a final step, redefine E(u) E and then E 2 = m 2 c 4 + p 2 c 2 This equation describes the total energy of any inertial reference frame.

17 consequences ) If the object is stationary, this simplifies to E = mc 2. - This implies that if you heat an object, (i.e. it gains internal energy through an increase in T, but NOT KE through motion), the mass of the object increases. 2) What if the mass of an object is zero? Is that allowed? - When mass is zero, E = pc = γ umu. The only way the energy of such an object is non-zero is if u = c and γ u = infinity. Light is a massless particle. (Further discussions of momentum and energy of photons later in the course.)

18 SumMary The total energy of any reference frame: E = mc 2! E 2 = m 2 c 4 + p 2 c 2 Energy of a stationary object (internal energy): E = mc 2 Kinetic energy = total energy - stationary object energy: KE = mc 2 mc 2 =( )mc 2 If a particle has no mass, (i.e. photons) then E = pc

19 MAsS-Energy Equivalence Stationary Mass Energy: E = mc 2! E 2 = m 2 c 4 + p 2 c 2 E = mc 2 Mass and energy are not the same thing. However, these equations tell us that they are equivalent in the sense that mass can be transformed to energy and energy can be transformed into mass so long as total energy is conserved.

20 Units Take the case of a proton: m p = x 0-27 kg Atomic mass unit: u = x 0-27 kg E = mc 2 = MeV/c 2 Notice that proton = u m p =.67 x 0-27 kg =.007 u = MeV/c 2 If I multiply by c 2, this is the proton s stationary energy.

21 Electron Volt In particle and atomic physics the usual unit of energy is the electronvolt (ev). ev is the energy gained by an electron accelerated through a potential difference of volt (KE = W = qv). ev = (.602 x 0-9 C)(.000 V) =.602 x 0-9 J and the usual prefixes apply MeV = 0 6 ev GeV = 0 9 ev

22 The End (for today)

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Doppler Shift Velocity Transformation Momentum and Energy Christian Doppler 1803-1853 Announcements An additional office hour will be held each week on Fridays

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Applications of Energy and Momentum Conservation; Albert Einstein 1879-1955 AnNouncements -Reading Assignment for Thursday, September 7th: chapter 2, section 2.8-2.9.

More information

FRAME S : u = u 0 + FRAME S. 0 : u 0 = u À

FRAME S : u = u 0 + FRAME S. 0 : u 0 = u À Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Velocity, Energy and Matter (Ch..6-.7) SteveSekula, 9 January 010 (created 13 December 009) CHAPTERS.6-.7 Review of last

More information

Physics 280 Lecture 2

Physics 280 Lecture 2 Physics 280 Lecture 2 Summer 2016 Dr. Jones 1 1 Department of Physics Drexel University June 29, 2016 Objectives Review Lorentz Coordinate Transforms and principles of relativity Objectives Review Lorentz

More information

Chapter 2. Relativity 2

Chapter 2. Relativity 2 Chapter 2 Relativity 2 Acceleration transformation x = γ x vt t = γ t v x u x = u x v 1 vu x a x = u y = u y γ 1 vu x γ 3 a x 1 vu x 3 u z = u z γ 1 vu x F = m a?? Conservation of momentum p is conserved

More information

Physics 2D Lecture Slides Jan 15. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Jan 15. Vivek Sharma UCSD Physics Physics D Lecture Slides Jan 15 Vivek Sharma UCSD Physics Relativistic Momentum and Revised Newton s Laws and the Special theory of relativity: Example : p= mu Need to generalize the laws of Mechanics

More information

Modern Physics Part 2: Special Relativity

Modern Physics Part 2: Special Relativity Modern Physics Part 2: Special Relativity Last modified: 23/08/2018 Links Relative Velocity Fluffy and the Tennis Ball Fluffy and the Car Headlights Special Relativity Relative Velocity Example 1 Example

More information

CHAPTER 2 Special Theory of Relativity Part 2

CHAPTER 2 Special Theory of Relativity Part 2 CHAPTER 2 Special Theory of Relativity Part 2 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Physics 2D Lecture Slides. Oct 8. UCSD Physics. Vivek Sharma

Physics 2D Lecture Slides. Oct 8. UCSD Physics. Vivek Sharma Physics D Lecture Slides Oct 8 Vivek Sharma UCSD Physics Definition (without proof) of Relativistic Momentum mu With the new definition relativistic p = =γ mu 1 ( u/ c) momentum is conserved in all frames

More information

Physics 202. Professor P. Q. Hung. 311B, Physics Building. Physics 202 p. 1/2

Physics 202. Professor P. Q. Hung. 311B, Physics Building. Physics 202 p. 1/2 Physics 202 p. 1/2 Physics 202 Professor P. Q. Hung 311B, Physics Building Physics 202 p. 2/2 Momentum in Special Classically, the momentum is defined as p = m v = m r t. We also learned that momentum

More information

Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Velocities in Special Relativity - As was done in Galilean relativity,

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Consequences of Einstein s Postulates Lorentz Transformations Albert Einstein 1879-1955 Einstein s Postulates: 1. The laws of physics are invariant to observers

More information

Physics 111 Homework Solutions Week #9 - Thursday

Physics 111 Homework Solutions Week #9 - Thursday Physics 111 Homework Solutions Week #9 - Thursday Monday, March 1, 2010 Chapter 24 241 Based on special relativity we know that as a particle with mass travels near the speed of light its mass increases

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 13 Relativistic Dynamics 13.1 Relativistic Action As stated in Section 4.4, all of dynamics is derived from the principle of least action. Thus it is our chore to find a suitable action to produce

More information

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay. Lecture - 15 Momentum Energy Four Vector Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 15 Momentum Energy Four Vector We had started discussing the concept of four vectors.

More information

PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS

PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS PHYS1015 MOTION AND RELATIVITY JAN 2015 EXAM ANSWERS Section A A1. (Based on previously seen problem) Displacement as function of time: x(t) = A sin ωt Frequency f = ω/2π. Velocity of mass is v(t) = dx

More information

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances Introduction Classical vs Modern Physics High speeds Small (or very large) distances Classical Physics: Conservation laws: energy, momentum (linear & angular), charge Mechanics Newton s laws Electromagnetism

More information

Chapter 26 Special Theory of Relativity

Chapter 26 Special Theory of Relativity Chapter 26 Special Theory of Relativity Classical Physics: At the end of the 19 th century, classical physics was well established. It seems that the natural world was very well explained. Newtonian mechanics

More information

Relativistic Dynamics

Relativistic Dynamics PH0008 Quantum Mechanics and Special Relativity Lecture (Special Relativity) 020322v3 Relativistic Dynamics Collision, Mass depends on velocity, energy-momentum invariant, Compton Effect Prof Department

More information

Lecture 2: Quantum Mechanics and Relativity

Lecture 2: Quantum Mechanics and Relativity Lecture 2: Quantum Mechanics and Relativity Atom Atomic number A Number of protons Z Number of neutrons A-Z Number of electrons Z Charge of electron = charge of proton ~1.6 10-19 C Size of the atom ~10-10

More information

Kinetic Energy: K = (γ - 1)mc 2 Rest Energy (includes internal kinetic and potential energy): E R mc 2

Kinetic Energy: K = (γ - 1)mc 2 Rest Energy (includes internal kinetic and potential energy): E R mc 2 Kinetic Energy: K = (γ - 1)mc 2 Rest Energy (includes internal kinetic and potential energy): E R mc 2 For an object moving in an inertial frame), Total energy : E = K + E R = γmc 2 Problem 1: A mosquito

More information

Lecture 9 - Applications of 4 vectors, and some examples

Lecture 9 - Applications of 4 vectors, and some examples Lecture 9 - Applications of 4 vectors, and some examples E. Daw April 4, 211 1 Review of invariants and 4 vectors Last time we learned the formulae for the total energy and the momentum of a particle in

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 8

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 8 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.033 October 31, 003 Due: Friday, November 7 (by 4:30 pm) Reading: Chapter 8 in French. Problem Set 8 Reminder: Quiz will be given on Friday,

More information

1st year Relativity - Notes on Lectures 6, 7 & 8

1st year Relativity - Notes on Lectures 6, 7 & 8 1st year Relativity - Notes on Lectures 6, 7 & 8 Lecture Six 1. Let us consider momentum Both Galilean and relativistic mechanics define momentum to be: p = mv and p i = P = a constant i i.e. Total momentum

More information

Lecture 6. Velocity Through Spacetime

Lecture 6. Velocity Through Spacetime Lecture 6 Velocity Through Spacetime Soon, we will want to examine momentum and energy within special relativity but first we need to discuss some properties of velocity. We want to consider now a particle

More information

2.1 The Ether and the Michelson-Morley Experiment

2.1 The Ether and the Michelson-Morley Experiment Chapter. Special Relativity Notes: Some material presented in this chapter is taken The Feynman Lectures on Physics, Vol. I by R. P. Feynman, R. B. Leighton, and M. Sands, Chap. 15 (1963, Addison-Wesley)..1

More information

4-Vector Notation. Chris Clark September 5, 2006

4-Vector Notation. Chris Clark September 5, 2006 4-Vector Notation Chris Clark September 5, 2006 1 Lorentz Transformations We will assume that the reader is familiar with the Lorentz Transformations for a boost in the x direction x = γ(x vt) ȳ = y x

More information

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies Relativity 1905 - Albert Einstein: Brownian motion fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies fi The Special Theory of Relativity The Luminiferous Ether Hypothesis:

More information

Postulates of Special Relativity

Postulates of Special Relativity Relativity Relativity - Seen as an intricate theory that is necessary when dealing with really high speeds - Two charged initially stationary particles: Electrostatic force - In another, moving reference

More information

Physics 2203, Fall 2012 Modern Physics

Physics 2203, Fall 2012 Modern Physics Physics 2203, Fall 2012 Modern Physics. Monday, Aug. 27 th, 2011: Start Ch. 2: Rela@vis@c Momentum, Energy, Conversion of mass and Energy. Do classical laws of momentum and energy conserva@on remain valid

More information

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Phys 2435: Chap. 37, Pg 1 Two postulates New Topic Phys 2435:

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Doppler Shift Velocity Tranformations Christian Doppler 1803-1853 Last Time: The Lorentz Transformations We can use γ to write our transformations. Lorentz Factor:

More information

Problem Set # 2 SOLUTIONS

Problem Set # 2 SOLUTIONS Wissink P640 Subatomic Physics I Fall 007 Problem Set # SOLUTIONS 1. Easy as π! (a) Consider the decay of a charged pion, the π +, that is at rest in the laboratory frame. Most charged pions decay according

More information

Your (primed) frame frame

Your (primed) frame frame 6 Special Relativity 6.1 Galiean Relativity 6.1.1 Spacetime Diagrams We keep seeing the word relativity appear in our discussion. To the person on the street, relativity (normally associated with Einstein)

More information

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2 George Mason University Physics 540 Spring 2011 Contents Notes on Relativistic Kinematics 1 Introduction 2 2 Lorentz Transformations 2 2.1 Position-time 4-vector............................. 3 2.2 Velocity

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Chapter 11. Special Relativity

Chapter 11. Special Relativity Chapter 11 Special Relativity Note: Please also consult the fifth) problem list associated with this chapter In this chapter, Latin indices are used for space coordinates only eg, i = 1,2,3, etc), while

More information

Notes - Special Relativity

Notes - Special Relativity Notes - Special Relativity 1.) The problem that needs to be solved. - Special relativity is an interesting branch of physics. It often deals with looking at how the laws of physics pan out with regards

More information

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. Special College - PHY2054C Special & 11/12/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Special 1 Special 2 3 4 Special Galilean and Light Galilean and electromagnetism do predict

More information

Mechanics and Special Relativity (MAPH10030) Assignment 4

Mechanics and Special Relativity (MAPH10030) Assignment 4 MAPH0030) Assignment 4 Issue Date: Tuesday 3 April 00 Due Date: Wednesday April 00 Collection Date: Friday 3 April 00 In these questions, you may use the following conversion factor relating the electron-volt

More information

λ φ φ = hc λ ev stop φ = λ φ and now ev stop λ ' = Physics 220 Homework #2 Spring 2016 Due Monday 4/11/16

λ φ φ = hc λ ev stop φ = λ φ and now ev stop λ ' = Physics 220 Homework #2 Spring 2016 Due Monday 4/11/16 Physics 0 Homework # Spring 06 Due Monday 4//6. Photons with a wavelength λ = 40nm are used to eject electrons from a metallic cathode (the emitter) by the photoelectric effect. The electrons are prevented

More information

Physics 225 Relativity and Math Applications. Fall Unit 7 The 4-vectors of Dynamics

Physics 225 Relativity and Math Applications. Fall Unit 7 The 4-vectors of Dynamics Physics 225 Relativity and Math Applications Fall 2011 Unit 7 The 4-vectors of Dynamics N.C.R. Makins University of Illinois at Urbana-Champaign 2010 Physics 225 7.2 7.2 Physics 225 7.3 Unit 7: The 4-vectors

More information

Physics 228. Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons

Physics 228. Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons Physics 228 Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons Lorentz Transformations vs. Rotations The Lorentz transform is similar

More information

Relativistic Mechanics

Relativistic Mechanics TAYL02-046-084.I 12/9/02 2:53 PM Page 46 C h a p t e r2 Relativistic Mechanics 2.1 Introduction 2.2 Mass in Relativity 2.3 Relativistic Momentum 2.4 Relativistic Energy 2.5 Two Useful Relations 2.6 Conversion

More information

We start with a reminder of a few basic concepts in probability. Let x be a discrete random variable with some probability function p(x).

We start with a reminder of a few basic concepts in probability. Let x be a discrete random variable with some probability function p(x). 1 Probability We start with a reminder of a few basic concepts in probability. 1.1 discrete random variables Let x be a discrete random variable with some probability function p(x). 1. The Expectation

More information

Chapter 26. Special Relativity

Chapter 26. Special Relativity Chapter 26 Special Relativity The Postulates of Special Relativity THE POSTULATES OF SPECIAL RELATIVITY 1. The Relativity Postulate. The laws of physics are the same in every inertial reference frame.

More information

Lecture 5 - Ultra high energy cosmic rays and the GZK cutoff

Lecture 5 - Ultra high energy cosmic rays and the GZK cutoff Lecture 5 - Ultra high energy cosmic rays and the GZK cutoff E. Daw April 4, 2012 1 Review of Lecture 4 Last time we studied use of 4 vectors, particularly the 4 momentum, in relativity calculations. We

More information

Part A-type questions

Part A-type questions PHYS306: lecture 8 th February 008 Part A-type questions. You toss an apple horizontally at 8.7 m/s from a height of.6 m. Simultaneously, you drop a peach from the same height. How long does each take

More information

Physics 225 Relativity and Math Applications

Physics 225 Relativity and Math Applications Physics 225 Relativity and Math Applications Fall 2012 Unit 6 Conservation, Conversion, and Nuclear Power N.C.R. Makins University of Illinois at Urbana-Champaign 2010 Physics 225 6.2 6.2 Physics 225 6.3

More information

Particle Dynamics Particle Dynamics

Particle Dynamics Particle Dynamics 2 Particle Dynamics Understanding and utilizing the response of charged particles to electromagnetic forces is the basis of particle optics and accelerator theory. The goal is to find the time-dependent

More information

Physics Modern Physics Professor Jodi Cooley. Welcome back. to PHY Arthur Compton

Physics Modern Physics Professor Jodi Cooley. Welcome back. to PHY Arthur Compton Welcome back to PHY 3305 Today s Lecture: X-ray Production Compton Scattering Dual Nature of Light Arthur Compton 1892-1962 The Production of xrays X-rays were discovered in 1895 by German physicist Wihelm

More information

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 37 Relativity PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 37 Looking forward at why different

More information

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Graduate Accelerator Physics G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Course Outline Course Content Introduction to Accelerators and Short Historical Overview Basic Units and Definitions

More information

Relativity II. Home Work Solutions

Relativity II. Home Work Solutions Chapter 2 Relativity II. Home Work Solutions 2.1 Problem 2.4 (In the text book) A charged particle moves along a straight line in a uniform electric field E with a speed v. If the motion and the electric

More information

Modern Physics notes Paul Fendley Lecture 3

Modern Physics notes Paul Fendley Lecture 3 Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 3 Electron Wavelength Probability Amplitude Which slit? Photons Born, IV.4 Feynman, 1.6-7, 2.1 Fowler, Rays and Particles The wavelength of

More information

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced) PC 3 Foundations of Particle Physics Lecturer: Dr F. Loebinger Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

More information

Physics 214 Examples of four-vectors Winter 2017

Physics 214 Examples of four-vectors Winter 2017 Physics 214 Examples of four-vectors Winter 2017 1. The velocity four-vector The velocity four-vector of a particle is defined by: u µ = dxµ dτ = γc; γ v), 1) where dτ = γ 1 is the differential proper

More information

2 2. The proper time fi is defined as the time kept by aclockinamoving frame such as a space craft, or the co-moving frame of a moving object. a) What

2 2. The proper time fi is defined as the time kept by aclockinamoving frame such as a space craft, or the co-moving frame of a moving object. a) What PHYS 32 Homework Assignment #6: Solutions. In class Einstein's addition formula for velocities was used to derive the Lorentz transformation properties of the 3-vector components of momentum: @ p x p y

More information

Special relativity. Announcements:

Special relativity. Announcements: Announcements: Special relativity Homework solutions will soon be CULearn Homework set 1 returned today. Homework #2 is due today. Homework #3 is posted due next Wed. First midterm is 2 weeks from tomorrow.

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Place exam revisions in box at front of room either now or at end of lecture Physics 102: Lecture 23, Slide 1 Exam 3 Monday April 21! Material

More information

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory Relativity Relativity In 1905 Albert Einstein published five articles in Annalen Der Physik that had a major effect upon our understanding of physics. They included:- An explanation of Brownian motion

More information

[variable] = units (or dimension) of variable.

[variable] = units (or dimension) of variable. Dimensional Analysis Zoe Wyatt wyatt.zoe@gmail.com with help from Emanuel Malek Understanding units usually makes physics much easier to understand. It also gives a good method of checking if an answer

More information

The ATLAS Experiment and the CERN Large Hadron Collider. HEP101-6 March 12, 2012

The ATLAS Experiment and the CERN Large Hadron Collider. HEP101-6 March 12, 2012 The ATLAS Experiment and the CERN Large Hadron Collider HEP101-6 March 12, 2012 Al Goshaw Duke University 1 HEP 101 to date Jan. 23: Overview of CERN and the LHC Feb. 6: Review of elementary particles

More information

Covariant Formulation of Electrodynamics

Covariant Formulation of Electrodynamics Chapter 7. Covariant Formulation of Electrodynamics Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 11, and Rybicki and Lightman, Chap. 4. Starting with this chapter,

More information

Massachusetts Institute of Technology Physics Department. Physics 8.20 IAP 2005 Special Relativity January 28, 2005 FINAL EXAM

Massachusetts Institute of Technology Physics Department. Physics 8.20 IAP 2005 Special Relativity January 28, 2005 FINAL EXAM Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Special Relativity January 28, 2005 FINAL EXAM Instructions You have 2.5 hours for this test. Papers will be picked up promptly

More information

PH-101:Relativity and Quantum Mechanics

PH-101:Relativity and Quantum Mechanics PH-101:Relativity and Quantum Mechanics Special Theory of Relativity (5 Lectures) Text Book:1. An Introduction to Mechanics Author: Danieal Kleppner & Robert Kolenkow 2. Introduction to Special Relativity

More information

Lecture 3 - Compton Scattering

Lecture 3 - Compton Scattering Lecture 3 - Compton Scattering E. Daw March 0, 01 1 Review of Lecture Last time we recalled that in special relativity, as in pre-relativistic dynamics, the total energy in an interaction or collision

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-4 February 20, 2012 Al Goshaw 1 HEP 101 Today Introduction to HEP units Particles created in high energy collisions What can be measured in

More information

Chapter 26. Relativity

Chapter 26. Relativity Chapter 26 Relativity Time Dilation The vehicle is moving to the right with speed v A mirror is fixed to the ceiling of the vehicle An observer, O, at rest in this system holds a laser a distance d below

More information

1 Preliminary notions

1 Preliminary notions 1 Preliminary notions 1 Elementary particles are at the deepest level of the structure of matter. Students have already met the upper levels, namely the molecules, the atoms and the nuclei. These structures

More information

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity Announcement PHYS-3301 Lecture 3 Sep. 5, 2017 2 Einstein s Postulates of Relativity: Chapter 2 Special Relativity 1. Basic Ideas 6. Velocity Transformation 2. Consequences of Einstein s Postulates 7. Momentum

More information

Masses and binding energies

Masses and binding energies Masses and binding energies Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 10, 2011 NUCS 342 (Lecture 1) January 10, 2011 1 / 23 Outline 1 Notation NUCS 342 (Lecture

More information

3 Charged Particle Motion in a Magnetic Field

3 Charged Particle Motion in a Magnetic Field 3 Charged Particle Motion in a Magnetic Field When you have completed the Particle Annihilation section and read all the text (especially section 2.2), click the Next button in the Particle Annihilation

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 9 10 The special theory of relativity: Four vectors and relativistic dynamics 1 Worldlines In the spacetime diagram in figure 1 we see the path of a particle (or any object) through

More information

Announcements. Some Examples. Lecture 6 Chapter. 2 Special Relativity. Relativistic Dynamics. Problems. Problems

Announcements. Some Examples. Lecture 6 Chapter. 2 Special Relativity. Relativistic Dynamics. Problems. Problems Announcements HW2: Ch.2-70, 75, 76, 87, 92, 97, 99, 104, 111 HW1 die: now, HW2 due: 2/9 (by class hour) How was your 1 st Lab? -- Any question? Lab manual is posted on the course web *** Course Web Page

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics Indian Institute of Technology, Delhi Module No. # 07 Bra-Ket Algebra and Linear Harmonic Oscillator II Lecture No. # 02 Dirac s Bra and

More information

PH 253 Exam I Solutions

PH 253 Exam I Solutions PH 253 Exam I Solutions. An electron and a proton are each accelerated starting from rest through a potential difference of 0.0 million volts (0 7 V). Find the momentum (in MeV/c) and kinetic energy (in

More information

Chapter 37. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Chapter 37. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapter 37 Relativity PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun 37. Relativity 1. Maxwell s equations (and especially the wave

More information

Module 2: Special Theory of Relativity - Basics

Module 2: Special Theory of Relativity - Basics Lecture 01 PH101: Physics 1 Module 2: Special Theory of Relativity - Basics Girish Setlur & Poulose Poulose gsetlur@iitg.ac.in Department of Physics, IIT Guwahati poulose@iitg.ac.in ( 22 October 2018 )

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Physics 102: Lecture 23, Slide 1 Early Indications of Problems with Classical Physics Blackbody radiation Photoelectric effect Wave-particle

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 5 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 5 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.033 October, 003 Problem Set 5 Solutions Problem A Flying Brick, Resnick & Halliday, #, page 7. (a) The length contraction factor along

More information

Special relativity. x' = x vt y' = y z' = z t' = t Galilean transformation. = dx' dt. = dx. u' = dx' dt'

Special relativity. x' = x vt y' = y z' = z t' = t Galilean transformation. = dx' dt. = dx. u' = dx' dt' PHYS-3 Relatiity. Notes for Physics and Higher Physics b. Joe Wolfe See also our web pages: http://www.phys.unsw.edu.au/~jw/time.html http://www.phys.unsw.edu.au/~jw/relatiity.html http://www.phys.unsw.edu.au/~jw/twin.html

More information

Newtonian or Galilean Relativity

Newtonian or Galilean Relativity Relativity Eamples 1. What is the velocity of an electron in a 400 kv transmission electron microscope? What is the velocity in the 6 GeV CESR particle accelerator?. If one million muons enter the atmosphere

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics CHAPTER 12 ELECTRODYNAMICS & RELATIVITY Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. The special theory of relativity 2. Relativistic Mechanics 3. Relativistic

More information

Pass the (A)Ether, Albert?

Pass the (A)Ether, Albert? PH0008 Quantum Mechanics and Special Relativity Lecture 1 (Special Relativity) Pass the (A)Ether, Albert? Galilean & Einstein Relativity Michelson-Morley Experiment Prof Rick Gaitskell Department of Physics

More information

Physics 225 Relativity and Math Applications. Fall Unit 5 E = mc 2

Physics 225 Relativity and Math Applications. Fall Unit 5 E = mc 2 Physics 225 Relativity and Math Applications Fall 2012 Unit 5 E = mc 2 N.C.R. Makins University of Illinois at Urbana-Champaign 2010 Physics 225 5.2 5.2 Physics 225 5.3 Unit 5: E = mc 2 Relativistic kinematics

More information

Special Relativity: Derivations

Special Relativity: Derivations Special Relativity: Derivations Exploring formulae in special relativity Introduction: Michelson-Morley experiment In the 19 th century, physicists thought that since sound waves travel through air, light

More information

Simultaneit. Pg. 524

Simultaneit. Pg. 524 Simultaneit Pg. 524 y Inertial frame of reference: Review 0 At rest or moving with constant speed in a straight line 0 On in which Newton s Cirst law is true Galilean transformation: 0 y = y z = z t =

More information

MITOCW watch?v=wr88_vzfcx4

MITOCW watch?v=wr88_vzfcx4 MITOCW watch?v=wr88_vzfcx4 PROFESSOR: So we're building this story. We had the photoelectric effect. But at this moment, Einstein, in the same year that he was talking about general relativity, he came

More information

Covariance of the Schrödinger equation under low velocity boosts.

Covariance of the Schrödinger equation under low velocity boosts. Apeiron, Vol. 13, No. 2, April 2006 449 Covariance of the Schrödinger equation under low velocity boosts. A. B. van Oosten, Theor. Chem.& Mat. Sci. Centre, University of Groningen, Nijenborgh 4, Groningen

More information

1st Year Relativity - Notes on Lectures 3, 4 & 5

1st Year Relativity - Notes on Lectures 3, 4 & 5 1st Year Relativity - Notes on Lectures 3, 4 & 5 Lecture Three 1. Now lets look at two very important consequences of the LTs, Lorentz-Fitzgerald contraction and time dilation. We ll start with time dilation.

More information

LIGHT and SPECIAL RELATIVITY RELATIVISTIC MASS, MOMENTUM and ENERGY

LIGHT and SPECIAL RELATIVITY RELATIVISTIC MASS, MOMENTUM and ENERGY VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT LIGHT and SPECIAL RELATIVITY RELATIVISTIC MASS, MOMENTUM and ENERGY Einstein s 1 st postulate states that the laws of physics are the same for all observers

More information

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6 Lecture 4 B. Zwiebach February 18, 2016 Contents 1 de Broglie wavelength and Galilean transformations 1 2 Phase and Group Velocities 4 3 Choosing the wavefunction for a free particle 6 1 de Broglie wavelength

More information

General Physics I. Lecture 6: Conservation of Momentum. Prof. WAN, Xin 万歆.

General Physics I. Lecture 6: Conservation of Momentum. Prof. WAN, Xin 万歆. General Physics I Lecture 6: Conservation of Momentum Prof. WAN, Xin 万歆 xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Importance of conservation laws in physics Applications of the conservation

More information

Relativistic Kinematics Cont d

Relativistic Kinematics Cont d Phy489 Lecture 5 Relativistic Kinematics Cont d Last time discussed: Different (inertial) reference frames, Lorentz transformations Four-vector notation for relativistic kinematics, invariants Collisions

More information

Introduction to particle physics Lecture 2: Special relativity

Introduction to particle physics Lecture 2: Special relativity Introduction to particle physics Lecture 2: Special relativity Frank Krauss IPPP Durham U Durham, Epiphany term 2010 Outline 1 Galilei vs. Einstein 2 Lorentz transformations 3 Mass, momentum and energy

More information

Preliminaries. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 January 6, 2011

Preliminaries. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 January 6, 2011 Preliminaries Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 6, 2011 NUCS 342 (Lecture 0) January 6, 2011 1 / 21 Outline 1 Useful links NUCS 342 (Lecture 0) January

More information