Physics Talk NEWTON S SECOND LAW OF MOTION. Evidence for Newton s Second Law of Motion

Size: px
Start display at page:

Download "Physics Talk NEWTON S SECOND LAW OF MOTION. Evidence for Newton s Second Law of Motion"

Transcription

1

2

3

4 Chapter 2 Physics in Action Physics Talk NEWTON S SECOND LAW OF MOTION Evidence for Newton s Second Law of Motion In the Investigate, you observed that it was difficult to push on an object with a constant force because the object would move faster and faster. This observation that a constant force produces an acceleration is very important in physics. You also found that if you pushed on a more massive object with the same force, it did not accelerate as much. This observation that the acceleration decreases with an increase in mass is also very important. Physics Words Newton s second law of motion: the acceleration of an object is directly proportional to the unbalanced force acting on it and inversely proportional to the object s mass. The direction of the acceleration is the same as the direction of the unbalanced force. Based on observations from investigations similar to yours, Isaac Newton wrote his (Newton s) second law of motion: The acceleration of an object is directly proportional to the unbalanced force acting on it and is inversely proportional to the object s mass. The direction of the acceleration is the same as the direction of the unbalanced force. You saw the evidence for Newton s second law in the Investigate. When you pushed an object with a small force, the object had a small acceleration. The speed of the object increased, but not very quickly. When you pushed the object with a large force the object had a large acceleration. Newton s second law states this: The acceleration of an object is directly proportional to the unbalanced force acting on it. This is a mathematical way of saying that the larger force produces a larger acceleration. As the force gets larger, the acceleration gets larger a direct proportion. In this Investigate, the force was a push. You also found that the same force on a small mass produced a larger acceleration than it did on a large mass. Newton s second law states this, The acceleration of an object is inversely proportional to the object s mass. This is a mathematical way of saying that the larger the mass, the smaller the acceleration. As the mass gets larger, the acceleration gets smaller an inverse proportion. To achieve a big acceleration, you need to apply a large force to a small mass. In one of the most important science books of all time, Principia, Isaac Newton wrote his second law of motion. It is interesting both historically and in terms of understanding physics to read Newton s second law in his own words: The change in motion is proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed. Active Physics 160

5

6

7

8

9 Section 3 Newton s Second Law: Push or Pull Determining the Number of Significant Figures in a Measurement There are guidelines that you can use to determine the number of significant figures in a measurement. All nonzero numbers are considered to be significant figures. In the measurement m, all the digits are significant. The measurement has four significant figures. Zeros may or may not be significant, depending on their place in a number. A zero between nonzero digits is a significant figure. In the measurement 308 g, the zero is significant. The measurement has three significant figures. A zero at the end of a decimal number is considered significant. In the measurement 1.50 N, the zero is significant. The measurement has three significant figures. A zero at the beginning of a decimal number is not significant. In the measurement kg, the zeros are not significant. The measurement has two significant figures. In a large number without a decimal point, the zeros are not significant. In the measurement 2000 kg, the zeros are not significant. The measurement has one significant figure. However, if the zeros in 2000 were significant, it would be written as or in exponential notation as Significant Figures in Calculations There are also guidelines that you can use when making your calculations. Adding and Subtracting When adding or subtracting, the final result should have the same number of decimal places as the measurement with the fewest decimal places. Multiplying and Dividing When multiplying or dividing, the result should have no more significant digits than the factor having the fewest number of significant digits. 165 Active Physics

10

11

12

13

14

15

16

17

Physics Talk NEWTON S SECOND LAW OF MOTION. Evidence for Newton s Second Law of Motion

Physics Talk NEWTON S SECOND LAW OF MOTION. Evidence for Newton s Second Law of Motion Chapter 2 Physics in Action Physics Talk Physics Words Newton s second law of motion: the acceleration of an object is directly proportional to the unbalanced force acting on it and inversely proportional

More information

Tutorial 2: Expressing Uncertainty (Sig Figs, Scientific Notation and Rounding)

Tutorial 2: Expressing Uncertainty (Sig Figs, Scientific Notation and Rounding) Tutorial 2: Expressing Uncertainty (Sig Figs, Scientific Notation and Rounding) Goals: To be able to convert quantities from one unit to another. To be able to express measurements and answers to the correct

More information

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific notation in calculations. Significant figures - consist of

More information

Section 3 Using Scientific Measurements. Look at the specifications for electronic balances. How do the instruments vary in precision?

Section 3 Using Scientific Measurements. Look at the specifications for electronic balances. How do the instruments vary in precision? Lesson Starter Look at the specifications for electronic balances. How do the instruments vary in precision? Discuss using a beaker to measure volume versus using a graduated cylinder. Which is more precise?

More information

THE LAWS OF MOTION. Mr. Banks 7 th Grade Science

THE LAWS OF MOTION. Mr. Banks 7 th Grade Science THE LAWS OF MOTION Mr. Banks 7 th Grade Science MOTION Motion is a change in position over a certain amount of time. When you say that something has moved you are describing motion. SPEED Speed is the

More information

Module 16: Momentum. p = m v. (16.2.1)

Module 16: Momentum. p = m v. (16.2.1) Module 16: Momentum Law II: The change of motion is proportional to the motive force impressed, and is made in the direction of the right line in which that force is impressed. If any force generates a

More information

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton Properties of Motion It took about 2500 years to different generations of philosophers, mathematicians and astronomers to understand Aristotle's theory of Natural Motion and Violent Motion: Falling bodies

More information

Chemistry 1. Worksheet 3. Significant Figures in Calculations. 1 MathTutorDVD.com

Chemistry 1. Worksheet 3. Significant Figures in Calculations. 1 MathTutorDVD.com Chemistry 1 Worksheet 3 Significant Figures in Calculations 1 Report all answers on this worksheet with the correct number of significant figures. 1) How many significant figures does each of the following

More information

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation greater than or equal to one, and less than 10 positive exponents: numbers greater than 1 negative exponents: numbers less than 1, (> 0) (fractions) 2 ways to write the same number: 6,500: standard form

More information

Forces. Net force is the combination all of the forces acting on an object. All forces have both size and direction.

Forces. Net force is the combination all of the forces acting on an object. All forces have both size and direction. Objectives Forces Describe forces, and explain how forces act on objects. Determine the net force when more than one force is acting on an object. Compare balanced and unbalanced forces. Describe ways

More information

NEWTON S LAWS OF MOTION. Review

NEWTON S LAWS OF MOTION. Review NEWTON S LAWS OF MOTION Review BACKGROUND Sir Isaac Newton (1643-1727) an English scientist and mathematician famous for his discovery of the law of gravity also discovered the three laws of motion. He

More information

Let's See What we can Remember?

Let's See What we can Remember? Let's See What we can Remember? * What is Acceleration? A change in velocity * How do you determine an objects velocity? Speed & Direction * What is speed? How fast an objects position is changing *What

More information

Force and Motion Notes

Force and Motion Notes Force and Motion Notes Unit 4 Force and Motion Learning Goals (TEKS): Force, motion, and energy. The student knows that there is a relationship between force, motion, and energy. The student is expected

More information

2_SigDigs.notebook. September 12, Tumble Buggy Speeds... Dynamics Cart Speeds...

2_SigDigs.notebook. September 12, Tumble Buggy Speeds... Dynamics Cart Speeds... Tumble Buggy Speeds... Dynamics Cart Speeds... 1 Working with Measurements in Science in science our numbers cannot be exact. we never express measurements as exact values. (Measurements from last class.)

More information

Newton s Laws of Motion. Steve Case NMGK-8 University of Mississippi October 2005

Newton s Laws of Motion. Steve Case NMGK-8 University of Mississippi October 2005 Newton s Laws of Motion Steve Case NMGK-8 University of Mississippi October 2005 Background Sir Isaac Newton (1643-1727) an English scientist and mathematician famous for his discovery of the law of gravity

More information

Redhound Day 2 Assignment (continued)

Redhound Day 2 Assignment (continued) Redhound Day 2 Assignment (continued) Directions: Watch the power point and answer the questions on the last slide Which Law is It? on your own paper. You will turn this in for a grade. Background Sir

More information

Energy Flow in Technological Systems. December 01, 2014

Energy Flow in Technological Systems. December 01, 2014 Energy Flow in Technological Systems Scientific Notation (Exponents) Scientific notation is used when we are dealing with very large or very small numbers. A number placed in scientific notation is made

More information

Newton s Laws of Motion

Newton s Laws of Motion DUY TAN UNIVERSITY DEPARTMENT OF NATURAL SCIENCE Newton s Laws of Motion Lecturer: HO VAN TUYEN Da Nang, 2017 Motions Newton s Contributions Sir Isaac Newton (1643-1727) an English scientist and mathematician.

More information

How long is the arrow?

How long is the arrow? 1.2 Measurements Measuring We have all measured things before, but how would you define it? Measurement: comparing an unknown quantity to a standard unit (known quantity) How long is the arrow? Any measurement

More information

Aristotle, Galileo, and Newton It took about 2000 years to develop the modern understanding of the relationships between force and motion.

Aristotle, Galileo, and Newton It took about 2000 years to develop the modern understanding of the relationships between force and motion. Aristotle, Galileo, and Newton It took about 2000 years to develop the modern understanding of the relationships between force and motion. Aristotle, Galileo, and Newton Aristotle Aristotle made scientific

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

Motion. A change in the position of an object

Motion. A change in the position of an object Forces & Motion Motion A change in the position of an object A change in motion is caused by force (a push or pull on an object caused by interaction of objects; either by contact or at a distance) Force

More information

The History of Motion. Ms. Thibodeau

The History of Motion. Ms. Thibodeau The History of Motion Ms. Thibodeau Aristotle Aristotle aka the Philosopher was a Greek philosopher more than 2500 years ago. He wrote on many subjects including physics, poetry, music, theater, logic,

More information

Sir Isaac Newton. How and why does matter move? DEFINITION: [Who was a Sir Isaac Newton?] SENTENCE: [Use Sir Isaac Newton in a sentence]

Sir Isaac Newton. How and why does matter move? DEFINITION: [Who was a Sir Isaac Newton?] SENTENCE: [Use Sir Isaac Newton in a sentence] DEFINITION: [Who was a Sir Isaac Newton?] Sir Isaac Newton This CONCEPT Card belongs to LEAD Science 5 ½ Unit 7: Forces LINKS Card 2 of 10 EXAMPLE: [What is an example something important Sir Isaac Newton

More information

Unit 4 Forces (Newton s Laws)

Unit 4 Forces (Newton s Laws) Name: Pd: Date: Unit Forces (Newton s Laws) The Nature of Forces force A push or pull exerted on an object. newton A unit of measure that equals the force required to accelerate kilogram of mass at meter

More information

Scientific Notation. Chemistry Honors

Scientific Notation. Chemistry Honors Scientific Notation Chemistry Honors Used to easily write very large or very small numbers: 1 mole of a substance consists of 602,000,000,000,000,000,000,000 particles (we ll come back to this in Chapter

More information

Sir Isaac Newton ( )

Sir Isaac Newton ( ) Motion and Forces Sir Isaac Newton (1643 1727) One of the world s greatest scientists Developed the 3 Laws of Motion His ideas are still correct and very much in use today! What is Motion? Motion is a

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Unit 15 LESSON 1 WHAT ARE FORCES?

Unit 15 LESSON 1 WHAT ARE FORCES? Unit 15 LESSON 1 WHAT ARE FORCES? Pushing and Pulling A force is a push or pull. Forces can cause an object at rest to move, speed up, slow down, change direction, or stop. Forces can change the shape

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Newton s third law Examples Isaac Newton s work represents one of the greatest contributions to science ever made by an individual.

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

2. REASONING AND SOLUTION When the birdfeeder is hanging freely and no one is pulling on the dangling (lower) cord, there is a tension in the cord

2. REASONING AND SOLUTION When the birdfeeder is hanging freely and no one is pulling on the dangling (lower) cord, there is a tension in the cord . REASONING AND SOLUTION When the birdfeeder is hanging freely and no one is pulling on the dangling (lower) cord, there is a tension in the cord between the birdfeeder and the tree limb (the upper cord),

More information

Chemistry Unit 1. Chapter 1 Chemical Overview

Chemistry Unit 1. Chapter 1 Chemical Overview Chemistry Unit 1 Chapter 1 Chemical Overview Chemistry Unit 1 Section 1 Overview Scientific Method Measurement Significant Figures Dimensional Analysis A main challenge of chemistry is to understand the

More information

Forces. A force is a push or a pull on an object

Forces. A force is a push or a pull on an object Forces Forces A force is a push or a pull on an object Arrows are used to represent forces. The direction of the arrow represent the direction the force that exist or being applied. Forces A net force

More information

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205 Statics ENGR 1205 Kaitlin Ford kford@mtroyal.ca B175 Today Introductions Review Course Outline and Class Schedule Course Expectations Start Chapter 1 1 the goal of this course is to develop your ability

More information

PHYSICS 149: Lecture 3

PHYSICS 149: Lecture 3 Chapter 2 PHYSICS 149: Lecture 3 2.1 Forces 2.2 Net Force 2.3 Newton s first law Lecture 3 Purdue University, Physics 149 1 Forces Forces are interactions between objects Different type of forces: Contact

More information

AP PHYSICS B 2008 SCORING GUIDELINES

AP PHYSICS B 2008 SCORING GUIDELINES AP PHYSICS B 2008 SCORING GUIDELINES General Notes About 2008 AP Physics Scoring Guidelines 1. The solutions contain the most common method of solving the free-response questions and the allocation of

More information

Do Now 5 Minutes. Topic Scientific Notation. State how many significant figures are in each of the following numbers. How do you know?

Do Now 5 Minutes. Topic Scientific Notation. State how many significant figures are in each of the following numbers. How do you know? Do Now 5 Minutes Topic Scientific Notation State how many significant figures are in each of the following numbers. How do you know? 1,400. 0.000 021 5 0.000 000 000 874 1 140,000,000,000,000 673,000,000,000

More information

Section 2: Friction, Gravity, and Elastic Forces

Section 2: Friction, Gravity, and Elastic Forces Chapter 10, Section 2 Friction, Gravity, & Elastic Forces Section 2: Friction, Gravity, and Elastic Forces What factors determine the strength of the friction force between two surfaces? What factors affect

More information

Forces and Newton s First Law

Forces and Newton s First Law Lyzinski Physics CRHS-South Forces and Newton s First Law Thus far, we have studied the motion of objects. The study of motion is known as. However, we were not interested, yet, about what caused the motion.

More information

Section 2: Newton s Laws of Motion (p. 145)

Section 2: Newton s Laws of Motion (p. 145) Section 2: Newton s Laws of Motion (p. 145) 1. In 1686, published Principia, a work explaining laws to help people understand how forces relate to the of objects. Newton s First Law of Motion (p. 145)

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Newton s Third Law. Action & Reaction Forces

Newton s Third Law. Action & Reaction Forces Newton s Third Law Action & Reaction Forces Or You cannot touch without being touched Newton s Third Law Whenever one object exerts a force on a second object, the second object exerts an equal and opposite

More information

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents.

5.1. Integer Exponents and Scientific Notation. Objectives. Use the product rule for exponents. Define 0 and negative exponents. Chapter 5 Section 5. Integer Exponents and Scientific Notation Objectives 2 4 5 6 Use the product rule for exponents. Define 0 and negative exponents. Use the quotient rule for exponents. Use the power

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

Introduction to Forces

Introduction to Forces Introduction to Forces Where do they come from? How are they measured? How are they added & Subtracted? Here s Tim & Mobey on Force Brainpop Log is: mms308 / password: marshall 7. Forces & Motion What

More information

NEWTON S LAWS OF MOTION. Chapter 2: pages Review questions 1, 5-10, 14, 17, 21-24, 30

NEWTON S LAWS OF MOTION. Chapter 2: pages Review questions 1, 5-10, 14, 17, 21-24, 30 NEWTON S LAWS OF MOTION Chapter 2: pages 37-53 Review questions 1, 5-10, 14, 17, 21-24, 30 Sir Isaac Newton Born 1642 1665 began individual studies Proved universal gravitation Invented the Calculus Reflector

More information

8 th Science Force, Motion, and Energy

8 th Science Force, Motion, and Energy 8 th Science Force, Motion, and Energy #1 What is speed plus direction? Example: Geese fly about 64 km/hr when they migrate south. A: Force B: Weight C: Acceleration D: Velocity D. Velocity #2 A push or

More information

Uncertainties in Measurement

Uncertainties in Measurement Uncertainties in Measurement Laboratory investigations involve taking measurements of physical quantities. All measurements will involve some degree of experimental uncertainty. QUESTIONS 1. How does one

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Formula Chart. Net force = 2. ADD forces in the same direction. Magnitude is the size of a force.

Formula Chart. Net force = 2. ADD forces in the same direction. Magnitude is the size of a force. 8.6 A : demonstrate and calculate how unbalanced forces change the speed or direction of an object s motion Hemphill Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy Force

More information

Unit 3 Force and Motion Student understandings for 8.6A

Unit 3 Force and Motion Student understandings for 8.6A Motion and Forces Unit 3 Force and Motion Student understandings for 8.6A Learning Goals (TEKS): Force, motion, and energy. The student knows that there is a relationship between force, motion, and energy.

More information

Significant Figures & Vectors

Significant Figures & Vectors You have to complete this reading Booklet before you attempt the Substantive Assignment. Significant Figures Significant Figures & Vectors There are two kinds of numbers in the world Exact: o Example:

More information

University of South Carolina. Stephen L Morgan. Tutorial on the Use of Significant Figures

University of South Carolina. Stephen L Morgan. Tutorial on the Use of Significant Figures University of South Carolina Stephen L Morgan Tutorial on the Use of Significant Figures All measurements are approximations--no measuring device can give perfect measurements without experimental uncertainty.

More information

Section 1 Scientific Method. Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations.

Section 1 Scientific Method. Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations. Section 1 Scientific Method Objectives Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations. Describe the differences between hypotheses, theories,

More information

Forces & Newton s Laws. Honors Physics

Forces & Newton s Laws. Honors Physics Forces & Newton s Laws Honors Physics Newton s 1 st Law An object in motion stays in motion, and an object at rest stays at rest, unless an unbalanced force acts on it. An object will maintain a constant

More information

Motion. Definition a change of position

Motion. Definition a change of position Potential energy Definition stored energy an object has because of its position Characteristics the higher up an object is, the greater its potential energy Example book sitting on the desk Kinetic energy

More information

FORCES. Force. Combining Forces

FORCES. Force. Combining Forces FORCES Force A force is a push or pull upon an object resulting from the object's interaction with another object. The unit of force is the newton (N) 1 newton is the force required to accelerate a mass

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

More information

Factors That Affect Acceleration. Inquiry Investigation Laboratory Report

Factors That Affect Acceleration. Inquiry Investigation Laboratory Report Section 1: Introduction and Guiding Question Abstract Factors That Affect Acceleration Inquiry Investigation Laboratory Report One can observe the motion of all different types of objects throughout everyday

More information

Model Rocketry. The Science Behind the Fun

Model Rocketry. The Science Behind the Fun Model Rocketry The Science Behind the Fun Topics History of Rockets Sir Isaac Newton Laws of Motion Rocket Principles Flight of a Model Rocket Rocket Propulsion Forces at Work History Rockets and rocket

More information

AP PHYSICS 2011 SCORING GUIDELINES

AP PHYSICS 2011 SCORING GUIDELINES AP PHYSICS 011 SCORING GUIDELINES General Notes About 011 AP Physics Scoring Guidelines 1. The solutions contain the most common method of solving the free-response questions and the allocation of points

More information

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24 Forces and Movement Book pg 23 25, 39-40 Syllabus 1.15-1.18, 1.24 Reflect What is the relationship between mass, force and acceleration? Learning Outcomes 1. Demonstrate an understanding of the effects

More information

Physics Knowledge Organiser P8 - Forces in balance

Physics Knowledge Organiser P8 - Forces in balance Scalar and vector quantities Scalar quantities have only a magnitude. Vector quantities have a magnitude and direction. Scalar Distance Speed mass Temperature Pressure Volume Work Vector Displacement Velocity

More information

Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

More information

Chapter 5 Matter in Motion Focus Notes

Chapter 5 Matter in Motion Focus Notes Chapter 5 Matter in Motion Focus Notes Section 1 Define the following terms: Motion, Speed, Velocity, and Acceleration Motion: an object s change in position relative to a reference point. Speed: the distance

More information

Physics 2A Chapters 4 & 5 - Newton s Laws of Motion Fall Newton s Second Law, F = ma, is the only new equation for Chapter 4 and 5.

Physics 2A Chapters 4 & 5 - Newton s Laws of Motion Fall Newton s Second Law, F = ma, is the only new equation for Chapter 4 and 5. These notes are five pages. A quick summary: Newton s Second Law, F = ma, is the only new equation for Chapter 4 and 5. A free body diagram is an essential step in organizing information to solve force

More information

ARC241 Structural Analysis I Lecture 1, Sections ST1.1 ST2.4

ARC241 Structural Analysis I Lecture 1, Sections ST1.1 ST2.4 Lecture 1, Sections ST1.1 ST2.4 ST1.1-ST1.2) Introduction ST1.3) Units of Measurements ST1.4) The International System (SI) of Units ST1.5) Numerical Calculations ST1.6) General Procedure of Analysis ST2.1)

More information

Centripetal Acceleration & Projectile Motion. 4th 6wks

Centripetal Acceleration & Projectile Motion. 4th 6wks Centripetal Acceleration & Projectile Motion 4th 6wks Centripetal Force and Acceleration Centripetal Acceleration (A C ) is the acceleration of an object towards the center of a curved or circular path.

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Measurements. October 06, 2014

Measurements. October 06, 2014 Measurements Measurements Measurements are quantitative observations. What are some kinds of quantitative observations you might make? Temperature Volume Length Mass Student A and Student B measured the

More information

Balanced forces do not cause an object to change its motion Moving objects will keep moving and stationary objects will stay stationary

Balanced forces do not cause an object to change its motion Moving objects will keep moving and stationary objects will stay stationary Newton s Laws Test 8.PS2.3) Create a demonstration of an object in motion and describe the position, force, and direction of the object. 8.PS2.4) Plan and conduct an investigation to provide evidence that

More information

What were Saturday s BIG ideas?

What were Saturday s BIG ideas? What were Saturday s BIG ideas? 1. NEED REPLACING 2. 3. 4. 5. 6. There is no single scientific method (multiple ways including empirical & theoretical) Scientific Ways of Knowing Induction -> Approach

More information

Rules for Determining Significant Digits

Rules for Determining Significant Digits Significant Figures Name: Per: aka: Significant Digits Certain Digits: Numbers you are sure of. Uncertain Digits: Last number is an estimate. Certain Digits & Uncertain digits Measurement made with instruments

More information

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS The two methods we will use to solve systems are substitution and elimination. Substitution was covered in the last lesson and elimination is covered in this lesson. Method of Elimination: 1. multiply

More information

Newton s Laws of Motion. Supplemental Text Material Pages

Newton s Laws of Motion. Supplemental Text Material Pages Newton s Laws of Motion Supplemental Text Material Pages 300-320 Sir Isaac Newton Born 1642 1665 began individual studies Proved universal gravitation Invented the Calculus Reflector telescope 1672 First

More information

Forces. Brought to you by:

Forces. Brought to you by: Forces Brought to you by: Objects have force because of their mass and inertia Mass is a measure of the amount of matter/particles in a substance. Mass is traditionally measured with a balance. Inertia

More information

AP PHYSICS B (Form B) 2008 SCORING GUIDELINES

AP PHYSICS B (Form B) 2008 SCORING GUIDELINES AP PHYSICS B (Form B) 008 SCORING GUIDELINES General Notes About 008 AP Physics Scoring Guidelines 1. The solutions contain the most common method of solving the free-response questions and the allocation

More information

(Significant Digits are in BOLD type and the non-significant digits are underlined)

(Significant Digits are in BOLD type and the non-significant digits are underlined) Name Per. Date Significant Digits Worksheet Significant digits (or significant figures) are used to represent the accuracy of a measurement. In a measurement the significant digits represent all the reliable

More information

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units ME 201 Engineering Mechanics: Statics Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units Additional Assistance Tutoring Center Mck 272 Engineering Walk-In Help Lab Aus??? Schedule to

More information

Measurement and Units. An Introduction to Chemistry By Mark Bishop

Measurement and Units. An Introduction to Chemistry By Mark Bishop Measurement and Units An Introduction to Chemistry By Mark Bishop Values from Measurements A value is a quantitative description that includes both a unit and a number. For 100 meters, the meter is a unit

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton's Laws of Motion The British scientist Sir Isaac Newton (164 177) was able to state rules that describe the effects of forces on the motion of objects. These rules are known as Newton's law's of

More information

Dynamics. Newton s Second Law of Motion

Dynamics. Newton s Second Law of Motion Dynamics Newton s Second Law of Motion Do Now 1. Write down the algebraic equation representing the 2d Law of Motion. 2. What effect the change in one of the variables in the equation will have on the

More information

FORCE. Definition: Combining Forces (Resultant Force)

FORCE. Definition: Combining Forces (Resultant Force) 1 FORCE Definition: A force is either push or pull. A Force is a vector quantity that means it has magnitude and direction. Force is measured in a unit called Newtons (N). Some examples of forces are:

More information

Significant Figures, Precision and Accuracy, and Dimensional Analysis

Significant Figures, Precision and Accuracy, and Dimensional Analysis Significant Figures, Precision and Accuracy, and Dimensional Analysis 1 I. SIGNIFICANT FIGURES - In chemistry, when do we need to worry about the digits reported in a number? 1. Significant Figure Rules

More information

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion Motion and Forces Sir Isaac Newton (1643 1727) One of the world s greatest scientists Developed the 3 Laws of Motion Newton s Laws of Motion 1 st Law Law of Inertia 2 nd Law Force = Mass x Acceleration

More information

Forces and Motion. May 10, 2017

Forces and Motion. May 10, 2017 Forces and Motion May 10, 2017 Forces in Motion- Key Vocabulary Gravity Mass Weight Motion Friction Axis Potential Energy Kinetic Energy Acceleration Velocity Distance Position Direction Speed Momentum

More information

Marr College Science. Forces. Learning Outcomes and Summary Notes

Marr College Science. Forces. Learning Outcomes and Summary Notes Marr College Science Forces Learning Outcomes and Summary Notes Learning Intentions By the end of this unit I will be able to 1. Describe a force as a push or a pull. 2. Describe the effects of forces

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

A force is could described by its magnitude and by the direction in which it acts.

A force is could described by its magnitude and by the direction in which it acts. 8.2.a Forces Students know a force has both direction and magnitude. P13 A force is could described by its magnitude and by the direction in which it acts. 1. Which of the following could describe the

More information

EOG Review Newton's First Law Motion.notebook May 22, 2018

EOG Review Newton's First Law Motion.notebook May 22, 2018 2009 SMART Technologies ULC. All rights reserved. 1 For the Teacher 2 Place an and a beside an incorrect statement beside a correct statement. Sir Isaac Newton devised four laws of motion. Sir Isaac Newton

More information

Activity 95, Universal Gravitation! Issues & Earth Science: Student Book!!

Activity 95, Universal Gravitation! Issues & Earth Science: Student Book!! Activity 95, Universal Gravitation! from! Issues & Earth Science: Student Book!!! 2012 The Regents of the University of California! 95 I N V E S T I G AT I O N force is any push or pull. The force due

More information

Grade 7/8 Math Circles March 8 & Physics

Grade 7/8 Math Circles March 8 & Physics Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles March 8 & 9 2016 Physics Physics is the study of how the universe behaves. This

More information

SECTION 1 (PP ):

SECTION 1 (PP ): FORCES CHANGE MOTION. Georgia Standards: S8P3b Demonstrate the effect of balanced and unbalanced forces on an object in terms of gravity, inertia, and friction; S8CS6a Write clear, step-by-step instructions

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Statics. Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1

Statics. Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 Statics ENGR 1205 Kaitlin Ford kford@mtroyal.ca B175 Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 1 Review the Course Outline and Class Schedule Go through

More information

Newton. Galileo THE LAW OF INERTIA REVIEW

Newton. Galileo THE LAW OF INERTIA REVIEW Galileo Newton THE LAW OF INERTIA REVIEW 1 MOTION IS RELATIVE We are moving 0 m/s and 30km/s Find the resultant velocities MOTION IS RELATIVE Position versus Time Graph. Explain how the car is moving.

More information

So Who was Sir Issac Newton??

So Who was Sir Issac Newton?? So Who was Sir Issac Newton?? Sir Isaac Newton (1642 1727), an English physicist and mathematician, was one of the most brilliant scientists in history. Before age 30, he had made several important discoveries

More information

Forces & Pivots. This week you will be: Learning about forces and how to calculate them. Learning about pivots and how to use them

Forces & Pivots. This week you will be: Learning about forces and how to calculate them. Learning about pivots and how to use them Loadall Challenge Forces & Pivots This week you will be: Learning about forces and how to calculate them Learning about pivots and how to use them Starting to build your Loadall model Forces - Introduction

More information

Lecture 7: More on Newton s Laws

Lecture 7: More on Newton s Laws Lecture 7: More on Newton s Laws Other Important Aspects of the Second Law: Note that = ma is a vector equation, i.e., it is equivalent to saying: = ma x y z = ma = ma An object accelerates in the same

More information