By definition, a translation is applied to a point or set of points. Intuitively, when you translate

Size: px
Start display at page:

Download "By definition, a translation is applied to a point or set of points. Intuitively, when you translate"

Transcription

1 Translations and Scale Changes T hk, S ab, TRANSLATIONS, T hk By definition, a translation is applied to a point or set of points. Intuitively, when you translate a set of points, you are just "sliding" them to a different location. The translation can be in a horizontal direction (an idea) or in a vertical direction (a y idea) or both. We use the following notation to designate translations applied to a point: T :( y, ) ( + hy, + k) hk, the h value tells us how far and what direction (left or right) to move the point and the k value tells us how far and what direction (up or down) to move the point. Eample : Translate the point (-, ) three units left and four units up. T :(,) ( +,+ 4) = ( 4,6),4 Problem epressed in proper notation. Notice that left means negative, that's why we used -. Also, up means positive, so we used 4. So, the point (-, ) translated units to the left and 4 units up is the point (-4, 6). Eample : Translate the point (0, 5) two units right and si units down. T :(0,5) (0+,5+ 6) = (, ), 6 Problem epressed in proper notation. Notice that down means negative, that's why we used -6. Also, right means positive, so we used. So, the point (0, 5) translated units to the right and 6 units down is the point (, -). Can you see how a translation is an additive idea? The idea of translating points might seem pretty simple. In fact, it is! However, when we apply translations to an equation, things get a little more confusing. C onsider the equation y =. If we were looking at its graph, we would be looking at a set of points. If you were asked to translate the graph (a set of points) three units right and one unit down, you probably wouldn't have much trouble doing that. The problem arises when we try to show those same translations in the equation. In other words, how would the original equation, y =,change to show the translations? The parabola translated uints right and unit down. Revised October 0, 009

2 To show translations in an equation, memorize the following: Replace with minus the translation. i.e. ( translation) Replace y with y minus the translation. i.e. y ( ytranslation) Eample : Let y = three units down?. What is the new equation representing a translation of two units right and T, : y = y = ( ) or y + = ( ) Original Equation Equation representing the translated graph y = y+ = ( ) Eample : Let y = e units up?. What is the new equation representing a translation of one unit left and two ( ) ( + ) T, : y = e y = e or y = e Original Equation Equation representing the translated graph ( ) y = e + y = e Eample : The original function is y =. a. What are the translations? T, b. What is the equation of the translated graph? T, : y = Eample 4: How would you represent a translation of two down? T0, The translation is 0, since adding 0 to the values will not change them. The points would move down. Revised October 0, 009 Page

3 SCALE CHANGES, S ab By definition, a (or size change) is applied to a point or set of points. Intuitively, when you apply a to a set of points, you are just "stretching" or "shrinking" them. The can act in a horizontal direction (an idea) or in a vertical direction (a y idea) or both. We use the following notation to designate s applied to a point: S :(, ) (, ) ab, y aby the a>0 value tells us the factor to stretch or shrink the point horizontally and the b>0 value tells us the factor to stretch or shrink the point vertically. Eample : Apply a of two horizontally (the values) and a of vertically (the y values) to the point (-, 9). S, :(,9), 9 = (,) Problem epressed in proper notation. Eample : Apply a of horizontally (the values) and a of vertically (the y values) to the point (6, 5). S, 0 :(6,5) 6, 5 =, Problem epressed in proper notation. Can you see how a is a multiplicative idea? The idea of applying s to points might seem pretty simple. In fact, it is! However, when we apply s to an equation, things get a little more confusing. Consider the equation y = sin. If we were looking at the graph, we would be looking at a set of points. If you were asked to halve the values and double the y values, you probably wouldn't have much trouble doing that. The problem arises when we try to show those same s in the equation. In other words, how would the original equation, y = sin,change to show the scale changes? y = sin Transformed graph The original values have been halved while the original y values have been doubled. So, the transformed graph is half as wide and twice as tall. Revised October 0, 009 Page

4 To show s in an equation, memorize the following: Replace with over the. i.e. Replace y with y over the. i.e. y y Eample : Let y = +. What is the new equation representing a horizontal of two? Notice that there is no vertically (on the y values). That means that the y scale factor will be. (Multiplying all the y values by will not change them.), : S y = + y = + Original Equation Equation representing the scaled graph Notice we used a for the y. y = + y = + The transformed graph is twice as wide as the original graph. Note: The original graph has a zero at =. The transformed graph has a zero at =, twice the original value. Another point on the original graph would be (.5, -.5). The corresponding point on the transformed graph is (, -.5). Eample : Let y =. What is the new equation representing a vertical of? + Notice that there is no horizontally (on the values). That means that the scale factor will be. (Multiplying all the values by will not change them.) y : = = or =, S y + + y + Original Equation Equation representing the scaled graph Notice we used a for the. y = + y = + Note: The original graph has a y-intercept of -. The transformed graph has a y-intercept of -, which is of the original y-intercept. Another point on the original graph would be,. The 5 corresponding point on the transformed graph would be,. 5 The transformed graph is / times smaller vertically. Revised October 0, 009 Page 4

5 + Eample : Let y =. What is the new equation representing a vertical of + 5 and a horizontal of? y 5 5 S: y = = or y =, Original 5 + Equation 5 Equation representing the scaled graph The transformed graph is.5 times bigger vertically and 0.4 times smaller horizontally. 5 5 ( ) ( ) ( ) y = 5 + y = + 5 Note: The original graph has a maimum at 5, and the transformed graph has a maimum at, =,. Another point on the original graph is. The , 8 4 corresponding point on the transformed would be 6, =,. The minimum y value on the original is 0.5 and the minimum y value on the transformed graph is 0.5 =. 4 Revised October 0, 009 Page 5

6 PUTTING IT ALL TOGETHER Let's put the translations and s together. To do that we have to be aware that there's a difference as to which transformations we apply first. It turns out that you must always apply the s first and the translations last, otherwise this whole idea of replacing with minus the translation, replacing y with y minus the translation, replacing with over the, and replacing y with y over the y won't work. Eample : Let y cos. What is the transformed equation after applying T and S? =,4, y y4 y4 T ( S,4 ): y = cos = cos = cos or = cos ( + ), Replace with over - Replace with minus Replace y with y over / Replace y with y minus 4 ( ) y 4 = cos ( + ) ( ) The transformed graph is times bigger vertically, 0.5 times smaller horizontally, translated unit to the left, and 4 units up. y = cos For the trig students: Original period: π Transformed or new period: π = π Original Amplitude: Transformed amplitude: = Original phase shift: none Transformed phase shift: left Original vertical translation: none Transformed vertical translation: 4 Original mid-line: -ais Transformed mid-line: 7+ y = = 4 Revised October 0, 009 Page 6

7 One thing that's not been mentioned: What happens if the involves a negative number? If the is negative: The result is a reflection across the y-ais. S, would represent a horizontal of in addition to reflecting the graph across the y- ais. You're replacing with over -. If you focus on just the negative part, you're replacing with the negative of. That's a reflection over the y-ais (think about it). If the y is negative: The result is a reflection across the -ais. S, would represent a vertical of in addition to reflecting the graph across the -ais. You're replacing y with y over -. If you focus on just the negative part, you're replacing y with the negative of y. That's a reflection over the -ais (think about it). A negative with the scale factor reflects the graph over the y-ais. A negative with the y scale factor reflects the graph over the -ais. Eample : Let y =. What is the transformed equation after applying S,?, : y or S y = = y = OR values are doubled first reflect over the y ais y = y = y = reflect over the y ais first double the values y = y = Revised October 0, 009

8 Connections Between Point and Equation Transformations Original Point Transformed Point Transformation Original Equation Transformed Equation. (, y) (, ) S, y = +. (, y) (, ). (, y),6 4 y y = sin y 8= sin( ) y = 4. (, y) (, ) T y = 0.5,4 y 5. (, y), y = (, y) (, ) S y = f( ), 7. (, y),4y ( ) y = 8. (, y) (, ) y = int( ) 9. (, y) (, ) T0, 0. (, y) (, ) y = 6 int 5 y = y = () 5 y = (). (, y) + 5, y y = log 5( ) + 4 ( ). (, y) (, ) S 4 y ( ), = (, y) (, ) ( ) y = sin 5 π y = sin(+ ) π 4. (, y) (, ) y = f( ) y = f (4 ) y 5. (, y) 8, y = + 6 Revised October 0, 009 Page 8

9 6. S, / T -, 4 : (, y) o 7. T -, 4 S, / : (, y) o 8. In general, is S o T = T o S? What property is this question asking about for s and translations? 9. There's a special involved in showing two figures are similar. What is this scale change called and what is the proper way to indicate it using mathematical symbols? I n the following problems, identify the parent function and the transformation(s) using the proper mathematical symbols. Write the equation for the transformed parent function. (The GRID feature is found under FORMAT.) Revised October 0, 009 Page 9

10 Replace with minus the translation. i.e. ( translation) Replace y with y minus the translation. i.e. y ( ytranslation) ( ) Thk, : y, ( + hy, + k) WHY? This is the definition of translations. It's how we apply translations to points. If ' = + h and y '= y + k, then ' would represent the transformed and y ' would represent the transformed y. If we solve these two equations for and y, we would have = ' h and y = y' k. So to apply the translations h and k to the equation y = f ( ), we must replace in the original equation with ' hand y with y' k. Are you beginning to see where the two sentences at the top of the page come from, why they are so important, and why I've asked you to memorize them? To apply the translations, make the substitutions = ' h and y = y' k in the equation y = f ( ). We now have that Thk, : y = f ( ) y' k = f( ' h). So the transformed equation representing the translations is y' k = f ( ' h). But, ' and y' just represent and y values, so we'll rewrite the transformed equation using 's and y's. i.e. y k = f ( h) So... Thk, : y = f ( ) y k = f ( h) This is how we apply translations to equations. Replace with minus the translation. i.e. ( translation) Replace y with y minus the translation. i.e. y ( ytranslation) MEMORIZE! Revised October 0, 009 Page 0

11 Replace with over the. i.e. Replace y with y over the. i.e. y WHY? y S, :( y, ) ( a, by) This is the definition of s. It's how we apply s to points. ab If ' = a and y ' = by, then ' would represent the transformed and y ' would represent the ' y' transformed y. If we solve these two equations for and y, we would have = and y =. a b So to apply the s a and b to the equation y = f ( ), we must replace the in the original ' y ' equation with and y with. Are you beginning to see where the two sentences at the top of the a b page come from, why they are so important, and why I've asked you to memorize them?? T ' y' o apply the s, make the substitutions = and y in the equation. a = y = f b ( ) y' ' We now have that Sab, : y = f ( ) = f. So the transformed equation representing the b a y' ' s is = f. But, ' and y' just represent and y values, so we'll rewrite the b a y transformed equation using 's and y's. i.e. = f. b a y So... Sab, : y = f ( ) = f This is how we apply s to equations. b a Replace with over the. i.e. Replace y with y over the. i.e. y MEMORIZE! y Revised October 0, 009 Page

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas Unit 4 Polnomial/Rational Functions Quadratic Functions (Chap 0.3) William (Bill) Finch Lesson Goals When ou have completed this lesson ou will: Graph and analze the graphs of quadratic functions. Solve

More information

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

4.5 Rational functions.

4.5 Rational functions. 4.5 Rational functions. We have studied graphs of polynomials and we understand the graphical significance of the zeros of the polynomial and their multiplicities. Now we are ready to etend these eplorations

More information

4-1 Graphing Quadratic Functions

4-1 Graphing Quadratic Functions 4-1 Graphing Quadratic Functions Quadratic Function in standard form: f() a b c The graph of a quadratic function is a. y intercept Ais of symmetry -coordinate of verte coordinate of verte 1) f ( ) 4 a=

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

9.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED LESSON

9.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED LESSON CONDENSED LESSON 9.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations solve

More information

Lesson 6: Algebra. Chapter 2, Video 1: "Variables"

Lesson 6: Algebra. Chapter 2, Video 1: Variables Lesson 6: Algebra Chapter 2, Video 1: "Variables" Algebra 1, variables. In math, when the value of a number isn't known, a letter is used to represent the unknown number. This letter is called a variable.

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

Section 3.3 Graphs of Polynomial Functions

Section 3.3 Graphs of Polynomial Functions 3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T0 INTRODUCING PARABOLAS 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) QUADRATIC FUNCTION = a statement containing different kinds of variables where one variable lacks a visible exponent and

More information

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation?

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation? Algebra Concepts Equation Solving Flow Chart Page of 6 How Do I Solve This Equation? First, simplify both sides of the equation as much as possible by: combining like terms, removing parentheses using

More information

The Graphs of Mixed Functions (Day 13 1)

The Graphs of Mixed Functions (Day 13 1) The Graphs of Mied Functions (Day 3 ) In this unit, we will remember how to graph some old functions and discover how to graph lots of new functions. Eercise : Graph and label the parent function f( )

More information

Elastic potential energy

Elastic potential energy Elastic potential energy Objectives Investigate eamples of elastic potential energy. Provide or identify a conceptual definition of the spring constant. Calculate the potential energy, spring constant,

More information

Section 4.5 Graphs of Logarithmic Functions

Section 4.5 Graphs of Logarithmic Functions 6 Chapter 4 Section 4. Graphs of Logarithmic Functions Recall that the eponential function f ( ) would produce this table of values -3 - -1 0 1 3 f() 1/8 ¼ ½ 1 4 8 Since the arithmic function is an inverse

More information

Higher Tier - Algebra revision

Higher Tier - Algebra revision Higher Tier - Algebra revision Contents: Indices Epanding single brackets Epanding double brackets Substitution Solving equations Solving equations from angle probs Finding nth term of a sequence Simultaneous

More information

Writing Quadratic Functions in Standard Form

Writing Quadratic Functions in Standard Form Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval

More information

Algebra Notes Quadratic Functions and Equations Unit 08

Algebra Notes Quadratic Functions and Equations Unit 08 Note: This Unit contains concepts that are separated for teacher use, but which must be integrated by the completion of the unit so students can make sense of choosing appropriate methods for solving quadratic

More information

Lesson 10.1 Solving Quadratic Equations

Lesson 10.1 Solving Quadratic Equations Lesson 10.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with each set of conditions. a. One -intercept and all nonnegative y-values b. The verte in the third quadrant and no

More information

Solve Quadratic Equations

Solve Quadratic Equations Skill: solve quadratic equations by factoring. Solve Quadratic Equations A.SSE.A. Interpret the structure of epressions. Use the structure of an epression to identify ways to rewrite it. For eample, see

More information

9. TRANSFORMING TOOL #2 (the Multiplication Property of Equality)

9. TRANSFORMING TOOL #2 (the Multiplication Property of Equality) 9 TRANSFORMING TOOL # (the Multiplication Property of Equality) a second transforming tool THEOREM Multiplication Property of Equality In the previous section, we learned that adding/subtracting the same

More information

Introduction. So, why did I even bother to write this?

Introduction. So, why did I even bother to write this? Introduction This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The review contains the occasional

More information

Math Analysis/Honors Math Analysis Summer Assignment

Math Analysis/Honors Math Analysis Summer Assignment Math Analysis/Honors Math Analysis Summer Assignment To be successful in Math Analysis or Honors Math Analysis, a full understanding of the topics listed below is required prior to the school year. To

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)(3 + 5)

More information

Lesson #33 Solving Incomplete Quadratics

Lesson #33 Solving Incomplete Quadratics Lesson # Solving Incomplete Quadratics A.A.4 Know and apply the technique of completing the square ~ 1 ~ We can also set up any quadratic to solve it in this way by completing the square, the technique

More information

Secondary Math 2 Honors Unit 4 Graphing Quadratic Functions

Secondary Math 2 Honors Unit 4 Graphing Quadratic Functions SMH Secondary Math Honors Unit 4 Graphing Quadratic Functions 4.0 Forms of Quadratic Functions Form: ( ) f = a + b + c, where a 0. There are no parentheses. f = 3 + 7 Eample: ( ) Form: f ( ) = a( p)( q),

More information

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable.

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable. C H A P T E R 6 Algebra Review This chapter reviews key skills and concepts of algebra that you need to know for the SAT. Throughout the chapter are sample questions in the style of SAT questions. Each

More information

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Introduction: In applications, it often turns out that one cannot solve the differential equations or antiderivatives that show up in the real

More information

1 a) Remember, the negative in the front and the negative in the exponent have nothing to do w/ 1 each other. Answer: 3/ 2 3/ 4. 8x y.

1 a) Remember, the negative in the front and the negative in the exponent have nothing to do w/ 1 each other. Answer: 3/ 2 3/ 4. 8x y. AP Calculus Summer Packer Key a) Remember, the negative in the front and the negative in the eponent have nothing to do w/ each other. Answer: b) Answer: c) Answer: ( ) 4 5 = 5 or 0 /. 9 8 d) The 6,, and

More information

Using Exploration and Technology to Teach Graph Translations

Using Exploration and Technology to Teach Graph Translations Using Eploration and Technology to Teach Graph Translations Rutgers Precalculus Conference March 16, 2018 Frank Forte Raritan Valley Community College Opening Introduction Motivation learning the alphabet

More information

Study Resources For Algebra I. Unit 2A Graphs of Quadratic Functions

Study Resources For Algebra I. Unit 2A Graphs of Quadratic Functions Study Resources For Algebra I Unit 2A Graphs of Quadratic Functions This unit examines the graphical behavior of quadratic functions. Information compiled and written by Ellen Mangels, Cockeysville Middle

More information

8 f(8) = 0 (8,0) 4 f(4) = 4 (4, 4) 2 f(2) = 3 (2, 3) 6 f(6) = 3 (6, 3) Outputs. Inputs

8 f(8) = 0 (8,0) 4 f(4) = 4 (4, 4) 2 f(2) = 3 (2, 3) 6 f(6) = 3 (6, 3) Outputs. Inputs In the previous set of notes we covered how to transform a graph by stretching or compressing it vertically. In this lesson we will focus on stretching or compressing a graph horizontally, which like the

More information

31. TRANSFORMING TOOL #2 (the Multiplication Property of Equality)

31. TRANSFORMING TOOL #2 (the Multiplication Property of Equality) 3 TRANSFORMING TOOL # (the Multiplication Property of Equality) a second transforming tool THEOREM Multiplication Property of Equality In the previous section, we learned that adding/subtracting the same

More information

Rational Functions. A rational function is a function that is a ratio of 2 polynomials (in reduced form), e.g.

Rational Functions. A rational function is a function that is a ratio of 2 polynomials (in reduced form), e.g. Rational Functions A rational function is a function that is a ratio of polynomials (in reduced form), e.g. f() = p( ) q( ) where p() and q() are polynomials The function is defined when the denominator

More information

Review: Properties of Exponents (Allow students to come up with these on their own.) m n m n. a a a. n n n m. a a a. a b a

Review: Properties of Exponents (Allow students to come up with these on their own.) m n m n. a a a. n n n m. a a a. a b a Algebra II Notes Unit Si: Polynomials Syllabus Objectives: 6. The student will simplify polynomial epressions. Review: Properties of Eponents (Allow students to come up with these on their own.) Let a

More information

AP Calculus AB Mrs. Mills Carlmont High School

AP Calculus AB Mrs. Mills Carlmont High School AP Calculus AB 015-016 Mrs. Mills Carlmont High School AP CALCULUS AB SUMMER ASSIGNMENT NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY! Read through the notes & eamples for each page and then solve all

More information

Quadratics NOTES.notebook November 02, 2017

Quadratics NOTES.notebook November 02, 2017 1) Find y where y = 2-1 and a) = 2 b) = -1 c) = 0 2) Epand the brackets and simplify: (m + 4)(2m - 3) To find the equation of quadratic graphs using substitution of a point. 3) Fully factorise 4y 2-5y

More information

ALGEBRA II SEMESTER EXAMS PRACTICE MATERIALS SEMESTER (1.2-1) What is the inverse of f ( x) 2x 9? (A) (B) x x (C) (D) 2. (1.

ALGEBRA II SEMESTER EXAMS PRACTICE MATERIALS SEMESTER (1.2-1) What is the inverse of f ( x) 2x 9? (A) (B) x x (C) (D) 2. (1. 04-05 SEMESTER EXAMS. (.-) What is the inverse of f ( ) 9? f f f f ( ) 9 ( ) 9 9 ( ) ( ) 9. (.-) If 4 f ( ) 8, what is f ( )? f( ) ( 8) 4 f ( ) 8 4 4 f( ) 6 4 f( ) ( 8). (.4-) Which statement must be true

More information

Math 140 Final Sample A Solutions. Tyrone Crisp

Math 140 Final Sample A Solutions. Tyrone Crisp Math 4 Final Sample A Solutions Tyrone Crisp (B) Direct substitution gives, so the limit is infinite. When is close to, but greater than,, the numerator is negative while the denominator is positive. So

More information

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up .7 Start Thinking Use a graphing calculator to graph the function f ( ) =. Sketch the graph on a coordinate plane. Describe the graph of the function. Now graph the functions g ( ) 5, and h ( ) 5 the same

More information

(b) Equation for a parabola: c) Direction of Opening (1) If a is positive, it opens (2) If a is negative, it opens

(b) Equation for a parabola: c) Direction of Opening (1) If a is positive, it opens (2) If a is negative, it opens Section.1 Graphing Quadratics Objectives: 1. Graph Quadratic Functions. Find the ais of symmetry and coordinates of the verte of a parabola.. Model data using a quadratic function. y = 5 I. Think and Discuss

More information

Lecture 5: Finding limits analytically Simple indeterminate forms

Lecture 5: Finding limits analytically Simple indeterminate forms Lecture 5: Finding its analytically Simple indeterminate forms Objectives: (5.) Use algebraic techniques to resolve 0/0 indeterminate forms. (5.) Use the squeeze theorem to evaluate its. (5.3) Use trigonometric

More information

Unit 6: 10 3x 2. Semester 2 Final Review Name: Date: Advanced Algebra

Unit 6: 10 3x 2. Semester 2 Final Review Name: Date: Advanced Algebra Semester Final Review Name: Date: Advanced Algebra Unit 6: # : Find the inverse of: 0 ) f ( ) = ) f ( ) Finding Inverses, Graphing Radical Functions, Simplifying Radical Epressions, & Solving Radical Equations

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

6.6 General Form of the Equation for a Linear Relation

6.6 General Form of the Equation for a Linear Relation 6.6 General Form of the Equation for a Linear Relation FOCUS Relate the graph of a line to its equation in general form. We can write an equation in different forms. y 0 6 5 y 10 = 0 An equation for this

More information

Quadratic Function. Parabola. Parent quadratic function. Vertex. Axis of Symmetry

Quadratic Function. Parabola. Parent quadratic function. Vertex. Axis of Symmetry Name: Chapter 10: Quadratic Equations and Functions Section 10.1: Graph = a + c Quadratic Function Parabola Parent quadratic function Verte Ais of Smmetr Parent Function = - -1 0 1 1 Eample 1: Make a table,

More information

Sophomore Year: Algebra II Textbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012

Sophomore Year: Algebra II Textbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012 Sophomore Year: Algebra II Tetbook: Algebra II, Common Core Edition Larson, Boswell, Kanold, Stiff Holt McDougal 2012 Course Description: The purpose of this course is to give students a strong foundation

More information

Name: Period: SM Starter on Reading Quadratic Graph. This graph and equation represent the path of an object being thrown.

Name: Period: SM Starter on Reading Quadratic Graph. This graph and equation represent the path of an object being thrown. SM Name: Period: 7.5 Starter on Reading Quadratic Graph This graph and equation represent the path of an object being thrown. 1. What is the -ais measuring?. What is the y-ais measuring? 3. What are the

More information

Dr. Relja Vulanovic Professor of Mathematics Kent State University at Stark c 2008

Dr. Relja Vulanovic Professor of Mathematics Kent State University at Stark c 2008 MATH-LITERACY MANUAL Dr. Relja Vulanovic Professor of Mathematics Kent State University at Stark c 2008 2 Algebraic Epressions 2.1 Terms and Factors 29 2.2 Types of Algebraic Epressions 32 2.3 Transforming

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

Transformations. Chapter D Transformations Translation

Transformations. Chapter D Transformations Translation Chapter 4 Transformations Transformations between arbitrary vector spaces, especially linear transformations, are usually studied in a linear algebra class. Here, we focus our attention to transformation

More information

Exam 2 Review F15 O Brien. Exam 2 Review:

Exam 2 Review F15 O Brien. Exam 2 Review: Eam Review:.. Directions: Completely rework Eam and then work the following problems with your book notes and homework closed. You may have your graphing calculator and some blank paper. The idea is to

More information

Vertex. March 23, Ch 9 Guided Notes.notebook

Vertex. March 23, Ch 9 Guided Notes.notebook March, 07 9 Quadratic Graphs and Their Properties A quadratic function is a function that can be written in the form: Verte Its graph looks like... which we call a parabola. The simplest quadratic function

More information

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs Sample Questions to the Final Eam in Math 1111 Chapter Section.1: Basics of Functions and Their Graphs 1. Find the range of the function: y 16. a.[-4,4] b.(, 4],[4, ) c.[0, ) d.(, ) e.. Find the domain

More information

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet.

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet. Ch Alg L Note Sheet Ke Do Activit 1 on our Ch Activit Sheet. Chapter : Quadratic Equations and Functions.1 Modeling Data With Quadratic Functions You had three forms for linear equations, ou will have

More information

Conceptual Explanations: Radicals

Conceptual Explanations: Radicals Conceptual Eplanations: Radicals The concept of a radical (or root) is a familiar one, and was reviewed in the conceptual eplanation of logarithms in the previous chapter. In this chapter, we are going

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME CALCULUS BASIC SUMMER REVIEW Slope of a non vertical line: rise y y y m run Point Slope Equation: y y m( ) The slope is m and a point on your line is, ). ( y Slope-Intercept Equation: y m b slope=

More information

Answers Investigation 4

Answers Investigation 4 Answers Investigation Applications. a. 7 gallons are being pumped out each hour; students may make a table and notice the constant rate of change, which is - 7, or they may recognize that - 7 is the coefficient

More information

MITOCW ocw f99-lec01_300k

MITOCW ocw f99-lec01_300k MITOCW ocw-18.06-f99-lec01_300k Hi. This is the first lecture in MIT's course 18.06, linear algebra, and I'm Gilbert Strang. The text for the course is this book, Introduction to Linear Algebra. And the

More information

Section 1.2 A Catalog of Essential Functions

Section 1.2 A Catalog of Essential Functions Page 1 of 6 Section 1. A Catalog of Essential Functions Linear Models: All linear equations have the form y = m + b. rise change in horizontal The letter m is the slope of the line, or. It can be positive,

More information

UNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS

UNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS Answer Ke Name: Date: UNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS Part I Questions. For the quadratic function shown below, the coordinates of its verte are, (), 7 6,, 6 The verte is

More information

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Ch 5 Alg Note Sheet Ke Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Definition: Standard Form of a Quadratic Function The

More information

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETR Some Key Concepts:. The slope and the equation of a straight line. Functions and functional notation. The average rate of change of a function and the DIFFERENCE-

More information

MCR3U 1.1 Relations and Functions Date:

MCR3U 1.1 Relations and Functions Date: MCR3U 1.1 Relations and Functions Date: Relation: a relationship between sets of information. ie height and time of a ball in the air. In relations, the pairs of time and heights are "ordered"; ie ordered

More information

Math 120. x x 4 x. . In this problem, we are combining fractions. To do this, we must have

Math 120. x x 4 x. . In this problem, we are combining fractions. To do this, we must have Math 10 Final Eam Review 1. 4 5 6 5 4 4 4 7 5 Worked out solutions. In this problem, we are subtracting one polynomial from another. When adding or subtracting polynomials, we combine like terms. Remember

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward.

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward. Mathematics 10 Page 1 of 8 Quadratic Relations in Vertex Form The expression y ax p q defines a quadratic relation in form. The coordinates of the of the corresponding parabola are p, q. If a > 0, the

More information

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph.

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph. . Zeros Eample 1. At the right we have drawn the graph of the polnomial = ( 1) ( 2) ( 4). Argue that the form of the algebraic formula allows ou to see right awa where the graph is above the -ais, where

More information

Instructor Quick Check: Question Block 12

Instructor Quick Check: Question Block 12 Instructor Quick Check: Question Block 2 How to Administer the Quick Check: The Quick Check consists of two parts: an Instructor portion which includes solutions and a Student portion with problems for

More information

Newbattle Community High School Higher Mathematics. Key Facts Q&A

Newbattle Community High School Higher Mathematics. Key Facts Q&A Key Facts Q&A Ways of using this booklet: 1) Write the questions on cards with the answers on the back and test yourself. ) Work with a friend who is also doing to take turns reading a random question

More information

Section 2.7 Solving Linear Inequalities

Section 2.7 Solving Linear Inequalities Section.7 Solving Linear Inequalities Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Add and multiply an inequality. Solving equations (.1,.,

More information

ICM ~ Unit 4 ~ Day 3. Horizontal Asymptotes, End Behavior

ICM ~ Unit 4 ~ Day 3. Horizontal Asymptotes, End Behavior ICM ~ Unit 4 ~ Day 3 Horizontal Asymptotes, End Behavior Warm Up ~ Day 3 1. Find the domain, then convert to fractional/rational eponent. f ( ) 7. Simplify completely: 3( + 5). 3. Find the domain, & y

More information

12. Quadratics NOTES.notebook September 21, 2017

12. Quadratics NOTES.notebook September 21, 2017 1) Fully factorise 4y 2-5y - 6 Today's Learning: To find the equation of quadratic graphs using substitution of a point. 2) Epand the brackets and simplify: (m + 4)(2m - 3) 3) Calculate 20% of 340 without

More information

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2 AP Calculus Students: Welcome to AP Calculus. Class begins in approimately - months. In this packet, you will find numerous topics that were covered in your Algebra and Pre-Calculus courses. These are

More information

P1 Chapter 4 :: Graphs & Transformations

P1 Chapter 4 :: Graphs & Transformations P1 Chapter 4 :: Graphs & Transformations jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 14 th September 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

Algebra I Practice Questions ? 1. Which is equivalent to (A) (B) (C) (D) 2. Which is equivalent to 6 8? (A) 4 3

Algebra I Practice Questions ? 1. Which is equivalent to (A) (B) (C) (D) 2. Which is equivalent to 6 8? (A) 4 3 1. Which is equivalent to 64 100? 10 50 8 10 8 100. Which is equivalent to 6 8? 4 8 1 4. Which is equivalent to 7 6? 4 4 4. Which is equivalent to 4? 8 6 Page 1 of 0 11 Practice Questions 6 1 5. Which

More information

Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation

Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation Section -1 Functions Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation Definition: A rule that produces eactly one output for one input is

More information

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis ADDITIONAL MATHEMATICS MODULE 5 QUADRATIC FUNCTIONS CHAPTER 3 : QUADRARIC FUNCTIONS MODULE 5 3.1 CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions 3 3.3 Graphs of quadratic functions 4 Eercise

More information

Rational Functions. p x q x. f x = where p(x) and q(x) are polynomials, and q x 0. Here are some examples: x 1 x 3.

Rational Functions. p x q x. f x = where p(x) and q(x) are polynomials, and q x 0. Here are some examples: x 1 x 3. Rational Functions In mathematics, rational means in a ratio. A rational function is a ratio of two polynomials. Rational functions have the general form p x q x, where p(x) and q(x) are polynomials, and

More information

Finding Slope. Find the slopes of the lines passing through the following points. rise run

Finding Slope. Find the slopes of the lines passing through the following points. rise run Finding Slope Find the slopes of the lines passing through the following points. y y1 Formula for slope: m 1 m rise run Find the slopes of the lines passing through the following points. E #1: (7,0) and

More information

EQ: How do I identify exponential growth? Bellwork:

EQ: How do I identify exponential growth? Bellwork: EQ: How do I identify exponential growth? Bellwork: 1. Bethany's grandmother has been sending her money for her birthday every year since she turned 1. When she was one, her grandmother sent her $5. Every

More information

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background Algebra II Notes Quadratic Functions Unit 3.1 3. Graphing Quadratic Functions Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to eactly one element in the range. The domain is the set of all possible inputs

More information

Notes 3.2: Properties of Limits

Notes 3.2: Properties of Limits Calculus Maimus Notes 3.: Properties of Limits 3. Properties of Limits When working with its, you should become adroit and adept at using its of generic functions to find new its of new functions created

More information

University of Colorado at Colorado Springs Math 090 Fundamentals of College Algebra

University of Colorado at Colorado Springs Math 090 Fundamentals of College Algebra University of Colorado at Colorado Springs Math 090 Fundamentals of College Algebra Table of Contents Chapter The Algebra of Polynomials Chapter Factoring 7 Chapter 3 Fractions Chapter 4 Eponents and Radicals

More information

Summer Packet Honors PreCalculus

Summer Packet Honors PreCalculus Summer Packet Honors PreCalculus Honors Pre-Calculus is a demanding course that relies heavily upon a student s algebra, geometry, and trigonometry skills. You are epected to know these topics before entering

More information

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS LEARNING OBJECTIVES In this section, you will: Identify the domain of a logarithmic function. Graph logarithmic functions. FINDING THE DOMAIN OF A LOGARITHMIC

More information

CALC1 SUMMER REVIEW WORK

CALC1 SUMMER REVIEW WORK CALC SUMMER REVIEW WORK The following problems are all ALGEBRA concepts you must know cold in order to be able to handle Calculus. Most of them are from Algebra, some are from Pre-Calc. This packet is

More information

AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs

AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs The eqn y = a +b+c is a quadratic eqn and its graph is called a parabola. If a > 0, the parabola is concave up, while if a < 0, the parabola

More information

10.7 Polynomial and Rational Inequalities

10.7 Polynomial and Rational Inequalities 10.7 Polynomial and Rational Inequalities In this section we want to turn our attention to solving polynomial and rational inequalities. That is, we want to solve inequalities like 5 4 0. In order to do

More information

COUNCIL ROCK HIGH SCHOOL MATHEMATICS. A Note Guideline of Algebraic Concepts. Designed to assist students in A Summer Review of Algebra

COUNCIL ROCK HIGH SCHOOL MATHEMATICS. A Note Guideline of Algebraic Concepts. Designed to assist students in A Summer Review of Algebra COUNCIL ROCK HIGH SCHOOL MATHEMATICS A Note Guideline of Algebraic Concepts Designed to assist students in A Summer Review of Algebra [A teacher prepared compilation of the 7 Algebraic concepts deemed

More information

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.)

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) MATH- Sample Eam Spring 7. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) a. 9 f ( ) b. g ( ) 9 8 8. Write the equation of the circle in standard form given

More information

Section 7.1 Objective 1: Solve Quadratic Equations Using the Square Root Property Video Length 12:12

Section 7.1 Objective 1: Solve Quadratic Equations Using the Square Root Property Video Length 12:12 Section 7.1 Video Guide Solving Quadratic Equations by Completing the Square Objectives: 1. Solve Quadratic Equations Using the Square Root Property. Complete the Square in One Variable 3. Solve Quadratic

More information

Conceptual Explanations: Simultaneous Equations Distance, rate, and time

Conceptual Explanations: Simultaneous Equations Distance, rate, and time Conceptual Explanations: Simultaneous Equations Distance, rate, and time If you travel 30 miles per hour for 4 hours, how far do you go? A little common sense will tell you that the answer is 120 miles.

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

Unit 11 - Solving Quadratic Functions PART ONE

Unit 11 - Solving Quadratic Functions PART ONE Unit 11 - Solving Quadratic Functions PART ONE PREREQUISITE SKILLS: students should be able to add, subtract and multiply polynomials students should be able to factor polynomials students should be able

More information

Algebra y funciones [219 marks]

Algebra y funciones [219 marks] Algebra y funciones [219 marks] Let f() = 3 ln and g() = ln5 3. 1a. Epress g() in the form f() + lna, where a Z +. 1b. The graph of g is a transformation of the graph of f. Give a full geometric description

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Chapter Nine Chapter Nine

Chapter Nine Chapter Nine Chapter Nine Chapter Nine 6 CHAPTER NINE ConcepTests for Section 9.. Table 9. shows values of f(, ). Does f appear to be an increasing or decreasing function of? Of? Table 9. 0 0 0 7 7 68 60 0 80 77 73

More information