Sliding Luttinger Liquids

Size: px
Start display at page:

Download "Sliding Luttinger Liquids"

Transcription

1 Sliding Luttinger Liquids C. L. Kane T. C. Lubensky R. Mukhoadyay I. Introduction The D Luttinger Liquid II. The Sliding Phase A 2D Luttinger liquid University of Pennsylvania Penn / NEC Mukhoadyay, Kane, Lubensky, PRB 200; Ohern, Lubensky, Toner PRL 999; Emery, Fradkin, Kivelson, Lubensky PRL 200; Vishwanath, Carentier PRL 200; Sondhi, Yang PRB 200. III. Instabilities of the Sliding Phase The Fractional Quantum Hall Effect from D Bosonization Kane, Mukhoadyay, Lubensky PRL 2002.

2 Weakly Couled D Electron Systems Stri Phases of Curate Suerconductors Quantum Hall Smectic Phases Weakly Couled Wires e.g. Nanotube roes Theoretical Motivation: Can the owerful techniques from D be used to understand strongly correlated states in higher dimensions?

3 Three Views of the D Electron Gas. Non Interacting Fermi Liquid 2. Reulsive Interactions Almost a crystal ψ L ψ R 3. Attractive Interactions Almost a suerconductor Luttinger Liquid ( ) 2 L = µθ 8π g g 2 = ( µϕ) 8π ψψ i L R e ϕ Power Law Correlations with exonent deending on interactions. Analogous to classical 2D XY model Bosonization: ψ LR e ϕ θ i( ± )/2, Non Interacting g = < Reulsive > Attractive

4 Couled Luttinger Liquids Exect instabilities due to couling between wires. Charge Density Wave OCDW = cos( θi θ j) < ij> 2. Suerconductor OSC = cos 2( ϕi ϕ j) < ij> 3. 2D Fermi Liquid Renormalization Grou Analysis: dλ d O = ψ ψ + ψ ψ α FL < ij> Li Lj Ri Rj = (2 ) λ α α H Relevant if < 2. α int = λ Oˆ α α = 2g CDW = 2/ g SC = ( g+ / g)/2 FL Is the Luttinger Liquid always unstable?

5 Two Kinds of Interactions:. Forward Scattering H = V θ θ + V ϕ ϕ θ ϕ FS ij x i x j ij x i x j ij 2. Interchannel Scattering Oˆ, Oˆ, Oˆ,..., many more CDW SC FL Resonsible for Instabilities Dimensions deend on H FS Sliding Luttinger Liquid Choose H FS to make all O α irrelevant Smectic Metal Anisotroic Electrical Conductivity Power Law correlations (like D L.L.) Collective Modes roagate in 2D An anisotroic 2D Luttinger Liquid Analogous to Sliding Phase of couled classical 2D XY models Ohern, Lubensky, Toner PRL 99

6 Model Interaction Ohern, Lubensky, Toner PRL 99 ϕ θ κ ( q ) V ( q )/ V ( q ) = K(+ λ cos q + λ cos 2 q ) 2 Nearest neighbor model λ 2 = 0, nearest neighbor CDW, SC and FL terms only. λ Emery,Fradkin,Kivelson, Lubensky PRL 0 More general model K Vishwanath, Carentier PRL 0 Mukhoadyay, Kane, Lubensky PRB 0 Sondhi, Yang PRB 0 Higher order oerators reduce region of stability - Further neighbor CDW, SC, FL - Correlated hoing, etc. Sliding hase stable close to boundary of instability to transverse CDW with wavevector q 0

7 Nearest neighbor model Emery,Fradkin,Kivelson, Lubensky PRL 0 Nearest neighbor CDW, SC and FL terms only. Model Interaction: ϕ θ κ ( q ) V ( q )/ V ( q ) = K( + λ cos q ) λ - Further neighbor CDW, SC, FL - Correlated hoing, etc. K (~ /g) Higher order oerators lead to instability

8 Stabilizing the Sliding hase Model Interaction: κ( q ) = K(+ λ cosq + λ cos2 q ) 2 Ohern, Lubensky, Toner PRL 99 Vishwanath, Carentier PRL 0 Mukhoadyay, Kane, Lubensky PRB 0 Large density fluctuations at wavevector q 0 for small δ frustrate CDW formation. Values of λ, λ 2 for which SLL hase is stable to a large class of oerators for some K λ Vishwanath, Carentier PRL 0 λ 2 Perendicular Magnetic field increases region of stability by eliminating suerconducting instability. Sondhi, Yang, PRB 0

9 Crossed Sliding Luttinger Liquid Interactions between erendicular wires are marginal but do not affect dimensions of oerators. Tunneling between erendicular wires is irrelevant in sliding hase. Electrical conductivity isotroic at low (but finite) temerature. An isotroic 2D Luttinger Liquid

10 Instabilities of the Sliding Phase Integer Quantum Hall Effect From Bosonization: H = λ cos[ ϕ ϕ + θ + θ ]/ 2 int i i+ i i+ i= Switch Partners H λ cos θ λ ( θ ) = int i+ / 2 i+ / 2 i= i= Ga in bulk Edge Mode φ = ϕ -θ remains galess 2

11 Laughlin State: ν = /3 3 article correlated tunneling rocess H = λ cos[ ϕ ϕ + 3( θ + θ )]/ 2 int i i+ i i+ i= Rescale: θ = 3 θ H = λ cos[ ϕ ϕ + θ + θ ]/ 2 int i i+ i i+ i= Switch Partners H λ cos θ λ ( θ ) = int i+ / 2 i+ / 2 i= i= 2 Edge Mode: g=/3 Chiral Luttinger Liquid ~ 2π soliton in θ : Charge e/3 quasiarticle

12 Three Categories I. Quantum Hall States Allowed at secial magnetic fields Generalized Hierarchy cos Θ Θ 2 : Bulk Ga + Edge states II. Crystals ν = 2/3 ν = 2/3 0 K = K = 0 3 Allowed at any magnetic field: cos Θ Θ 2 : 2D Phonon mode H = λ cos[ m θ + n ϕ ] int i= Crystal of Electrons i+ i+ Crystal of Laughlin Quasiarticles v = 2 m n m (Haldane-Halerin Hierarchy) ( Bilayer state ) = n = 0 III. Degenerate Oerators Difficult to analyze : cos Θ Θ 2 Fermi Liquid (B=0) ν = /2: Comosite Fermi Liquid?

13 Conclusion I. Sliding Luttinger Liquid Anisotroic 2D hase with ower law correlations characteristic of D Luttinger Liquid. Residual Coulings irrelevant II. Instabilities of Sliding Phase D bosonization offers a new, concrete framework for describing the fractional quantum Hall effect. III. Can this be used to describe other strongly correlated states? Non Abelian Quantum Hall States Sin Liquid states, sin/charge searation.

From Luttinger Liquid to Non-Abelian Quantum Hall States

From Luttinger Liquid to Non-Abelian Quantum Hall States From Luttinger Liquid to Non-Abelian Quantum Hall States Jeffrey Teo and C.L. Kane KITP workshop, Nov 11 arxiv:1111.2617v1 Outline Introduction to FQHE Bulk-edge correspondence Abelian Quantum Hall States

More information

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State Ë Ë Ë³ Gerry and Fermi Liquid Theory Thomas Schaefer North Carolina State Introduction I learned about Fermi liquid theory (FLT from Gerry. I was under the imression that the theory amounted to the oeration

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Nematic Order and Geometry in Fractional Quantum Hall Fluids

Nematic Order and Geometry in Fractional Quantum Hall Fluids Nematic Order and Geometry in Fractional Quantum Hall Fluids Eduardo Fradkin Department of Physics and Institute for Condensed Matter Theory University of Illinois, Urbana, Illinois, USA Joint Condensed

More information

Sliding Luttinger liquid phases

Sliding Luttinger liquid phases PHYSICAL REVIEW B, VOLUME 64, 04520 Sliding Luttinger liquid phases Ranan Mukhopadhyay, C. L. Kane, and T. C. Lubensky Department of Physics, University of Pennsylvania, Philadephia, Pennsylvania 904 Received

More information

Tunneling Into a Luttinger Liquid Revisited

Tunneling Into a Luttinger Liquid Revisited Petersburg Nuclear Physics Institute Tunneling Into a Luttinger Liquid Revisited V.Yu. Kachorovskii Ioffe Physico-Technical Institute, St.Petersburg, Russia Co-authors: Alexander Dmitriev (Ioffe) Igor

More information

Wiring Topological Phases

Wiring Topological Phases 1 Wiring Topological Phases Quantum Condensed Matter Journal Club Adhip Agarwala Department of Physics Indian Institute of Science adhip@physics.iisc.ernet.in February 4, 2016 So you are interested in

More information

Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials

Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials T. Nattermann and S. Scheidl Insitut für Theoretische Physik Universität zu öln Introduction motivation: central

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

Zooming in on the Quantum Hall Effect

Zooming in on the Quantum Hall Effect Zooming in on the Quantum Hall Effect Cristiane MORAIS SMITH Institute for Theoretical Physics, Utrecht University, The Netherlands Capri Spring School p.1/31 Experimental Motivation Historical Summary:

More information

Edge Transport in Quantum Hall Systems

Edge Transport in Quantum Hall Systems Lectures on Mesoscopic Physics and Quantum Transport, June 15, 018 Edge Transport in Quantum Hall Systems Xin Wan Zhejiang University xinwan@zju.edu.cn Outline Theory of edge states in IQHE Edge excitations

More information

TOPMAT CEA & CNRS, Saclay, France June 14, Inti Sodemann MPI - PKS Dresden

TOPMAT CEA & CNRS, Saclay, France June 14, Inti Sodemann MPI - PKS Dresden TOPMAT 2018 CEA & CNRS, Saclay, France June 14, 2018 Inti Sodemann MPI - PKS Dresden Part I New phase transitions of Composite Fermions Part II Bosonization and shear sound in 2D Fermi liquids New phase

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Quantum Gases Conference, Paris, 30 June 2007. Gunnar Möller

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Optical Conductivity and Plasmons in Graphene

Optical Conductivity and Plasmons in Graphene Otical Conductivity and Plasmons in Grahene Eugene Mishchenko University of Utah E.M., PRL 98, 16801 (007); E.M., arxiv:0709.445 S. Gandgadharaiah, A-Kh. Farid & E.M., arxiv:0710.06 Institute for Nuclear

More information

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m. Fractionalization of charge and statistics in graphene and related structures M. Franz University of British Columbia franz@physics.ubc.ca January 5, 2008 In collaboration with: C. Weeks, G. Rosenberg,

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Designing Principles of Molecular Quantum. Interference Effect Transistors

Designing Principles of Molecular Quantum. Interference Effect Transistors Suorting Information for: Designing Princiles of Molecular Quantum Interference Effect Transistors Shuguang Chen, GuanHua Chen *, and Mark A. Ratner * Deartment of Chemistry, The University of Hong Kong,

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Topological states in quantum antiferromagnets

Topological states in quantum antiferromagnets Pierre Pujol Laboratoire de Physique Théorique Université Paul Sabatier, Toulouse Topological states in quantum antiferromagnets Thanks to I. Makhfudz, S. Takayoshi and A. Tanaka Quantum AF systems : GS

More information

Liquid Crystal Phases in Strongly Correlated Systems. Eduardo Fradkin

Liquid Crystal Phases in Strongly Correlated Systems. Eduardo Fradkin Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin Department of Physics University of Illinois Collaborators Steven Kivelson (UCLA) Vadim Oganesyan (Princeton) In memory of Victor J.

More information

Universal transport at the edge: Disorder, interactions, and topological protection

Universal transport at the edge: Disorder, interactions, and topological protection Universal transport at the edge: Disorder, interactions, and topological protection Matthew S. Foster, Rice University March 31 st, 2016 Universal transport coefficients at the edges of 2D topological

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

Reciprocal Space Magnetic Field: Physical Implications

Reciprocal Space Magnetic Field: Physical Implications Reciprocal Space Magnetic Field: Physical Implications Junren Shi ddd Institute of Physics Chinese Academy of Sciences November 30, 2005 Outline Introduction Implications Conclusion 1 Introduction 2 Physical

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Quantum Theory of Low Dimensional Systems: Bosonization. Heung-Sun Sim

Quantum Theory of Low Dimensional Systems: Bosonization. Heung-Sun Sim PSI 2014 Quantum Theory of Many Particles ( 평창, 2014 년 8 월 28-29 일 ) Quantum Theory of Low Dimensional Systems: Bosonization Heung-Sun Sim Physics, KAIST Overview Target of this lecture: low dimension

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Effective field theory of one-dimensional polarized Fermi gas

Effective field theory of one-dimensional polarized Fermi gas Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) Effective field theory of one-dimensional polarized Fermi gas Erhai Zhao W. Vincent Liu Keywords Ultracold Fermi gas,

More information

Fractional charge in the fractional quantum hall system

Fractional charge in the fractional quantum hall system Fractional charge in the fractional quantum hall system Ting-Pong Choy 1, 1 Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801-3080, USA (Dated: May

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Lecture 2 2D Electrons in Excited Landau Levels

Lecture 2 2D Electrons in Excited Landau Levels Lecture 2 2D Electrons in Excited Landau Levels What is the Ground State of an Electron Gas? lower density Wigner Two Dimensional Electrons at High Magnetic Fields E Landau levels N=2 N=1 N= Hartree-Fock

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Magnetic field spectrum of the correlated 2D electron system: Electron interactions lead to a range of manifestations 10? = 4? = 2 Resistance (arb.

More information

Chiral spin liquids. Bela Bauer

Chiral spin liquids. Bela Bauer Chiral spin liquids Bela Bauer Based on work with: Lukasz Cinco & Guifre Vidal (Perimeter Institute) Andreas Ludwig & Brendan Keller (UCSB) Simon Trebst (U Cologne) Michele Dolfi (ETH Zurich) Nature Communications

More information

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface V44.00011 APS March Meeting, Los Angeles Fakher Assaad, Snir Gazit, Subir Sachdev, Ashvin

More information

Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids

Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids Kai Sun Collaborator: Eduardo Fradkin Spontaneous Time-Reversal Symmetry Breaking Ferromagnetic T Non-ferromagnetic?

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Chiral sound waves from a gauge theory of 1D generalized. statistics. Abstract

Chiral sound waves from a gauge theory of 1D generalized. statistics. Abstract SU-ITP # 96/ Chiral sound waves from a gauge theory of D generalized statistics Silvio J. Benetton Rabello arxiv:cond-mat/9604040v 6 Apr 996 Department of Physics, Stanford University, Stanford CA 94305

More information

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Oleg Starykh, University of Utah with Dima Pesin, Ethan Lake, Caleb

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

One-dimensional theory: carbon nanotubes and strong correlations. Sam T Carr. University of Karlsruhe

One-dimensional theory: carbon nanotubes and strong correlations. Sam T Carr. University of Karlsruhe One-dimensional theory: carbon nanotubes and strong correlations Sam T Carr University of Karlsruhe CFN Summer School on Nano-Electronics Bad Herrenalb, 5 th September 2009 Outline Part I - introduction

More information

arxiv: v2 [cond-mat.str-el] 3 Jul 2014

arxiv: v2 [cond-mat.str-el] 3 Jul 2014 Boundary Fidelity and Entanglement in the symmetry rotected toological hase of the SSH model arxiv:146.783v [cond-mat.str-el] 3 Jul 14 J. Sirker Deartment of Physics and Research Center OPTIMAS, TU Kaiserslautern,

More information

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Gunnar Möller & Nigel R Cooper Cavendish Laboratory, University of Cambridge Physical Review Letters 108, 043506 (2012) LPTHE / LPTMC

More information

Anyon Physics. Andrea Cappelli (INFN and Physics Dept., Florence)

Anyon Physics. Andrea Cappelli (INFN and Physics Dept., Florence) Anyon Physics Andrea Cappelli (INFN and Physics Dept., Florence) Outline Anyons & topology in 2+ dimensions Chern-Simons gauge theory: Aharonov-Bohm phases Quantum Hall effect: bulk & edge excitations

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Talk at the Oak Ridge National Laboratory, March 28, 2008 Eduardo Fradkin Department of Physics University of Illinois at

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Landau Theory of the Fermi Liquid

Landau Theory of the Fermi Liquid Chater 5 Landau Theory of the Fermi Liquid 5. Adiabatic Continuity The results of the revious lectures, which are based on the hysics of noninteracting systems lus lowest orders in erturbation theory,

More information

Electronic transport in topological insulators

Electronic transport in topological insulators Electronic transport in topological insulators Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alex Zazunov, Alfredo Levy Yeyati Trieste, November 011 To the memory of my dear friend Please

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Weyl semimetals from chiral anomaly to fractional chiral metal

Weyl semimetals from chiral anomaly to fractional chiral metal Weyl semimetals from chiral anomaly to fractional chiral metal Jens Hjörleifur Bárðarson Max Planck Institute for the Physics of Complex Systems, Dresden KTH Royal Institute of Technology, Stockholm J.

More information

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

The Half-Filled Landau Level

The Half-Filled Landau Level Nigel Cooper Department of Physics, University of Cambridge Celebration for Bert Halperin s 75th January 31, 2017 Chong Wang, Bert Halperin & Ady Stern. [C. Wang, NRC, B. I. Halperin & A. Stern, arxiv:1701.00007].

More information

Composite Dirac liquids

Composite Dirac liquids Composite Dirac liquids Composite Fermi liquid non-interacting 3D TI surface Interactions Composite Dirac liquid ~ Jason Alicea, Caltech David Mross, Andrew Essin, & JA, Physical Review X 5, 011011 (2015)

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Conformal Field Theory of Composite Fermions in the QHE

Conformal Field Theory of Composite Fermions in the QHE Conformal Field Theory of Composite Fermions in the QHE Andrea Cappelli (INFN and Physics Dept., Florence) Outline Introduction: wave functions, edge excitations and CFT CFT for Jain wfs: Hansson et al.

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik Topological Kondo effect in Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport in a Maorana device: Topological Kondo effect with stable

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Conformal Quantum Criticality Order and Deconfinement in Quantum Dimer Models

Conformal Quantum Criticality Order and Deconfinement in Quantum Dimer Models Conformal Quantum Criticality Order and Deconfinement in Quantum Dimer Models Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Collaborators Eddy Ardonne, UIUC Paul Fendley,

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Semiclassical theory of non-local statistical measures: residual Coulomb interactions

Semiclassical theory of non-local statistical measures: residual Coulomb interactions of non-local statistical measures: residual Coulomb interactions Steve Tomsovic 1, Denis Ullmo 2, and Arnd Bäcker 3 1 Washington State University, Pullman 2 Laboratoire de Physique Théorique et Modèles

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

Two-dimensional heavy fermions in Kondo topological insulators

Two-dimensional heavy fermions in Kondo topological insulators Two-dimensional heavy fermions in Kondo topological insulators Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University Rice University, August 28, 2014 Acknowledgments

More information

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability Subir Sachdev sachdev.physics.harvard.edu HARVARD y x Fermi surface with full square lattice symmetry y x Spontaneous

More information

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Leonardo Mazza Scuola Normale Superiore, Pisa Seattle March 24, 2015 Leonardo Mazza (SNS) Exotic Phases in Alkaline-Earth Fermi

More information

Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions

Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions Phases of spin chains with uniform Dzyaloshinskii-Moriya interactions Oleg Starykh, University of Utah Wen Jin (Univ of Waterloo, Canada) Yang-Hao Chan (IAMS, Taiwan) Hong-Chen Jiang (SLAC, SIMES) RIKEN

More information

Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University

Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University Cornell University, August 2015 Outline of part II Ex. 4: Laughlin fracaonal quantum Hall states Ex. 5:

More information

Probing spin-charge separation in a Tomonaga-Luttinger liquid

Probing spin-charge separation in a Tomonaga-Luttinger liquid arxiv:1002.2782v1 [cond-mat.str-el] 14 eb 2010 Probing sin-charge searation in a Tomonaga-Luttinger liquid Y. Jomol, 1, C. J. B. ord, 1 J. P. Griffiths, 1 I. arrer, 1 G. A. C. Jones, 1 D. Anderson, 1 D.

More information

Quantum Phase Transitions in Fermi Liquids

Quantum Phase Transitions in Fermi Liquids Quantum Phase Transitions in Fermi Liquids in d=1 and higher dimensions Mihir Khadilkar Kyungmin Lee Shivam Ghosh PHYS 7653 December 2, 2010 Outline 1 Introduction 2 d = 1: Mean field vs RG Model 3 Higher

More information

arxiv:cond-mat/ v2 25 Sep 2002

arxiv:cond-mat/ v2 25 Sep 2002 Energy fluctuations at the multicritical oint in two-dimensional sin glasses arxiv:cond-mat/0207694 v2 25 Se 2002 1. Introduction Hidetoshi Nishimori, Cyril Falvo and Yukiyasu Ozeki Deartment of Physics,

More information

arxiv: v1 [cond-mat.mes-hall] 13 Aug 2008

arxiv: v1 [cond-mat.mes-hall] 13 Aug 2008 Corner Junction as a Probe of Helical Edge States Chang-Yu Hou, Eun-Ah Kim,3, and Claudio Chamon Physics Department, Boston University, Boston, MA 05, USA Department of Physics, Stanford University, Stanford,

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Nambu-Goldstone Bosons in Nonrelativistic Systems

Nambu-Goldstone Bosons in Nonrelativistic Systems Nov. 17, 2015 Nambu and Science Frontier @Osaka (room H701) 15:20-17:30: Session on topics from Nambu to various scales Nambu-Goldstone Bosons in Nonrelativistic Systems Haruki Watanabe MIT Pappalardo

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft An imbalanced Fermi gas in 1 + ɛ dimensions Andrew J. A. James A. Lamacraft 2009 Quantum Liquids Interactions and statistics (indistinguishability) Some examples: 4 He 3 He Electrons in a metal Ultracold

More information