Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory

Size: px
Start display at page:

Download "Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory"

Transcription

1 Relativity

2 Relativity In 1905 Albert Einstein published five articles in Annalen Der Physik that had a major effect upon our understanding of physics. They included:- An explanation of Brownian motion in terms of atoms An explanation of the photoelectric effect ==> Quantum Theory On the Electrodynamics of Moving Bodies ==> The Special Theory of Relativity

3 The Luminiferous Ether In 1873 Maxwell formulated his equations that led to the discovery of electromagnetic waves that propagated through space at the speed of light. All waves were believed to be transmitted by a medium. The medium that transmitted light waves was called the Ether (sometimes called, or spelled the Æther). It had to permeate everything, be incredibly resilient (stiff), and yet not impede motion!!

4 Light was believed to travel at 3 x 10 8 meters per second with respect to the fixed ether. The Earth moved through space (and therefore through the ether) at a speed of about 3 x 10 4 meters per second, and so the speed of light would be slightly different if measured parallel or perpendicular to the velocity of the Earth. Can the motion of the Earth through the ether be detected? It was searched for in an ingenious experiment performed by A.A. Michelson and E.W. Morley.

5 First an illustrative example:- Alma wind 50 miles 50 miles Lansing Brighton Alma lies 50 miles due north of Lansing. Brighton lies 50 miles due east of Lansing. Ms. A drives to Alma and back at a constant speed of 50 mph. There is a 5 mph wind blowing from West to East. So Mr. B drives to Brighton at a constant speed of 55 mph, and drives back from Brighton at a constant speed of 45 mph.

6 Q uick uiz Who arrives back first? (a) (b) (c) Ms. A Mr. B They arrive at the same time

7 Q uick uiz Who arrives back first? (a) (b) (c) Ms. A Mr. B They arrive at the same time Ms. A takes 50/ /50 = 2 hrs Mr. B takes 50/ /45 = = 2.02 hrs so Ms. A wins by.02 hours (or 1 minute and 13 seconds).

8 The Michelson-Morley Experiment Mirror A 1/2 Silvered Mirror Light Source * Beam A Beam B Mirror B Telescope An interferometer

9 The interferometer was set up with one path parallel to the motion of the earth in orbit. They then rotated the apparatus to put the other path parallel to the motion of the earth. The apparatus was sensitive to the size of the effect expected from adding or subtracting the earth's velocity to the velocity of light. But NO effect was observed! Many repetitions and variations of the M&M experiment by many other investigators showed the same null result. It was the most famous null result in history. What was wrong?

10 The Fitzgerald-Lorentz Contraction One strange interpretation of the bewildering result of the M&M experiment was suggested by the Irish physicist, George F. Fitzgerald (and, simultaneously, by the Dutch physicist, H.A. Lorentz). It was that, as a consequence of moving through the ether, the length of any object is shortened by just the right amount to counteract the change in the light speed. When you do the math, it turns out that the required contraction is that the changed length of any object is L' = 1 v 2 /c 2 x L

11 You could never measure this contraction because a ruler placed alongside would also be shrunk by the same amount! Obviously the F-L contraction would explain the M&M result. But why? They had no idea! It was a totally adhoc hypothesis and, because of that, the theory wasn't taken seriously. The F-L contraction turns out to be a consequence of Einstein's theory of relativity.....

12 .... Meanwhile, what was Einstein worrying about? He noticed that Maxwell s equations appeared not to be invariant under a Galilean transformation. (This is just the addition (or subtraction) of velocity that we used in adding the effect of the wind in my example.)

13 In frame K, two charges at rest. Force is given by Coulomb s law. y K Q 1 Q 2 x z

14 y K x z In moving frame K, two charges are moving. Since moving charges are currents, Force is Coulomb + Magnetism.

15 Principle of relativity: The laws of nature are the same in all inertial reference frames Something is wrong! Maxwell s Equations? The Principle of Relativity? Gallilean Transformations?

16 Q uick uiz So, what is your guess? Which turns out to be incorrect? (A) (B) (C) Maxwell s Equations The Principle of Relativity Galilean Transformations

17 Q uick uiz So, what is your guess? Which turns out to be incorrect? (A) (B) (C) Maxwell s Equations The Principle of Relativity Galilean Transformations

18 Einstein decided fi Galilean Transformations are the problem. Einstein s two postulates: 1. The principle of relativity is correct. The laws of physics are the same in all inertial reference frames. 2. The speed of light in vacuum is the same in all inertial reference frames (c = 3 x 10 8 m/s regardless of motion of the source or observer).

19 The second postulate seems to violate everyday common sense! Rocket Light pulse Observer v=0.5 c v=c Einstein says: observer measures the light as traveling at speed c, not 1.5c.

20 Gedanken Experiments A light clock: mirror w mirror photocell It ticks every Dt = 2 w/c seconds. One can synchronize ordinary clocks with it.

21 Time Dilation w O G : Observer on Ground

22 w v O T : Observer on Truck O T s clock as seen from the ground: c = 3 x 10 8 m/s w ct/2 vt/2 (ct/2) 2 - (vt/2) 2 = w 2

23 Time for one round trip of light, as seen from the ground: t = (2 w/c) 1 - v 2 /c 2 For v = 0.6c, t = (2 w/c) x 1.25 All of O T s processes slow down compared to O G as seen by O G. Similarly, All of O G s processes slow down compared to O T as seen by O T.

24 Length Contraction w O G : Observer on Ground

25 w v O T : Observer on Truck Device on truck makes mark on track each time clock ticks. As seen from ground: Distance between marks = (time between ticks) x v = [(2 w/c) 1 - v 2 /c 2 ] v

26 As seen from truck: Distance between marks = (time between ticks) x v = (2 w/c) v (To the person on the truck the time between ticks is (2 w/c).) (Distance measured on truck) = 1 - v 2 /c 2 x (distance measured on ground) As seen from a moving frame, rest distances contract. (L-F contraction)

27 Q uick uiz A clock on Earth has a pendulum with a period of T = 1 second. The clock is put into a rocket with a velocity of v = 0.6c. What now is the period of the clock as measured by an observer on Earth? (A) (B) (C) (D) (E) 0.6 sec 0.75 sec 1.0 sec 1.25 sec 1.67 sec

28 Q uick uiz A clock on Earth has a pendulum with a period of T = 1 second. The clock is put into a rocket with a velocity of v = 0.6c. What now is the period of the clock as measured by an observer on Earth? (A) (B) (C) (D) (E) 0.6 sec 0.75 sec 1.0 sec 1.25 sec 1.67 sec

29 Simultaneity Events occur at a well defined position and a time (x,y,z,t). But events that are simultaneous (same t) in one inertial frame are not necessarily simultaneous in another frame.

30 d d A B The light from the two flashes reach O G at the same time. He sees them as simultaneous.

31 O T passes O G just as the lights flash. v

32 c c v But light from B reaches O T first. Since both light beams started the same distance from her, and both travel at speed c, she concludes that B must have flashed before A.

33 Q uick uiz How fast must a rocket ship travel so that its length appears to be half as long to an observer on Earth as it does to an observer on the rocket? (A) 0.5c (B) 0.87c (C) 0.95c (D) c (E) 2.0c

34 Q uick uiz How fast must a rocket ship travel so that its length appears to be half as long to an observer on Earth as it does to an observer on the rocket? (A) 0.5c (B) 0.87c (C) 0.95c (D) c (E) 2.0c

35 Lorentz Transformations y y v z z x x Flashbulb at origin just as both axes are coincident. Wavefronts in both systems must be spherical: x 2 + y 2 + z 2 = c 2 t 2 and x 2 + y 2 + z 2 = c 2 t 2 Inconsistent with a Galilean transformation Also cannot assume t=t.

36 Assuming: Principle of relativity linear transformation (x,y,z,t) -> (x,y,z,t ) Lorentz Transformations (section 2.4) x = g ( x - v t ) y = y z = z t = g ( t - v x / c 2 ) With g = 1 / 1 - v 2 /c 2. (Often also define b = v / c. )

37 Time Dilation (again) Proper time: time T 0 measured between two events at the same position in an inertial frame. O T s friend O T v O G O G s clock: T 0 = t 2 - t 1, (x 2 -x 1 =0) O T s clock: T = t 2 - t 1 t 2 - t 1 = g (t 2 - t 1 - v/c 2 (x 2 -x 1 ) ) T = g T 0 > T 0 Clocks, as seen by observers moving at a relative velocity, run slow.

38 Length Contraction (again) Proper length: distance L 0 between points that are at rest in an inertial frame. x 1 x 2 v x 1 x 2 O T on truck measures its length to be L 0 = x 2 - x 1. This is its proper length. O G on ground measures its length to be L = x 2 - x 1, using a meter stick at rest (t 2 = t 1 ). Then L 0 = x 2 - x 1 = g (x 2 - x 1 - v (t 2 - t 1 )) = g L O G measures L = L 0 / g < L 0. Truck appears contracted to O G.

39 An application Muon decays with the formula: N = N 0 e -t/t N 0 = number of muons at time t=0. N = number of muons at time t seconds later. t = 2.19 x 10-6 seconds is mean lifetime of muon. Suppose 1000 muons start at top of mountain d=2000 m high and travel at speed v=0.98c towards the ground. What is the expected number that reach earth? Time to reach earth: t = d/v = 2000m/(0.98 x 3 x 10 8 m/s) = 6.8 x 10-6 s Expect N = 1000 e -6.8/2.19 = 45 muons. But experimentally we see 540 muons! What did we do wrong?

40 Time dilation: The moving muon s internal clock runs slow. It has only gone through t = 6.8 x s = 1.35 x 10-6 s So N = 1000 e -1.35/2.19 = 540 muons survive. Alternate explanation: From muon s viewpoint, the mountain is contracted. Get same result.

41 Addition of velocities Galilean formula (u=u +v) is wrong. Consider object, velocity u as seen in frame of O T who is on a truck moving with velocity v w.r.t the ground. What is velocity u of the object as measured by O G on the ground? u? u v Recall u = Dx/Dt, u = Dx /Dt. Inverse Lorentz transformation formulae: Dx = g ( Dx + v Dt ) Dt = g (Dt + v Dx / c 2 )

42 Dx g ( Dx + v Dt ) u = = Dt g (Dt + v Dx / c 2 ) u = u + v 1 + v u /c 2 For u and v much less than c: u u + v Velocities in y and z directions are also modified (due to t t, see section 2.6)

43 Examples: Rocket Light pulse Observer v=0.5 c u =c Observer sees light move at u = 0.5c + c 1+(0.5c)(c)/c 2 = c Light moves at c=3x10 8 m/s in all frames. Rocket Projectile v=0.8 c u =0.5c Observer Observer sees projectile move at 0.5c + 0.8c u = = 0.93c 1+(0.5)(0.8) Massive objects always move at speeds < c.

44 Q uick uiz Two spaceships travel in exactly the opposite direction as seen from the Earth. The speed of each, as measured by an observer on Earth, is 0.9c. What is the relative speed of the two spaceships as measured by a passenger on one of them? (A) 0 (B) 0.45c (C) 0.9c (D) 0.99c (E) 1.8c

45 Q uick uiz Two spaceships travel in exactly the opposite direction as seen from the Earth. The speed of each, as measured by an observer on Earth, is 0.9c. What is the relative speed of the two spaceships as measured by a passenger on one of them? (A) 0 (B) 0.45c (C) 0.9c (D) 0.99c (E) 1.8c

46

47 The Twin Paradox Suppose there are two twins, Henry and Albert. Henry takes a rocket ship, going near the speed of light, to a nearby star, and then returns. Albert stays at home on earth. Albert says that Henry s clocks are running slow, so that when Henry returns he will still be young, whereas Albert is an old man. But Henry could just as well say that Albert is the one moving rapidly, so Albert should be younger after Henry returns! Who is right?

48 The first scenario is the correct one. The situation is not symmetric, because the rocket has to decelerate, turn around and accelerate again to return to earth. Thus, Henry is not in an inertial frame throughout the trip. He does return younger than Albert.

49 Relativistic Doppler Effect Light source and observer approach each other with relative velocity, v. Light is emitted at frequency n 0. n 0 v Observer sees light at a higher frequency: 1 + b n = n 0 with b = v/c 1 - b If source is receding, the formula still holds but now b is negative. We know that the universe is expanding, because light from distance galaxies is red-shifted, indicating motion away from us. n

50

51 Relativistic Momentum Requirement: momentum is conserved in all inertial frames. Assume: p = m v. Elastic scattering in c-o-m frame: A B before A B after p x : mu + m(-u) = 0 Transform to frame of A: A B A B -2u p x : 0 + m( ) m(-2u) 1+u 2 /c 2 It doesn t work!

52 Relativistic momentum: mv p = g m v = 1-v2 /c 2 Relativistic Kinetic Energy: K = (g - 1) mc 2 1 = ( - 1) mc 2 1-v 2 /c 2 For small velocities, v/c << 1: K = ( 1 + 1/2 (v/c) ) mc 2 1/2 m v 2 For large velocities v c: K Massive objects always travel at speeds less than c.

53 KE and velocity: Relativistic vs. Classical Noticeable departures for v/c >.4 or so Starting from v=0, takes infinite KE to get to v=c

54 Velocity nearly stops changing after KE ~ 4 mc 2 KE = (γ 1) mc 2 γ = 2 (KE = rest) happens for β = (1 1/γ 2 ) =.87 electron has mc 2 =.511 MeV

55 Relativistic Energy According to Einstein, even a mass at rest has energy: E 0 = m c 2 (rest energy) Thus, the total energy of a moving object is E = K + E 0 = (g-1) mc 2 + mc 2 = g mc 2 It is straightforward to show: E 2 - p 2 c 2 = m 2 c 4 For a massless particle (e.g. a photon): E = p c

56 In general p c 2 g mv c 2 v = = E g mc 2 For a massless particle this gives v = c Massless particles travel at the speed of light c.

57

58

59

60

61

62

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies Relativity 1905 - Albert Einstein: Brownian motion fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies fi The Special Theory of Relativity The Luminiferous Ether Hypothesis:

More information

CHAPTER 2 Special Theory of Relativity-part 1

CHAPTER 2 Special Theory of Relativity-part 1 CHAPTER 2 Special Theory of Relativity-part 1 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Unit- 1 Theory of Relativity

Unit- 1 Theory of Relativity Unit- 1 Theory of Relativity Frame of Reference The Michelson-Morley Experiment Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Experimental

More information

Chapter 26 Special Theory of Relativity

Chapter 26 Special Theory of Relativity Chapter 26 Special Theory of Relativity Classical Physics: At the end of the 19 th century, classical physics was well established. It seems that the natural world was very well explained. Newtonian mechanics

More information

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER Modern Physics Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER 1 RELATIVITY 1.1 Special Relativity 1.2 The Principle of Relativity, The Speed of Light 1.3 The Michelson Morley Experiment,

More information

Physics 2D Lecture Slides Lecture 2. Jan. 5, 2010

Physics 2D Lecture Slides Lecture 2. Jan. 5, 2010 Physics 2D Lecture Slides Lecture 2 Jan. 5, 2010 Lecture 1: Relativity Describing a Physical Phenomenon Event (s) Observer (s) Frame(s) of reference (the point of View! ) Inertial Frame of Reference Accelerated

More information

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Relativity Physics 102 11 April 2002 Lecture 8 Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Physics around 1900 Newtonian Mechanics Kinetic theory and thermodynamics Maxwell s equations

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity Announcement PHYS-3301 Lecture 3 Sep. 5, 2017 2 Einstein s Postulates of Relativity: Chapter 2 Special Relativity 1. Basic Ideas 6. Velocity Transformation 2. Consequences of Einstein s Postulates 7. Momentum

More information

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances Introduction Classical vs Modern Physics High speeds Small (or very large) distances Classical Physics: Conservation laws: energy, momentum (linear & angular), charge Mechanics Newton s laws Electromagnetism

More information

JF Theoretical Physics PY1T10 Special Relativity

JF Theoretical Physics PY1T10 Special Relativity JF Theoretical Physics PY1T10 Special Relativity 12 Lectures (plus problem classes) Prof. James Lunney Room: SMIAM 1.23, jlunney@tcd.ie Books Special Relativity French University Physics Young and Freedman

More information

Relativity. Overview & Postulates Events Relativity of Simultaneity. Relativity of Time. Relativity of Length Relativistic momentum and energy

Relativity. Overview & Postulates Events Relativity of Simultaneity. Relativity of Time. Relativity of Length Relativistic momentum and energy Relativity Overview & Postulates Events Relativity of Simultaneity Simultaneity is not absolute Relativity of Time Time is not absolute Relativity of Length Relativistic momentum and energy Relativity

More information

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame.

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame. Chapter 2: The Special Theory of Relativity What is a reference frame? A reference fram is inertial if Newton s laws are valid in that frame. If Newton s laws are valid in one reference frame, they are

More information

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63.

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63. Slide 1 / 63 The Special Theory of Relativity E = mc 2 Inertial Reference Frames Slide 2 / 63 Newton's laws are only valid in inertial reference frames: n inertial reference frame is one which is not accelerating

More information

Special Relativity 05/09/2008. Lecture 14 1

Special Relativity 05/09/2008. Lecture 14 1 How Fast Are You Moving Right Now? Special Relativity Einstein messes with space and time 0 m/s relative to your chair 400 m/s relative to earth center (rotation) 30,000 m/s relative to the sun (orbit)

More information

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Phys 2435: Chap. 37, Pg 1 Two postulates New Topic Phys 2435:

More information

Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements

Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements Chapter 37. Relativity Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements The Relativity of Simultaneity Time Dilation Length g Contraction

More information

Chapter 36 The Special Theory of Relativity. Copyright 2009 Pearson Education, Inc.

Chapter 36 The Special Theory of Relativity. Copyright 2009 Pearson Education, Inc. Chapter 36 The Special Theory of Relativity Units of Chapter 36 Galilean Newtonian Relativity The Michelson Morley Experiment Postulates of the Special Theory of Relativity Simultaneity Time Dilation and

More information

Modern Physics Part 2: Special Relativity

Modern Physics Part 2: Special Relativity Modern Physics Part 2: Special Relativity Last modified: 23/08/2018 Links Relative Velocity Fluffy and the Tennis Ball Fluffy and the Car Headlights Special Relativity Relative Velocity Example 1 Example

More information

Special Relativity: Derivations

Special Relativity: Derivations Special Relativity: Derivations Exploring formulae in special relativity Introduction: Michelson-Morley experiment In the 19 th century, physicists thought that since sound waves travel through air, light

More information

Announcements. Muon Lifetime. Lecture 4 Chapter. 2 Special Relativity. SUMMARY Einstein s Postulates of Relativity: EXPERIMENT

Announcements. Muon Lifetime. Lecture 4 Chapter. 2 Special Relativity. SUMMARY Einstein s Postulates of Relativity: EXPERIMENT Announcements HW1: Ch.2-20, 26, 36, 41, 46, 50, 51, 55, 58, 63, 65 Lab start-up meeting with TA tomorrow (1/26) at 2:00pm at room 301 Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/

More information

Rotational Mechanics and Relativity --- Summary sheet 1

Rotational Mechanics and Relativity --- Summary sheet 1 Rotational Mechanics and Relativity --- Summary sheet 1 Centre of Mass 1 1 For discrete masses: R m r For continuous bodies: R dm i i M M r body i Static equilibrium: the two conditions for a body in static

More information

Physics 2D Lecture Slides Oct 1. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Oct 1. Vivek Sharma UCSD Physics Physics D Lecture Slides Oct 1 Vivek Sharma UCSD Physics Einstein s Special Theory of Relativity Einstein s Postulates of SR The laws ofphysics must be the same in all inertial reference frames The speed

More information

2.3 The Lorentz Transformation Eq.

2.3 The Lorentz Transformation Eq. Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 3 HW1 (due 9/13) Chapter 2 20, 26, 36, 41, 45, 50, 51, 55, 58 Sep. 6, 2016 2.3 The Lorentz Transformation

More information

Physics 2D Lecture Slides Jan 10. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Jan 10. Vivek Sharma UCSD Physics Physics D Lecture Slides Jan 10 Vivek Sharma UCSD Physics Time Dilation Example: Relativistic Doppler Shift Light : velocity c = f λ, f=1/t A source of light S at rest Observer S approches S with velocity

More information

Name the object labelled B and explain its purpose.

Name the object labelled B and explain its purpose. PhysicsAndMathsTutor.com 1 1. The diagram represents the Michelson-Morley interferometer. surface-silvered mirror M 1 l 1 extended source of monochromatic light B surface-silvered mirror M 2 A l 2 viewing

More information

2.4 The Lorentz Transformation

2.4 The Lorentz Transformation Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 4 Jan. 27, 2015 Lecture Notes, HW Assignments, Physics Colloquium, etc.. 2.4 The Lorentz Transformation

More information

Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Introduction to Special Relativity

Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Introduction to Special Relativity Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Introduction to Special Relativity Problem Set 1 1. Speeds What fraction of the speed of light does each of the following

More information

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. Special College - PHY2054C Special & 11/12/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Special 1 Special 2 3 4 Special Galilean and Light Galilean and electromagnetism do predict

More information

Chapter 1. Relativity 1

Chapter 1. Relativity 1 Chapter 1 Relativity 1 Classical Relativity inertial vs noninertial reference frames Inertial Reference Frames Galilean transformation: x = x vt; y = y; z = z; t = t u x = u x v; u y = u y ; u z = u z

More information

Midterm Solutions. 1 1 = 0.999c (0.2)

Midterm Solutions. 1 1 = 0.999c (0.2) Midterm Solutions 1. (0) The detected muon is seen km away from the beam dump. It carries a kinetic energy of 4 GeV. Here we neglect the energy loss and angular scattering of the muon for simplicity. a.

More information

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5 1 The End of Physics? RELATIVITY Updated 01Aug30 Dr. Bill Pezzaglia The following statement made by a Nobel prize winning physicist: The most important fundamental laws and facts of physical science have

More information

Therefore F = ma = ma = F So both observers will not only agree on Newton s Laws, but will agree on the value of F.

Therefore F = ma = ma = F So both observers will not only agree on Newton s Laws, but will agree on the value of F. Classical Physics Inertial Reference Frame (Section 5.2): a reference frame in which an object obeys Newton s Laws, i.e. F = ma and if F = 0 (object does not interact with other objects), its velocity

More information

Principle of Relativity

Principle of Relativity Principle of Relativity Physical laws are the same in all inertial frames. 1) The same processes occur. But 2) the description of some instance depends on frame of reference. Inertial Frames An inertial

More information

Lorentz Transformation x = γ (x vt) y = y z = z t = γ (t vx/c 2 ) where γ 1/(1 - v 2 /c 2 ) 1/2

Lorentz Transformation x = γ (x vt) y = y z = z t = γ (t vx/c 2 ) where γ 1/(1 - v 2 /c 2 ) 1/2 Lorentz Transformation x = γ (x vt) y = y z = z t = γ (t vx/c 2 ) where γ 1/(1 - v 2 /c 2 ) 1/2 Problem: A rocket is traveling in the positive x-direction away from earth at speed 0.3c; it leaves earth

More information

The Constancy of the Speed of Light

The Constancy of the Speed of Light The Constancy of the Speed of Light Also, recall the Michelson-Morley experiment: c-u c+u u Presumed ether wind direction u is the relative speed between the frames (water & shore) Result: Similar There

More information

2.1 The Ether and the Michelson-Morley Experiment

2.1 The Ether and the Michelson-Morley Experiment Chapter. Special Relativity Notes: Some material presented in this chapter is taken The Feynman Lectures on Physics, Vol. I by R. P. Feynman, R. B. Leighton, and M. Sands, Chap. 15 (1963, Addison-Wesley)..1

More information

The True Nature of the Special Relativity Light Clock. Copyright 2012 Joseph A. Rybczyk

The True Nature of the Special Relativity Light Clock. Copyright 2012 Joseph A. Rybczyk The True Nature of the Special Relativity Light Clock Copyright 2012 Joseph A. Rybczyk Abstract It is generally believed that the light clock typically associated with special relativity correlates the

More information

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics CHAPTER 12 ELECTRODYNAMICS & RELATIVITY Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. The special theory of relativity 2. Relativistic Mechanics 3. Relativistic

More information

Physics 2D Lecture Slides Lecture 4. April 3, 2009

Physics 2D Lecture Slides Lecture 4. April 3, 2009 Physics 2D Lecture Slides Lecture 4 April 3, 2009 Synchronizing Clocks Sam v Sally After coincidence of their origins at t=0, t = 0 Sam and Sally agree to send light signals to each other after time t

More information

The Theory of Relativity

The Theory of Relativity At end of 20th century, scientists knew from Maxwell s E/M equations that light traveled as a wave. What medium does light travel through? There can be no doubt that the interplanetary and interstellar

More information

More Relativity: The Train and The Twins

More Relativity: The Train and The Twins previous index next More Relativity: The Train and The Twins Michael F owler, UVa Physics, 11/28/07 Einstein s Definition of Common Sense As you can see from the lectures so far, although Einstein s Theory

More information

dt = p m, (2.1.1) dt = p

dt = p m, (2.1.1) dt = p Chapter 2 Special relativity 2.1 Galilean relativity We start our discussion of symmetries by considering an important example of an invariance, i.e. an invariance of the equations of motion under a change

More information

RELATIVITY. Einstein published two theories of relativity. In The Special Theory. For uniform motion a = 0. In The General Theory

RELATIVITY. Einstein published two theories of relativity. In The Special Theory. For uniform motion a = 0. In The General Theory RELATIVITY Einstein published two theories of relativity In 1905 The Special Theory For uniform motion a = 0 In 1916 The General Theory For non-uniform motion a 0. First we will discuss The Special Theory

More information

Relativity. April 16, 2014 Chapter 35 1

Relativity. April 16, 2014 Chapter 35 1 Relativity April 16, 2014 Chapter 35 1 Announcements! Next week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: BPS 1410 (this room) Comprehensive, covers material

More information

Consequences of special relativity.

Consequences of special relativity. PHYS419 Lecture 12 Consequences of special relativity 1 Consequences of special relativity. The length of moving objects. Recall that in special relativity, simultaneity depends on the frame of reference

More information

Special Theory of Relativity (I) Newtonian (Classical) Relativity. Newtonian Principle of Relativity. Inertial Reference Frame.

Special Theory of Relativity (I) Newtonian (Classical) Relativity. Newtonian Principle of Relativity. Inertial Reference Frame. Special Theory of Relativity (I) Newtonian (Classical) Relativity Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Assumption It is assumed that

More information

General Physics I. Lecture 21: Relativistic Energy and Momentum. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 21: Relativistic Energy and Momentum. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 21: Relativistic Energy and Momentum Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Relativistic velocity, momentum, and energy The mass-energy

More information

Consequences of special relativity.

Consequences of special relativity. PHYS419 Lecture 12 Consequences of special relativity 1 Consequences of special relativity. The length of moving objects. Recall that in special relativity, simultaneity depends on the frame of reference

More information

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. College - PHY2054C 11/10/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline 1 2 3 1 The speed of light is the maximum possible speed, and it is always measured to have the same value

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity Fall 2018 Prof. Sergio B. Mendes 1 Topics 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 Inertial Frames of Reference Conceptual and Experimental

More information

Postulate 2: Light propagates through empty space with a definite speed (c) independent of the speed of the source or of the observer.

Postulate 2: Light propagates through empty space with a definite speed (c) independent of the speed of the source or of the observer. Einstein s Special Theory of Relativity 1 m E = mv E =m*c m* = KE =m*c - m c 1- v p=mv p=m*v c 9-1 Postulate 1: The laws of physics have the same form in all inertial reference frames. Postulate : Light

More information

Before we work on deriving the Lorentz transformations, let's first look at the classical Galilean transformation.

Before we work on deriving the Lorentz transformations, let's first look at the classical Galilean transformation. Background The curious "failure" of the Michelson-Morley experiment in 1887 to determine the motion of the earth through the aether prompted a lot of physicists to try and figure out why. The first attempt

More information

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Sept 29 Vivek Sharma UCSD Physics Galilean Relativity Describing a Physical Phenomenon Event ( and a series of them) Observer (and many of them) Frame of reference (& an Observer

More information

RELATIVITY. Special Relativity

RELATIVITY. Special Relativity RELATIVITY Special Relativity FROM WARMUP It was all interesting! How important is it for us to know the Galilean transformation equations and the math of the Michelson-Morley experiment? Know the Galilean

More information

Lecture 13 Notes: 07 / 20. Invariance of the speed of light

Lecture 13 Notes: 07 / 20. Invariance of the speed of light Lecture 13 Notes: 07 / 20 Invariance of the speed of light The Michelson-Morley experiment, among other experiments, showed that the speed of light in vacuum is a universal constant, as predicted by Maxwell's

More information

Special Theory of Relativity. PH101 Lec-2

Special Theory of Relativity. PH101 Lec-2 Special Theory of Relativity PH101 Lec-2 Newtonian Relativity! The transformation laws are essential if we are to compare the mathematical statements of the laws of physics in different inertial reference

More information

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 37 Relativity PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 37 Looking forward at why different

More information

Lecture 8 : Special Theory of Relativity

Lecture 8 : Special Theory of Relativity Lecture 8 : Special Theory of Relativity The speed of light problem Einstein s postulates Time dilation 9/23/10 1 Sidney Harris I: THE SPEED OF LIGHT PROBLEM Recap Relativity tells us how to relate measurements

More information

Chapter-1 Relativity Part I RADIATION

Chapter-1 Relativity Part I RADIATION Chapter-1 Relativity Part I RADIATION Radiation implies the transfer of energy from one place to another. - Electromagnetic Radiation - Light - Particle and Cosmic Radiation photons, protons, neutrons,

More information

Physics. Special Relativity

Physics. Special Relativity Physics Special Relativity 1 Albert Einstein, the high school dropout and patent office clerk published his ideas on Special Relativity in 1905. 2 Special vs. General Relativity Special Relativity deals

More information

Chapter 12. Electrodynamics and Relativity. Does the principle of relativity apply to the laws of electrodynamics?

Chapter 12. Electrodynamics and Relativity. Does the principle of relativity apply to the laws of electrodynamics? Chapter 12. Electrodynamics and Relativity Does the principle of relativity apply to the laws of electrodynamics? 12.1 The Special Theory of Relativity Does the principle of relativity apply to the laws

More information

Motivation. The Speed of Light. The Speed of Light. In Water Things Look Like This. Introduction to Special and General Relativity

Motivation. The Speed of Light. The Speed of Light. In Water Things Look Like This. Introduction to Special and General Relativity Introduction to Special and General Relativity Motivation: Michelson-Morley Experiment Induction versus Force Law The Basics Events Principles of Relativity Giving up on absolute space and time What Follows

More information

Introduction to Relativity & Time Dilation

Introduction to Relativity & Time Dilation Introduction to Relativity & Time Dilation The Principle of Newtonian Relativity Galilean Transformations The Michelson-Morley Experiment Einstein s Postulates of Relativity Relativity of Simultaneity

More information

Recall from last time

Recall from last time Welcome back to Physics 215 Today s agenda: Relative Motion Special relativity Forces Physics 215 Spring 2017 Lecture 05-1 1 Recall from last time If we want to use (inertial) moving frames of reference,

More information

Chapter 26. Relativity

Chapter 26. Relativity Chapter 26 Relativity Time Dilation The vehicle is moving to the right with speed v A mirror is fixed to the ceiling of the vehicle An observer, O, at rest in this system holds a laser a distance d below

More information

Lecture 7: Special Relativity I

Lecture 7: Special Relativity I Lecture 7: Special Relativity I ª Einstein s postulates ª Time dilation ª Length contraction ª New velocity addition law Sidney Harris Please read Chapter 7 of the text 2/19/15 1 Albert Einstein ª Over

More information

Special Relativity. Asaf Pe er The Michelson - Morley experiment

Special Relativity. Asaf Pe er The Michelson - Morley experiment Special Relativity Asaf Pe er 1 December 4, 2013 1. The Michelson - Morley experiment 1 By the late 1800 s, the wave nature of light was well established, with diffraction experiments carried by Thomas

More information

Space, Time and Simultaneity

Space, Time and Simultaneity PHYS419 Lecture 11: Space, Time & Simultaneity 1 Space, Time and Simultaneity Recall that (a) in Newtonian mechanics ( Galilean space-time ): time is universal and is agreed upon by all observers; spatial

More information

Notes - Special Relativity

Notes - Special Relativity Notes - Special Relativity 1.) The problem that needs to be solved. - Special relativity is an interesting branch of physics. It often deals with looking at how the laws of physics pan out with regards

More information

Our Dynamic Universe

Our Dynamic Universe North Berwick High School Higher Physics Department of Physics Unit 1 Our Dynamic Universe Section 5 Special Relativity Section 5 Special Relativity Note Making Make a dictionary with the meanings of any

More information

We search for the ether. Next time: The ether is missing Conspiracy? I think not!

We search for the ether. Next time: The ether is missing Conspiracy? I think not! We search for the ether Next time: The ether is missing Conspiracy? I think not! Waves Wave phenomena are important for the development of special relativity and for understanding quantum mechanics, so

More information

Albert Einstein ( )

Albert Einstein ( ) Einstein s Special Theory of Relativity Imagination is more important than knowledge Albert Einstein (1879-1955) Contributions: The man who rewrote physics Photoelectric Effect major importance to Quantum

More information

Lecture Notes (Einstein's Relativity)

Lecture Notes (Einstein's Relativity) Lecture Notes (Einstein's Relativity) Intro: - most of our everyday experiences and observations have to do with objects that move at speeds much less than the speed of light - Newtonian mechanics was

More information

Relativity and Modern Physics. From Last Time. Preferred reference frame. Relativity and frames of reference. Galilean relativity. Relative velocities

Relativity and Modern Physics. From Last Time. Preferred reference frame. Relativity and frames of reference. Galilean relativity. Relative velocities HW#6 Chapter 0 Concept: 9, 6, 20, 28, 34 Problems: 4, 6 From Last Time Range of visible light from 400 nm to 700 nm Eye interprets different wavelengths as different colors but has only three sensors,

More information

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016 ENTER RELATIVITY RVBAUTISTA THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION The laws of mechanics must be the same in all inertial

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2003 Introduction to Special Relativity January 6, 2003 Assignment 1 Corrected version Due January 13, 2003 Announcements Please

More information

Physics 2D Lecture Slides Lecture 2. March 31, 2009

Physics 2D Lecture Slides Lecture 2. March 31, 2009 Physics 2D Lecture Slides Lecture 2 March 31, 2009 Newton s Laws and Galilean Transformation! But Newton s Laws of Mechanics remain the same in All frames of references!! 2 2 d x' d x' dv = " dt 2 dt 2

More information

1. Convective throughout deliver heat from core to surface purely by convection.

1. Convective throughout deliver heat from core to surface purely by convection. 6/30 Post Main Sequence Evolution: Low-Mass Stars 1. Convective throughout deliver heat from core to surface purely by convection. 2. Convection mixes the material of the star is the material carries the

More information

Physics 2D Lecture Slides Lecture 3. January 8, 2010

Physics 2D Lecture Slides Lecture 3. January 8, 2010 Physics 2D Lecture Slides Lecture 3 January 8, 2010 Immediate Consequences of Einstein s Postulates: Recap Events that are simultaneous for one Observer are not simultaneous for another Observer in relative

More information

EPGY Special and General Relativity. Lecture 4B

EPGY Special and General Relativity. Lecture 4B Lecture 4B In the previous lecture we found that the proper description of the universe is one consisting of a four-dimensional manifold (space) endowed with a Lorentzian metric, (of course we are restricting

More information

The Foundations of Special Relativity

The Foundations of Special Relativity The Foundations of Special Relativity 1 Einstein's postulates of SR: 1. The laws of physics are identical in all inertial reference frames (IFs). 2. The speed of light in vacuum, c, is the same in all

More information

Postulates of Special Relativity

Postulates of Special Relativity Relativity Relativity - Seen as an intricate theory that is necessary when dealing with really high speeds - Two charged initially stationary particles: Electrostatic force - In another, moving reference

More information

Chapter 3 Special relativity 3.1 About motion

Chapter 3 Special relativity 3.1 About motion Chapter 3 Special relativity 3.1 About motion Learning objectives Explain what is meant by absolute motion and relative motion. Describe the experimental evidence that all motion is relative. Discuss whether

More information

Modern Physics. Relativity: Describes objects moving close to or at the speed of light (spaceships, photons, electrons )

Modern Physics. Relativity: Describes objects moving close to or at the speed of light (spaceships, photons, electrons ) Modern Physics At the beginning of the twentieth century, two new theories revolutionized our understanding of the world and modified old physics that had existed for over 200 years: Relativity: Describes

More information

Einstein and his theory of Special Relativity (1905) General relativity came later and deals more with gravity (1915) 07 relativity.

Einstein and his theory of Special Relativity (1905) General relativity came later and deals more with gravity (1915) 07 relativity. Einstein and his theory of Special Relativity (1905) General relativity came later and deals more with gravity (1915) Groundwork for Einstein's theory was laid out my Michelson and Morley with their interferometer

More information

Module 2: Special Theory of Relativity - Basics

Module 2: Special Theory of Relativity - Basics Lecture 01 PH101: Physics 1 Module 2: Special Theory of Relativity - Basics Girish Setlur & Poulose Poulose gsetlur@iitg.ac.in Department of Physics, IIT Guwahati poulose@iitg.ac.in ( 22 October 2018 )

More information

Light and Relativity

Light and Relativity PHY1033C Fall 2017 Lecture W11 Light and Relativity 1. Light, a Special Wave For more than 200 years, Newton s theory of mechanics, condensed into the three laws of motion, have been accepted as the correct

More information

Special Relativity 1

Special Relativity 1 Special Relativity 1 Special Relativity: A Summary Caitlyn Edwards Dr. Gan Modern Physics November 2017 Special Relativity 2 Abstract The physics of Einstein s theory of special relativity differs dramatically

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of special relativity Announcements: Homework 1s due at 1:00pm on Friday in the wood cabinet just inside the physics help room (G2B90) Last year s Nobel Prize winner David Wineland (CU

More information

PHYSICS - CLUTCH CH 34: SPECIAL RELATIVITY.

PHYSICS - CLUTCH CH 34: SPECIAL RELATIVITY. !! www.clutchprep.com CONCEPT: INERTIAL REFERENCE FRAMES A reference frame is a coordinate system that you make measurements in, and there are two types: - Inertial reference frames, which move at velocity

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Consequences of Einstein s Postulates Lorentz Transformations Albert Einstein 1879-1955 Einstein s Postulates: 1. The laws of physics are invariant to observers

More information

Newtonian or Galilean Relativity

Newtonian or Galilean Relativity Relativity Eamples 1. What is the velocity of an electron in a 400 kv transmission electron microscope? What is the velocity in the 6 GeV CESR particle accelerator?. If one million muons enter the atmosphere

More information

Einstein s Special Theory of Relativity. Dr. Zdzislaw Musielak UTA Department of Physics

Einstein s Special Theory of Relativity. Dr. Zdzislaw Musielak UTA Department of Physics Einstein s Special Theory of Relativity Dr. Zdzislaw Musielak UTA Department of Physics OUTLINE Einstein s Miraculous Year 1905 Time and Space before 1905 Einstein s Paper # 3 Time and Space after 1905

More information

Pay close attention... because

Pay close attention... because Pay close attention... because Galilean Relativity Galilean Relativity I drive past a baseball field traveling north at 25 MPH. A player throws the ball south at a speed (relative to the ground) of 70

More information

A. B. Lahanas University of Athens, Physics Department, Nuclear and Particle Physics Section, Athens , Greece

A. B. Lahanas University of Athens, Physics Department, Nuclear and Particle Physics Section, Athens , Greece SPECIAL RELATIVITY A. B. Lahanas University of Athens, Physics Department, Nuclear and Particle Physics Section, Athens 157 71, Greece Abstract We give an introduction to Einstein s Special Theory of Relativity.

More information

Unit 10: Relativity Hewitt Chapters Brent Royuk Phys-109 Concordia University

Unit 10: Relativity Hewitt Chapters Brent Royuk Phys-109 Concordia University Unit 10: Relativity Hewitt Chapters 35-36 Brent Royuk Phys-109 Concordia University The Correspondence Principle 2 Relativity What s relative about relativity? 3 Relativity Billy-Bob s Pickup Truck Galilean

More information

CHAPTER 2 Special Theory of Relativity Part 2

CHAPTER 2 Special Theory of Relativity Part 2 CHAPTER 2 Special Theory of Relativity Part 2 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

The Special Theory of relativity

The Special Theory of relativity Chapter 1 The Special Theory of relativity 1.1 Pre - relativistic physics The starting point for our work are Newtons laws of motion. These can be stated as follows: Free particles move with constant velocity.

More information