MAT 1332: CALCULUS FOR LIFE SCIENCES

Size: px
Start display at page:

Download "MAT 1332: CALCULUS FOR LIFE SCIENCES"

Transcription

1 MAT 1332: CALCULUS FOR LIFE SCIENCES JING LI Contents 1 Review: Functions of several variables I: Partial derivatives 1 2 Function of several variables II: Vector-valued functions 2 21 Introductory example 2 22 Definition 2 23 Linear approximation and the Jacobian matrix 4 1 Review: Functions of several variables I: Partial derivatives Definition of partial derivative of functions of two independent variables Suppose that f is a function of two independent variables x and y The partial derivative of f with respect to x is defined by f(x, y) x = lim h 0 f(x + h, y) f(x, y) h The partial derivative of f with respect to y is defined by f(x, y) y = lim h 0 f(x, y + h) f(x, y) h Tangent plane Let f(x, y) be a real-valued function of two variables If the tangent plane to the graph of f at the point (x 0, y 0, z 0 ) = (x 0, y 0, f(x 0, y 0 )) exists, then it is given by the equation z z 0 = f(x 0, y 0 ) x (x x 0 ) + f(x 0, y 0 ) (y y 0 ) y The linear approximation The linear approximation of a function f(x, y) near a point (x 0, y 0 ) is given by L(x, y) = f(x 0, y 0 ) + f(x 0, y 0 ) (x x 0 ) + f(x 0, y 0 ) (y y 0 ) x y [ [ f(x0, y 0 ) f(x 0, y 0 ) x x0 = f(x 0, y 0 ) +, x y y y 0 provided the function is differentiable Date:

2 2 JING LI 2 Function of several variables II: Vector-valued functions 21 Introductory example So far, we have only considered real-valued functions, f : R n R (x 1, x 2,, x n ) f(x 1, x 2,, x n ) Now, we want to be able to describe several quantities that are all dependent on the same variables Recalling what we have learned in Section 55: Two-Dimensional Differential Equations, for example, we described a predator-prey system as db = (λ ɛp)b = λb ɛpb = f 1 (b, p) dp = ( δ + ηb)p = δp + ηbp = f 2 (b, p) where b(t): the population of bacterial at time t ( prey ); p(t): the population of amoebas at time t ( predation ); λ: per capita production rate of the bacterial; ɛp: the rate at which an individual bacterium is eaten; δ: negative per capita rate of amoebas in the absence of their prey; ηb: the rate at which an amoeba eats bacteria Hence, the growth rate of the prey and the predator both depend on the densities of prey and predator We can write the right-hand side of the above system as a single, vector-valued function of the two variables b, p as follows: F (b, p) = [ f1 (b, p) f 2 (b, p) = [ λb ɛpb δp + ηbp 22 Definition The above example is one of the examples of vector-valued functions More generally, the vector-valued function will be defined as follows: Definition A vector-valued function F of the variables x 1,, x n is a function of the form ie, F : R n R m (x 1, x 2,, x n ) F (x 1, x 2,, x n ) = f 1 (x 1, x 2, x n ) f m (x 1, x 2, x n ) f 1 (x 1, x 2, x n ) f m (x 1, x 2, x n ) where, each function f i (x 1, x 2,, x n ) is a real-valued function, f i : R n R (x 1, x 2,, x n ) f i (x 1, x 2,, x n ) Example 1 Dynamics of Competition da db where ( a + b) = r a 1 a K a = r b ( 1 a + b K b ) b

3 MAT 1332: CALCULUS FOR LIFE SCIENCES 3 a(t): the population of bacteria type a at time t; b(t): the population of bacteria type b at time t; r a : the maximum capita production rate for type a; r b : the maximum capita production rate for type b; K a : the carrying capacity; K b : the carrying capacity Example 2 Newton s Law of Cooling dh da where H(t): the object temperature at time t; A(t): the ambient temperature at time t; α: constant of proportionality; α 2 : constant of proportionality = α(a H) = α 2 (H A) Example 3 Evaluate the function at points (1, 0), (1, π 2 ), (2, π) (1) F (1, 0) = [ 2x 2 y 3y + x e x sin y (2) F (1, π 2 ) = (3) F (2, π) =

4 4 JING LI 23 Linear approximation and the Jacobian matrix Our main task in this subsection will be to define the linear approximation (linearization) of vector-valued functions where the domain and the range are R 2 That is, we only consider the case of two variables and two equations, or equivalently, vector-valued functions with two components, ie, [ f(x, y) g(x, y) From the previous section, we know how to find the linear approximation for each of the two functions, f(x, y) and g(x, y), namely [ x x0 for function f(x, y), f(x, y) f(x 0, y 0 ) + grad(f) y y 0 [ x x0 for function g(x, y), g(x, y) g(x 0, y 0 ) + grad(g) y y 0 Now we put these two linear approximation together to obtain the linear approximation for F (x, y): Definition The Jacobian Matrix & Linear Approximation The matrix of partial derivatives [ [ f(x,y) f(x,y) grad(f) x y J(x, y) = = g(x,y) g(x,y) grad(g) x y [ f(x, y) is called the Jacobian Matrix of the function g(x, y) Using the Jacobian matrix, we can write the linear approximation to F (x, y) as [ x x0 L(x, y) = F (x 0, y 0 ) + J(x, y) (x0,y 0 ) y y 0

5 MAT 1332: CALCULUS FOR LIFE SCIENCES 5 Example 4 Find a linear approximation to [ (x y) 2 2x 2 y at point (2, 3) Use your result to find an approximation for F (19, 31) and compare the approximation to the value of F (19, 31) when you use a calculator (1) F (2, 3) = (2) To find the Jacobian matrix, (3) To find the linear approximation L(x, y), (4) To compare the values: Using the linear approximation, F (19, 31) L(19, 31) = Using calculator, F (19, 31) = Example 5 Find a linear approximation to [ 2x 2 y 3y + x e y cos x at point (0, 0) Use your result to find an approximation for F (01, 01) and compare the approximation to the value of F (01, 01) when you use a calculator (1) F (0, 0) =

6 6 JING LI (2) To find the Jacobian matrix, (3) To find the linear approximation L(x, y), (4) To compare the values: Using the linear approximation, F (01, 01) L(01, 01) = Using calculator, F (01, 01) = Example 6 Find a linear approximation to [ 2x + y x y 2 at point (1, 2) Use your result to find an approximation for F (105, 205) and compare the approximation to the value of F (105, 205) when you use a calculator (1) F (1, 2) = (2) To find the Jacobian matrix, (3) To find the linear approximation L(x, y),

7 MAT 1332: CALCULUS FOR LIFE SCIENCES 7 (4) To compare the values: Using the linear approximation, F (105, 205) L(105, 205) = Using calculator, F (105, 205) = Remark: Some examples in this note are cited from the book titled Calculus for Biology and Medicine by Claudia Neuhauser

Spring /30/2013

Spring /30/2013 MA 138 - Calculus 2 for the Life Sciences FINAL EXAM Spring 2013 4/30/2013 Name: Sect. #: Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes

More information

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e MA Elem. Calculus Fall 07 Exam 07-09- Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during the exam,

More information

MAT137 Calculus! Lecture 45

MAT137 Calculus! Lecture 45 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 45 Today: Taylor Polynomials Taylor Series Next: Taylor Series Power Series Definition (Power Series) A power series is a series of the form

More information

AP Calculus BC Fall Final Part IIa

AP Calculus BC Fall Final Part IIa AP Calculus BC 18-19 Fall Final Part IIa Calculator Required Name: 1. At time t = 0, there are 120 gallons of oil in a tank. During the time interval 0 t 10 hours, oil flows into the tank at a rate of

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Tangent Planes, Linear Approximations and Differentiability

Tangent Planes, Linear Approximations and Differentiability Jim Lambers MAT 80 Spring Semester 009-10 Lecture 5 Notes These notes correspond to Section 114 in Stewart and Section 3 in Marsden and Tromba Tangent Planes, Linear Approximations and Differentiability

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Tangent Plane. Linear Approximation. The Gradient

Tangent Plane. Linear Approximation. The Gradient Calculus 3 Lia Vas Tangent Plane. Linear Approximation. The Gradient The tangent plane. Let z = f(x, y) be a function of two variables with continuous partial derivatives. Recall that the vectors 1, 0,

More information

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions?

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions? UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS 5.1 DERIVATIVES OF EXPONENTIAL FUNCTIONS, y = e X Qu: What do you remember about exponential and logarithmic functions? e, called Euler s

More information

3. Minimization with constraints Problem III. Minimize f(x) in R n given that x satisfies the equality constraints. g j (x) = c j, j = 1,...

3. Minimization with constraints Problem III. Minimize f(x) in R n given that x satisfies the equality constraints. g j (x) = c j, j = 1,... 3. Minimization with constraints Problem III. Minimize f(x) in R n given that x satisfies the equality constraints g j (x) = c j, j = 1,..., m < n, where c 1,..., c m are given numbers. Theorem 3.1. Let

More information

Exam 3 MATH Calculus I

Exam 3 MATH Calculus I Trinity College December 03, 2015 MATH 131-01 Calculus I By signing below, you attest that you have neither given nor received help of any kind on this exam. Signature: Printed Name: Instructions: Show

More information

Bees and Flowers. Unit 1: Qualitative and Graphical Approaches

Bees and Flowers. Unit 1: Qualitative and Graphical Approaches Bees and Flowers Often scientists use rate of change equations in their stu of population growth for one or more species. In this problem we stu systems of rate of change equations designed to inform us

More information

g(2, 1) = cos(2π) + 1 = = 9

g(2, 1) = cos(2π) + 1 = = 9 1. Let gx, y 2x 2 cos2πy 2 + y 2. You can use the fact that Dg2, 1 [8 2]. a Find an equation for the tangent plane to the graph z gx, y at the point 2, 1. There are two key parts to this problem. The first,

More information

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt Motivation and Goals Modelling with ODEs 24.10.01 Motivation: Ordinary Differential Equations (ODEs) are very important in all branches of Science and Engineering ODEs form the basis for the simulation

More information

Houston Area Calculus Teacher 1/30/2016. Card sort for f, f and f. Ambiguity in understanding decreasing at a increasing rate

Houston Area Calculus Teacher 1/30/2016. Card sort for f, f and f. Ambiguity in understanding decreasing at a increasing rate Houston Area Calculus Teacher /30/06 Experiments, Mishaps and Mistakes in AP Calculus. Card sort for f, f and f. Ambiguity in understanding decreasing at a increasing rate Developing of an understanding

More information

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2 Answer Key Calculus I Math 141 Fall 2003 Professor Ben Richert Exam 2 November 18, 2003 Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem

More information

Unit #16 : Differential Equations

Unit #16 : Differential Equations Unit #16 : Differential Equations Goals: To introduce the concept of a differential equation. Discuss the relationship between differential equations and slope fields. Discuss Euler s method for solving

More information

( ) be the particular solution to the differential equation passing through the point (2, 1). Write an

( ) be the particular solution to the differential equation passing through the point (2, 1). Write an 70. AB Calculus Step-by-Step Name Consider the differential equation dy dx = x +1 y. ( ) be the particular solution to the differential equation passing through the point (2, 1). Write an a. Let f x equation

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

Math 225 Differential Equations Notes Chapter 1

Math 225 Differential Equations Notes Chapter 1 Math 225 Differential Equations Notes Chapter 1 Michael Muscedere September 9, 2004 1 Introduction 1.1 Background In science and engineering models are used to describe physical phenomena. Often these

More information

Final Exam Review (and Quiz #12)

Final Exam Review (and Quiz #12) Final Exam Review (and Quiz #1) Applied Calculus Math 13.3 Fall 11 Your final exam is scheduled for Saturday, December 17, at 9: a.m. in our usual room. You may bring an 1 11 inch, one-sided, sheet of

More information

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A Calculus Topic: Integration of Rational Functions Section 8. # 0: Evaluate the integral (t + )(t ) Solution: The denominator of the integrand is already factored with the factors being distinct, so (t

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

MA 123 September 8, 2016

MA 123 September 8, 2016 Instantaneous velocity and its Today we first revisit the notion of instantaneous velocity, and then we discuss how we use its to compute it. Learning Catalytics session: We start with a question about

More information

6.5 Separable Differential Equations and Exponential Growth

6.5 Separable Differential Equations and Exponential Growth 6.5 2 6.5 Separable Differential Equations and Exponential Growth The Law of Exponential Change It is well known that when modeling certain quantities, the quantity increases or decreases at a rate proportional

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 12 TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. 12.2 The Trigonometric Functions Copyright Cengage Learning. All rights reserved. The Trigonometric Functions and Their Graphs

More information

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5.

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5. Name: Instructor: Math 155, Practice Final Exam, December The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for 2 hours. Be sure that your name

More information

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x. EXAM MAT 67 Calculus I Spring 20 Name: Section: I Each answer must include either supporting work or an explanation of your reasoning. These elements are considered to be the main part of each answer and

More information

Spring /11/2009

Spring /11/2009 MA 123 Elementary Calculus SECOND MIDTERM Spring 2009 03/11/2009 Name: Sec.: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

Comparative Statics. Autumn 2018

Comparative Statics. Autumn 2018 Comparative Statics Autumn 2018 What is comparative statics? Contents 1 What is comparative statics? 2 One variable functions Multiple variable functions Vector valued functions Differential and total

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions.

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions. 8. EXERCISES Unit 3. Integration 3A. Differentials, indefinite integration 3A- Compute the differentials df(x) of the following functions. a) d(x 7 + sin ) b) d x c) d(x 8x + 6) d) d(e 3x sin x) e) Express

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Mathematical Economics: Lecture 9

Mathematical Economics: Lecture 9 Mathematical Economics: Lecture 9 Yu Ren WISE, Xiamen University October 17, 2011 Outline 1 Chapter 14: Calculus of Several Variables New Section Chapter 14: Calculus of Several Variables Partial Derivatives

More information

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e MA3 Elem. Calculus Spring 06 Exam 06-0- Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during the exam,

More information

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Final Exam Review AP Calculus AB Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Use the graph to evaluate the limit. 2) lim x

More information

The functions in all models depend on two variables: time t and spatial variable x, (x, y) or (x, y, z).

The functions in all models depend on two variables: time t and spatial variable x, (x, y) or (x, y, z). Review of Multi-variable calculus: The functions in all models depend on two variables: time t and spatial variable x, (x, y) or (x, y, z). The spatial variable represents the environment where the species

More information

Math 132 Information for Test 2

Math 132 Information for Test 2 Math 13 Information for Test Test will cover material from Sections 5.6, 5.7, 5.8, 6.1, 6., 6.3, 7.1, 7., and 7.3. The use of graphing calculators will not be allowed on the test. Some practice questions

More information

Math 116 Second Midterm March 20, 2013

Math 116 Second Midterm March 20, 2013 Math 6 Second Mierm March, 3 Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has 3 pages including this cover. There are 8 problems. Note that the

More information

Honors Advanced Algebra Unit 3: Polynomial Functions November 9, 2016 Task 11: Characteristics of Polynomial Functions

Honors Advanced Algebra Unit 3: Polynomial Functions November 9, 2016 Task 11: Characteristics of Polynomial Functions Honors Advanced Algebra Name Unit 3: Polynomial Functions November 9, 2016 Task 11: Characteristics of Polynomial Functions MGSE9 12.F.IF.7 Graph functions expressed symbolically and show key features

More information

MA 137 Calculus 1 with Life Science Applications Linear Approximations (Section 4.8)

MA 137 Calculus 1 with Life Science Applications Linear Approximations (Section 4.8) MA 137 Calculus 1 with Life Science Applications Linear Approximations (Section 4.8) Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky October 28, 2015 1/12 Tangent Line

More information

Math Exam 02 Review

Math Exam 02 Review Math 10350 Exam 02 Review 1. A differentiable function g(t) is such that g(2) = 2, g (2) = 1, g (2) = 1/2. (a) If p(t) = g(t)e t2 find p (2) and p (2). (Ans: p (2) = 7e 4 ; p (2) = 28.5e 4 ) (b) If f(t)

More information

Applications of First Order Differential Equation

Applications of First Order Differential Equation Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 39 Orthogonal Trajectories How to Find Orthogonal Trajectories Growth and Decay

More information

SETUP: creates the world based on the settings for each variable GO: starts and ends the simulation

SETUP: creates the world based on the settings for each variable GO: starts and ends the simulation Wolf Sheep Predation Simulation Double-click on NetLogo to open the program. Go to File..Models Library Click on the + next to Biology to show the drop-down menu. Select Wolf Sheep Predation and click

More information

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2 Polynomials Patterns Task 1. To get an idea of what polynomial functions look like, we can graph the first through fifth degree polynomials with leading coefficients of 1. For each polynomial function,

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland 4 May 2012 Because the presentation of this material

More information

Vector Functions & Space Curves MATH 2110Q

Vector Functions & Space Curves MATH 2110Q Vector Functions & Space Curves Vector Functions & Space Curves Vector Functions Definition A vector function or vector-valued function is a function that takes real numbers as inputs and gives vectors

More information

MAT 145: Test #3 (50 points)

MAT 145: Test #3 (50 points) MAT 145: Test #3 (50 points) Part 2: Calculator OK! Name Calculator Used Score 21. For f (x) = 8x 3 +81x 2 42x 8, defined for all real numbers, use calculus techniques to determine all intervals on which

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Example (3..8) Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. The linearization is given by which approximates the

More information

MA 113 Calculus I Fall 2017 Exam 1 Tuesday, 19 September Multiple Choice Answers. Question

MA 113 Calculus I Fall 2017 Exam 1 Tuesday, 19 September Multiple Choice Answers. Question MA 113 Calculus I Fall 2017 Exam 1 Tuesday, 19 September 2017 Name: Section: Last 4 digits of student ID #: This exam has 12 multiple choice questions (five points each) and 4 free response questions (ten

More information

Workbook for Calculus I

Workbook for Calculus I Workbook for Calculus I By Hüseyin Yüce New York 2007 1 Functions 1.1 Four Ways to Represent a Function 1. Find the domain and range of the function f(x) = 1 + x + 1 and sketch its graph. y 3 2 1-3 -2-1

More information

MAT 145 Test #4: 100 points

MAT 145 Test #4: 100 points MAT 145 Test #4: 100 points Name Calculator Used Score Each statement (1) through (4) is FALSE, meaning that it is not always true. For each false statement, either (i) provide a counterexample that disproves

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Questions Example Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. Example Find the linear approximation of the function

More information

AP CALCULUS BC 2016 SCORING GUIDELINES

AP CALCULUS BC 2016 SCORING GUIDELINES Consider the differential equation (a) Find in terms of x an. AP CALCULUS BC 06 SCORING GUIDELINES x y. = Question 4 (b) Let y = f ( x) be the particular solution to the given differential equation whose

More information

β = 0.01/sec, C(0) = 1.0 millimoles/cm 3, and Γ = 2.0 millimoles/cm 3

β = 0.01/sec, C(0) = 1.0 millimoles/cm 3, and Γ = 2.0 millimoles/cm 3 WeBWorK assignment number 5.4 is due : 0/26/2009 at 09:40am MST. math80spring2009-. ( pt) set5.4/pr.pg 5.4.2: Use separation of variables to solve the following autonomous differential equation. Check

More information

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes

11.6. Parametric Differentiation. Introduction. Prerequisites. Learning Outcomes Parametric Differentiation 11.6 Introduction Sometimes the equation of a curve is not be given in Cartesian form y f(x) but in parametric form: x h(t), y g(t). In this Section we see how to calculate the

More information

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4 Study Guide for Final Exam 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its expression to be well-defined. Some examples of the conditions are: What

More information

Exam 2 Study Guide: MATH 2080: Summer I 2016

Exam 2 Study Guide: MATH 2080: Summer I 2016 Exam Study Guide: MATH 080: Summer I 016 Dr. Peterson June 7 016 First Order Problems Solve the following IVP s by inspection (i.e. guessing). Sketch a careful graph of each solution. (a) u u; u(0) 0.

More information

Math Final Solutions - Spring Jaimos F Skriletz 1

Math Final Solutions - Spring Jaimos F Skriletz 1 Math 160 - Final Solutions - Spring 2011 - Jaimos F Skriletz 1 Answer each of the following questions to the best of your ability. To receive full credit, answers must be supported by a sufficient amount

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2 HW3 - Due 02/06 Each answer must be mathematically justified Don t forget your name Problem 1 Find a 2 2 matrix B such that B 3 = A, where A = 2 2 If A was diagonal, it would be easy: we would just take

More information

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y Calculus for the Life Sciences II Assignment 6 solutions Find the tangent plane to the graph of the function at the point (0, π f(x, y = 3π 3 cos 2x + 2 sin 3y Solution: The tangent plane of f at a point

More information

AP Calculus AB Worksheet - Differentiability

AP Calculus AB Worksheet - Differentiability Name AP Calculus AB Worksheet - Differentiability MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The figure shows the graph of a function. At the

More information

2.8 Linear Approximations and Differentials

2.8 Linear Approximations and Differentials Arkansas Tech University MATH 294: Calculus I Dr. Marcel B. Finan 2.8 Linear Approximations and Differentials In this section we approximate graphs by tangent lines which we refer to as tangent line approximations.

More information

Differential Equations

Differential Equations Math 181 Prof. Beydler 9.1/9.3 Notes Page 1 of 6 Differential Equations A differential equation is an equation that contains an unknown function and some of its derivatives. The following are examples

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations Numerical Solution of Differential Equations Drs. Constance Schober & Alvaro Islas Tomasz H. Wlodarczyk Applications of Calculus I Competition in Population Models The simplest population model assumes

More information

Standard Response Questions. Show all work to receive credit. Please BOX your final answer.

Standard Response Questions. Show all work to receive credit. Please BOX your final answer. Standard Response Questions. Show all work to receive credit. Please BOX your final answer. 1. Calculate the following limits or show that they do not exist: x 1 (a) (4 points) lim x 1 x + 1 = ( 1 (b)

More information

2. (12 points) Find an equation for the line tangent to the graph of f(x) =

2. (12 points) Find an equation for the line tangent to the graph of f(x) = November 23, 2010 Name The total number of points available is 153 Throughout this test, show your work Throughout this test, you are expected to use calculus to solve problems Graphing calculator solutions

More information

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

More information

CALCULUS REVIS ITED PART 2 A Self-study Course

CALCULUS REVIS ITED PART 2 A Self-study Course CALCULUS REVIS ITED PART 2 A Self-study Course STUDY GUIDE Block 3 Partial Derivatives Herbert I. Gross Senior Lecturer Center for Advanced Engineering Study Massachusetts Institute of Technology Copyright

More information

Mathematical modelling Chapter 2 Nonlinear models and geometric models

Mathematical modelling Chapter 2 Nonlinear models and geometric models Mathematical modelling Chapter 2 Nonlinear models and geometric models Faculty of Computer and Information Science University of Ljubljana 2018/2019 3. Nonlinear models Given is a sample of points {(x

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Student Study Session. Theorems

Student Study Session. Theorems Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Name Formal Statement Restatement

More information

MAT137 Calculus! Lecture 5

MAT137 Calculus! Lecture 5 MAT137 Calculus! Lecture 5 Today: 2.5 The Pinching Theorem; 2.5 Trigonometric Limits. 2.6 Two Basic Theorems. 3.1 The Derivative Next: 3.2-3.6 DIfferentiation Rules Deadline to notify us if you have a

More information

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM Name (Print last name first):............................................. Student ID Number:...........................

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 5 of these questions. I reserve the right to change numbers and answers on

More information

In general, if we start with a function f and want to reverse the differentiation process, then we are finding an antiderivative of f.

In general, if we start with a function f and want to reverse the differentiation process, then we are finding an antiderivative of f. Math 1410 Worksheet #27: Section 4.9 Name: Our final application of derivatives is a prelude to what will come in later chapters. In many situations, it will be necessary to find a way to reverse the differentiation

More information

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e

a b c d e GOOD LUCK! 3. a b c d e 12. a b c d e 4. a b c d e 13. a b c d e 5. a b c d e 14. a b c d e 6. a b c d e 15. a b c d e MA23 Elem. Calculus Spring 205 Exam 205-02-2 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may use

More information

Due: Fri Nov :31 AM MST. Question Instructions Read today's Notes and Learning Goals

Due: Fri Nov :31 AM MST. Question Instructions Read today's Notes and Learning Goals The Fundamental Theorem: Basic (1862427) Due: Fri Nov 1 217 7:31 AM MST Question 1 2 3 4 5 6 7 8 9 1 11 12 Instructions Read today's Notes and Learning Goals 1. Question Details Fa 14 FTC Basic List 1

More information

Today s Agenda. Upcoming Homework Section 2.1: Derivatives and Rates of Change

Today s Agenda. Upcoming Homework Section 2.1: Derivatives and Rates of Change Today s Agenda Upcoming Homework Section 2.1: Derivatives and Rates of Change Lindsey K. Gamard, ASU SoMSS MAT 265: Calculus for Engineers I Wed., 9 September 2015 1 / 9 Upcoming Homework Written HW B:

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

Week 6: Limits and Continuity.

Week 6: Limits and Continuity. Week 6: Limits and Continuity. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway October 10-11, 2016 Recall: Limits. [Section 2.2

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 8 of these questions. I reserve the right to change numbers and answers on

More information

APPM 1350 Exam 2 Fall 2016

APPM 1350 Exam 2 Fall 2016 APPM 1350 Exam 2 Fall 2016 1. (28 pts, 7 pts each) The following four problems are not related. Be sure to simplify your answers. (a) Let f(x) tan 2 (πx). Find f (1/) (5 pts) f (x) 2π tan(πx) sec 2 (πx)

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction Until now, the functions we studied took a real number

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

Lesson 31 - Average and Instantaneous Rates of Change

Lesson 31 - Average and Instantaneous Rates of Change Lesson 31 - Average and Instantaneous Rates of Change IBHL Math & Calculus - Santowski 1 Lesson Objectives! 1. Calculate an average rate of change! 2. Estimate instantaneous rates of change using a variety

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March 2018 Name: Section: Last 4 digits of student ID #: This exam has 12 multiple choice questions (five points each) and 4 free response questions (ten

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

Lecture 7 - Separable Equations

Lecture 7 - Separable Equations Lecture 7 - Separable Equations Separable equations is a very special type of differential equations where you can separate the terms involving only y on one side of the equation and terms involving only

More information

AP Calculus BC Chapter 4 AP Exam Problems. Answers

AP Calculus BC Chapter 4 AP Exam Problems. Answers AP Calculus BC Chapter 4 AP Exam Problems Answers. A 988 AB # 48%. D 998 AB #4 5%. E 998 BC # % 5. C 99 AB # % 6. B 998 AB #80 48% 7. C 99 AB #7 65% 8. C 998 AB # 69% 9. B 99 BC # 75% 0. C 998 BC # 80%.

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information