Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt

Size: px
Start display at page:

Download "Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt"

Transcription

1 Motivation and Goals Modelling with ODEs Motivation: Ordinary Differential Equations (ODEs) are very important in all branches of Science and Engineering ODEs form the basis for the simulation of almost all continuous phenomena Goals: To introduce ODEs To give some examples of how to build simple ODE models Introduction to Simulation WS01/02 - L 02 1/39 Graham Horton Introduction to Simulation WS01/02 - L 02 2/39 Graham Horton Continuous Processes Ordinary Differential Equations Continuous processes occur everywhere. Here, we are interested in cases with discrete variables Some examples: An object falling to the ground The motion of the planets orbiting the sun The current and voltage in an electrical circuit The level of alcohol in my blood on January 1st The populations of a predator and its prey (!) In almost all cases, the relationships between the variables are defined by an ODE An Ordinary Differential Equation (ODE) describes the rate of change of a quantity y as a function of its current value and the time t : dy = f ( y, t) In addition, we usually know the value of y(0): y ( 0) = y 0 Introduction to Simulation WS01/02 - L 02 3/39 Graham Horton Introduction to Simulation WS01/02 - L 02 4/39 Graham Horton

2 Initial Value Problems Example for an IVP Given an ordinary differential equation... dy =... and an initial condition... f ( y, t) Differential equation and initial condition: dy = 2t y(0) = 1... find y ( 0) = y y(t) 0 Solution: y( t) = t Introduction to Simulation WS01/02 - L 02 5/39 Graham Horton Introduction to Simulation WS01/02 - L 02 6/39 Graham Horton Example for an IVP Example for an IVP Differential equation and initial condition: Solution: dy = λ(1 y) y(0) = 0 y( t) =1 e λt Differential equation and initial condition: Solution: dy = t e cos( t) y y(0) = 0 t y( t) = e sin( t) Introduction to Simulation WS01/02 - L 02 7/39 Graham Horton Introduction to Simulation WS01/02 - L 02 8/39 Graham Horton

3 Example for an IVP Solving ODEs A system of two differential equations and initial conditions: Solution: du = v, u(0) = 0, dv = u v(0) = 1 u ( t) = sin( t), v( t) = cos( t) We were able to solve all these examples analytically These were therefore special cases Usually, there is no analytic solution for systems of ODEs We are forced to use numerical methods to perform the integration The numerical integration of ODEs forms the most important part of continuous simulation We will look at this next week Introduction to Simulation WS01/02 - L 02 9/39 Graham Horton Introduction to Simulation WS01/02 - L 02 10/39 Graham Horton Balance Equations A Falling Object Most ODEs are balance equations A balance equation basically says: Consider dropping an object from a certain height We will develop a model for the object's location and speed Change = Increase - Decrease Example: ODE for the amount of water x in a tank: I l/s dx/ = I - O Variables: p(t) : distance fallen at time t. (Units [m]) v(t) : velocity of object at time t. (Units [m/s]) O l/s Introduction to Simulation WS01/02 - L 02 11/39 Graham Horton Introduction to Simulation WS01/02 - L 02 12/39 Graham Horton

4 Effect of Gravity A Falling Object The Earth exerts a force F on the object. (Units [N]) Let the mass of the object be m. (Units [kg]) The situation at time t: Newton's law (F = m a) states that Force = Mass Acceleration Therefore, a = F /m p meters Parameters: a : acceleration due to gravity. (Units [m/s/s]) F Newtons Mass m v meters per second Introduction to Simulation WS01/02 - L 02 13/39 Graham Horton Introduction to Simulation WS01/02 - L 02 14/39 Graham Horton The Model Simulation Results Acceleration is the rate of change of velocity: dv/ = g = 9,81 [m/s/s] Simulation results: Velocity is the rate of change of position: dp/ = v At time t =0 we define: p(0) = 0 v(0) = 0 Introduction to Simulation WS01/02 - L 02 15/39 Graham Horton Introduction to Simulation WS01/02 - L 02 16/39 Graham Horton

5 Wind Resistance Wind Resistance We have assumed that the object is falling in a vacuum Now let us consider wind resistance The standard physical model states: The force due to wind resistance is proportional to the square of the velocity Result for a = (skydiver): We obtain dv/ = g - a v 2 for some constant a with units [1/m] Terminal velocity 56 m/s Introduction to Simulation WS01/02 - L 02 17/39 Graham Horton Introduction to Simulation WS01/02 - L 02 18/39 Graham Horton Population Biology Population Biology Consider the population x of some animal species Assume for the moment... No deaths Infinite space and food supply The birth rate is proportional to the current population: dx/ = a x 30 Now let us add deaths to the model The death rate is also proportional to the current population This gives dx/ = a x - b x = (a - b) x If a > b, we still have exponential population growth We can just set c = a - b to obtain dx/ = c x The solution of this ODE is x = e ax We have exponential population growth Introduction to Simulation WS01/02 - L 02 19/39 Graham Horton Introduction to Simulation WS01/02 - L 02 20/39 Graham Horton

6 The Logistic Equation The Logistic Equation Now assume a limited food supply As the population increases, food per capita goes down This leads to decreasing birth and increasing death rates This is called crowding or competition Simulated solutions for c = 0.5, 1.0 and 2.0: One solution is to use the logistic equation dx/ = c x - d x 2 We will achieve steady state when x = c / d This is an assumption which works well in practice Introduction to Simulation WS01/02 - L 02 21/39 Graham Horton Introduction to Simulation WS01/02 - L 02 22/39 Graham Horton Predator-Prey Models Lotka-Volterra Equations Consider an area in which hares and foxes live Denote the population of hares by h and of foxes by f Observations show: Foxes must eat hares in order to survive Hares have an unlimited supply of food Without foxes, hares multiply according to dh/ = a h Without hares to eat, foxes die according to df / = -b f The probability of a meeting is proportional to h f The increase in foxes is d h f The rate at which hares are eaten is c h f The resulting equations are: dh df = a h c h f = b f + d h f These are the famous Lotka-Volterra equations Introduction to Simulation WS01/02 - L 02 23/39 Graham Horton Introduction to Simulation WS01/02 - L 02 24/39 Graham Horton

7 Lotka-Volterra Equations Lotka-Volterra Equations Simulation results for parameters State space representation: Plot h (t ) against f (t ) h (0) = 400 f (0) = 37 a = b = c = d = < t < 150 Introduction to Simulation WS01/02 - L 02 25/39 Graham Horton Introduction to Simulation WS01/02 - L 02 26/39 Graham Horton Lynxes and Hares Another Example From the records of the Hudson Bay Company Number of lynx and hare skins purchased Petri-dish populations of the bacteria Paramecium Aurelia (predator) Saccharomices Exiguns (prey) Introduction to Simulation WS01/02 - L 02 27/39 Graham Horton Introduction to Simulation WS01/02 - L 02 28/39 Graham Horton

8 The Gypsy Moth The Gypsy Moth The Gypsy moth is a pest Population of Gypsy moths in the Engadin : Its larvae eats the leaves of the larch This defoliates and often kills the tree Population Year Introduction to Simulation WS01/02 - L 02 29/39 Graham Horton Introduction to Simulation WS01/02 - L 02 30/39 Graham Horton The Gypsy Moth Chaos This looks very much like half of the Lotka-Volterra simulation result: Population Year Have we proved that the Gypsy moth is part of a predator-prey relationship? Chaotic behaviour is a (relatively) new discovery in ODEs Discovered by Edward Lorenz in the early 60s Three equations from meteorology Discovered by accident "Chaos" in physics means... "Sensitive dependence on initial conditions" The "Butterfly Effect" dx = a ( y x) dy = x z + b x y dz = x y c z Introduction to Simulation WS01/02 - L 02 31/39 Graham Horton Introduction to Simulation WS01/02 - L 02 32/39 Graham Horton

9 Types of Behaviour Lorenz's Equations What can the long-term behaviour of a system look like? Solution in the time domain: Explosion: One or more values becomes infinite Steady-state / stationary Nothing changes Periodic Values repeat indefinitely Chaotic Finite, non-stationary, non-periodic Introduction to Simulation WS01/02 - L 02 33/39 Graham Horton Introduction to Simulation WS01/02 - L 02 34/39 Graham Horton The Lorenz Attractor The Lorenz Attractor Simulation result ("Lorenz attractor"): Simulation result in the x-y, x-z and y-z planes: Introduction to Simulation WS01/02 - L 02 35/39 Graham Horton Introduction to Simulation WS01/02 - L 02 36/39 Graham Horton

10 Three Species Three Species Now let us build a new three-species predator-prey model: Species z preys on species x and y There is crowding between x and y The three-species result in a non-periodic 3-D state space: dx 2 = x 0.001x 0.001xy 0.01xz dy 2 = y xy 0.001y 0.001yz dz = z xz yz Introduction to Simulation WS01/02 - L 02 37/39 Graham Horton Introduction to Simulation WS01/02 - L 02 38/39 Graham Horton The Last Slide An ODE is an equation of the form dy/ = f (y,t) Almost all continuous processes are described by ODEs These are thus very important in simulation There is a 2+2 SWS course "Kontinuierliche Simulation" ODEs are usually a type of balance equation: Change = Increase - Decrease Next week: How to solve ODEs Introduction to Simulation WS01/02 - L 02 39/39 Graham Horton

Math 266: Ordinary Differential Equations

Math 266: Ordinary Differential Equations Math 266: Ordinary Differential Equations Long Jin Purdue University, Spring 2018 Basic information Lectures: MWF 8:30-9:20(111)/9:30-10:20(121), UNIV 103 Instructor: Long Jin (long249@purdue.edu) Office

More information

Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields

Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields Elementary Differential Equations and Boundary Value Problems, 11 th edition, by William E. Boyce, Richard C. DiPrima,

More information

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa Outline Calculus for the Life Sciences Lecture Notes to Differential Equations Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu 1 Department of Mathematics and Statistics Dynamical Systems Group Computational

More information

Predator-Prey Population Models

Predator-Prey Population Models 21 Predator-Prey Population Models Tools Used in Lab 21 Hudson Bay Data (Hare- Lynx) Lotka-Volterra Lotka-Volterra with Harvest How can we model the interaction between a species of predators and their

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 6: Population dynamics Ilya Potapov Mathematics Department, TUT Room TD325 Living things are dynamical systems Dynamical systems theory

More information

Phenomenon: Canadian lynx and snowshoe hares

Phenomenon: Canadian lynx and snowshoe hares Outline Outline of Topics Shan He School for Computational Science University of Birmingham Module 06-23836: Computational Modelling with MATLAB Phenomenon: Canadian lynx and snowshoe hares All began with

More information

1.2. Introduction to Modeling. P (t) = r P (t) (b) When r > 0 this is the exponential growth equation.

1.2. Introduction to Modeling. P (t) = r P (t) (b) When r > 0 this is the exponential growth equation. G. NAGY ODE January 9, 2018 1 1.2. Introduction to Modeling Section Objective(s): Review of Exponential Growth. The Logistic Population Model. Competing Species Model. Overview of Mathematical Models.

More information

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives.

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Lexicon Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Ordinary Differential Equation (ODE): A differential equation that contains only ordinary

More information

Gerardo Zavala. Math 388. Predator-Prey Models

Gerardo Zavala. Math 388. Predator-Prey Models Gerardo Zavala Math 388 Predator-Prey Models Spring 2013 1 History In the 1920s A. J. Lotka developed a mathematical model for the interaction between two species. The mathematician Vito Volterra worked

More information

2D-Volterra-Lotka Modeling For 2 Species

2D-Volterra-Lotka Modeling For 2 Species Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya 2D-Volterra-Lotka Modeling For 2 Species Alhashmi Darah 1 University of Almergeb Department of Mathematics Faculty of Science Zliten Libya. Abstract The purpose

More information

A NUMERICAL STUDY ON PREDATOR PREY MODEL

A NUMERICAL STUDY ON PREDATOR PREY MODEL International Conference Mathematical and Computational Biology 2011 International Journal of Modern Physics: Conference Series Vol. 9 (2012) 347 353 World Scientific Publishing Company DOI: 10.1142/S2010194512005417

More information

MODELS ONE ORDINARY DIFFERENTIAL EQUATION:

MODELS ONE ORDINARY DIFFERENTIAL EQUATION: MODELS ONE ORDINARY DIFFERENTIAL EQUATION: opulation Dynamics (e.g. Malthusian, Verhulstian, Gompertz, Logistic with Harvesting) Harmonic Oscillator (e.g. pendulum) A modified normal distribution curve

More information

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Transient Response of a Chemical Reactor Concentration of a substance in a chemical reactor

More information

CS 365 Introduction to Scientific Modeling Fall Semester, 2011 Review

CS 365 Introduction to Scientific Modeling Fall Semester, 2011 Review CS 365 Introduction to Scientific Modeling Fall Semester, 2011 Review Topics" What is a model?" Styles of modeling" How do we evaluate models?" Aggregate models vs. individual models." Cellular automata"

More information

Elementary Differential Equations

Elementary Differential Equations Elementary Differential Equations George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 310 George Voutsadakis (LSSU) Differential Equations January 2014 1 /

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Nonlinear Dynamics. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Nonlinear Dynamics Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Introduction: Dynamics of Simple Maps 3 Dynamical systems A dynamical

More information

Science One Math. October 23, 2018

Science One Math. October 23, 2018 Science One Math October 23, 2018 Today A general discussion about mathematical modelling A simple growth model Mathematical Modelling A mathematical model is an attempt to describe a natural phenomenon

More information

Lesson 9: Predator-Prey and ode45

Lesson 9: Predator-Prey and ode45 Lesson 9: Predator-Prey and ode45 9.1 Applied Problem. In this lesson we will allow for more than one population where they depend on each other. One population could be the predator such as a fox, and

More information

Lecture 20/Lab 21: Systems of Nonlinear ODEs

Lecture 20/Lab 21: Systems of Nonlinear ODEs Lecture 20/Lab 21: Systems of Nonlinear ODEs MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Coupled ODEs: Species

More information

MATH 1231 MATHEMATICS 1B Calculus Section 3A: - First order ODEs.

MATH 1231 MATHEMATICS 1B Calculus Section 3A: - First order ODEs. MATH 1231 MATHEMATICS 1B 2010. For use in Dr Chris Tisdell s lectures. Calculus Section 3A: - First order ODEs. Created and compiled by Chris Tisdell S1: What is an ODE? S2: Motivation S3: Types and orders

More information

First Order ODEs (cont). Modeling with First Order ODEs

First Order ODEs (cont). Modeling with First Order ODEs First Order ODEs (cont). Modeling with First Order ODEs September 11 15, 2017 Bernoulli s ODEs Yuliya Gorb Definition A first order ODE is called a Bernoulli s equation iff it is written in the form y

More information

Using Matlab to integrate Ordinary Differential Equations (ODEs)

Using Matlab to integrate Ordinary Differential Equations (ODEs) Using Matlab to integrate Ordinary Differential Equations (ODEs) Erica McEvoy (Dated: June 17, 2009) 1. INTRODUCTION Ordinary differential equations tend to arise whenever you need to model changing quantities

More information

Getting Started With The Predator - Prey Model: Nullclines

Getting Started With The Predator - Prey Model: Nullclines Getting Started With The Predator - Prey Model: Nullclines James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline The Predator

More information

Introduction to First Order Equations Sections

Introduction to First Order Equations Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Introduction to First Order Equations Sections 2.1-2.3 Dr. John Ehrke Department of Mathematics Fall 2012 Course Goals The

More information

CPS 5310: Parameter Estimation. Natasha Sharma, Ph.D.

CPS 5310: Parameter Estimation. Natasha Sharma, Ph.D. Example Suppose our task is to determine the net income for year 2019 based on the net incomes given below Year Net Income 2016 48.3 million 2017 90.4 million 2018 249.9 million Last lecture we tried to

More information

Integration, Separation of Variables

Integration, Separation of Variables Week #1 : Integration, Separation of Variables Goals: Introduce differential equations. Review integration techniques. Solve first-order DEs using separation of variables. 1 Sources of Differential Equations

More information

1.2. Introduction to Modeling

1.2. Introduction to Modeling G. NAGY ODE August 30, 2018 1 Section Objective(s): Population Models Unlimited Resources Limited Resources Interacting Species 1.2. Introduction to Modeling 1.2.1. Population Model with Unlimited Resources.

More information

1.1 Differential Equation Models. Jiwen He

1.1 Differential Equation Models. Jiwen He 1.1 Math 3331 Differential Equations 1.1 Differential Equation Models Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math3331 Jiwen He, University of

More information

Een vlinder in de wiskunde: over chaos en structuur

Een vlinder in de wiskunde: over chaos en structuur Een vlinder in de wiskunde: over chaos en structuur Bernard J. Geurts Enschede, November 10, 2016 Tuin der Lusten (Garden of Earthly Delights) In all chaos there is a cosmos, in all disorder a secret

More information

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations.

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations. MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P Stewart Chapter 9 Differential Equations Perhaps the most important of all the applications of calculus is to differential equations. 9.1 Modeling

More information

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material.

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material. Lecture 1 1 1 Department of Mathematics Dartmouth College 3/28/07 Outline Course Overview http://www.math.dartmouth.edu/~m23s07 Matlab Ordinary differential equations Definition An ordinary differential

More information

sections June 11, 2009

sections June 11, 2009 sections 3.2-3.5 June 11, 2009 Population growth/decay When we model population growth, the simplest model is the exponential (or Malthusian) model. Basic ideas: P = P(t) = population size as a function

More information

second order Runge-Kutta time scheme is a good compromise for solving ODEs unstable for oscillators

second order Runge-Kutta time scheme is a good compromise for solving ODEs unstable for oscillators ODE Examples We have seen so far that the second order Runge-Kutta time scheme is a good compromise for solving ODEs with a good precision, without making the calculations too heavy! It is unstable for

More information

ENGI 3424 First Order ODEs Page 1-01

ENGI 3424 First Order ODEs Page 1-01 ENGI 344 First Order ODEs Page 1-01 1. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with respect

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 7: Dynamics of Predation. Lecture summary: Categories of predation. Linked prey-predator cycles. Lotka-Volterra model. Density-dependence.

More information

MA 138 Calculus 2 with Life Science Applications Handout

MA 138 Calculus 2 with Life Science Applications Handout .. MA 138 Calculus 2 with Life Science Applications Handout Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky February 17, 2017 . Example 4 (Lotka-Volterra Predator-Prey

More information

Lab 5: Nonlinear Systems

Lab 5: Nonlinear Systems Lab 5: Nonlinear Systems Goals In this lab you will use the pplane6 program to study two nonlinear systems by direct numerical simulation. The first model, from population biology, displays interesting

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

Population Dynamics II

Population Dynamics II Population Dynamics II In this class, we shall analyze behavioral patterns of ecosystems, in which more than two species interact with each other. Such systems frequently exhibit chaotic behavior. Chaotic

More information

Lecture I Introduction, concept of solutions, application

Lecture I Introduction, concept of solutions, application S. Ghorai Lecture I Introduction, concept of solutions, application Definition. A differential equation (DE) is a relation that contains a finite set of functions and their derivatives with respect to

More information

APPM 2360 Lab #3: The Predator Prey Model

APPM 2360 Lab #3: The Predator Prey Model APPM 2360 Lab #3: The Predator Prey Model 1 Instructions Labs may be done in groups of 3 or less. One report must be turned in for each group and must be in PDF format. Labs must include each student s:

More information

Chap. 20: Initial-Value Problems

Chap. 20: Initial-Value Problems Chap. 20: Initial-Value Problems Ordinary Differential Equations Goal: to solve differential equations of the form: dy dt f t, y The methods in this chapter are all one-step methods and have the general

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs) is

More information

THETA-LOGISTIC PREDATOR PREY

THETA-LOGISTIC PREDATOR PREY THETA-LOGISTIC PREDATOR PREY What are the assumptions of this model? 1.) Functional responses are non-linear. Functional response refers to a change in the rate of exploitation of prey by an individual

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs)

More information

Chapter 9 Population Dynamics, Carrying Capacity, and Conservation Biology

Chapter 9 Population Dynamics, Carrying Capacity, and Conservation Biology Chapter 9 Population Dynamics, Carrying Capacity, and Conservation Biology 9-1 Population Dynamics & Carrying Capacity Populations change in response to enviromental stress or changes in evironmental conditions

More information

Systems of Ordinary Differential Equations

Systems of Ordinary Differential Equations Systems of Ordinary Differential Equations MATH 365 Ordinary Differential Equations J Robert Buchanan Department of Mathematics Fall 2018 Objectives Many physical problems involve a number of separate

More information

MAT 1332: CALCULUS FOR LIFE SCIENCES

MAT 1332: CALCULUS FOR LIFE SCIENCES MAT 1332: CALCULUS FOR LIFE SCIENCES JING LI Contents 1 Review: Functions of several variables I: Partial derivatives 1 2 Function of several variables II: Vector-valued functions 2 21 Introductory example

More information

Interacting Populations.

Interacting Populations. Chapter 2 Interacting Populations. 2.1 Predator/ Prey models Suppose we have an island where some rabbits and foxes live. Left alone the rabbits have a growth rate of 10 per 100 per month. Unfortunately

More information

MA 138: Calculus II for the Life Sciences

MA 138: Calculus II for the Life Sciences MA 138: Calculus II for the Life Sciences David Murrugarra Department of Mathematics, University of Kentucky. Spring 2016 David Murrugarra (University of Kentucky) MA 138: Section 11.4.2 Spring 2016 1

More information

Homework #4 Solutions

Homework #4 Solutions MAT 303 Spring 03 Problems Section.: 0,, Section.:, 6,, Section.3:,, 0,, 30 Homework # Solutions..0. Suppose that the fish population P(t) in a lake is attacked by a disease at time t = 0, with the result

More information

Lokta-Volterra predator-prey equation dx = ax bxy dt dy = cx + dxy dt

Lokta-Volterra predator-prey equation dx = ax bxy dt dy = cx + dxy dt Periodic solutions A periodic solution is a solution (x(t), y(t)) of dx = f(x, y) dt dy = g(x, y) dt such that x(t + T ) = x(t) and y(t + T ) = y(t) for any t, where T is a fixed number which is a period

More information

Math 307 E - Summer 2011 Pactice Mid-Term Exam June 18, Total 60

Math 307 E - Summer 2011 Pactice Mid-Term Exam June 18, Total 60 Math 307 E - Summer 011 Pactice Mid-Term Exam June 18, 011 Name: Student number: 1 10 10 3 10 4 10 5 10 6 10 Total 60 Complete all questions. You may use a scientific calculator during this examination.

More information

Journal of the Vol. 36, pp , 2017 Nigerian Mathematical Society c Nigerian Mathematical Society

Journal of the Vol. 36, pp , 2017 Nigerian Mathematical Society c Nigerian Mathematical Society Journal of the Vol. 36, pp. 47-54, 2017 Nigerian Mathematical Society c Nigerian Mathematical Society A CLASS OF GENERALIZATIONS OF THE LOTKA-VOLTERRA PREDATOR-PREY EQUATIONS HAVING EXACTLY SOLUBLE SOLUTIONS

More information

The integrating factor method (Sect. 1.1)

The integrating factor method (Sect. 1.1) The integrating factor method (Sect. 1.1) Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Overview

More information

Population Dynamics. Max Flöttmann and Jannis Uhlendorf. June 12, Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, / 54

Population Dynamics. Max Flöttmann and Jannis Uhlendorf. June 12, Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, / 54 Population Dynamics Max Flöttmann and Jannis Uhlendorf June 12, 2007 Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, 2007 1 / 54 1 Discrete Population Models Introduction Example: Fibonacci

More information

2007 Summer College on Plasma Physics

2007 Summer College on Plasma Physics 1856-18 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Numerical methods and simulations. Lecture 2: Simulation of ordinary differential equations. B. Eliasson Institut fur Theoretische

More information

Kasetsart University Workshop. Mathematical modeling using calculus & differential equations concepts

Kasetsart University Workshop. Mathematical modeling using calculus & differential equations concepts Kasetsart University Workshop Mathematical modeling using calculus & differential equations concepts Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu

More information

1 Simple one-dimensional dynamical systems birth/death and migration processes, logistic

1 Simple one-dimensional dynamical systems birth/death and migration processes, logistic NOTES ON A Short Course and Introduction to Dynamical Systems in Biomathematics Urszula Foryś Institute of Applied Math. & Mech. Dept. of Math., Inf. & Mech. Warsaw University 1 Simple one-dimensional

More information

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Autonomous Systems A set of coupled autonomous 1st-order ODEs. Here "autonomous" means that the right hand side of the equations does not explicitly

More information

Review Problems for Exam 2

Review Problems for Exam 2 Calculus II Math - Fall 4 Name: Review Problems for Eam In question -6, write a differential equation modeling the given situations, you do not need to solve it.. The rate of change of a population P is

More information

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A Calculus Topic: Integration of Rational Functions Section 8. # 0: Evaluate the integral (t + )(t ) Solution: The denominator of the integrand is already factored with the factors being distinct, so (t

More information

Unit 4 Lesson 6 What Are Physical and Behavioral Adaptations?

Unit 4 Lesson 6 What Are Physical and Behavioral Adaptations? Unit 4 Lesson 6 What Are Physical and Behavioral Adaptations? Adaptations A characteristic that helps a living thing survive is called an adaptation. Adaptations Animals that survive better because of

More information

Lotka Volterra Predator-Prey Model with a Predating Scavenger

Lotka Volterra Predator-Prey Model with a Predating Scavenger Lotka Volterra Predator-Prey Model with a Predating Scavenger Monica Pescitelli Georgia College December 13, 2013 Abstract The classic Lotka Volterra equations are used to model the population dynamics

More information

MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4

MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4 MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4 GILBERT STRANG: OK, today is about differential equations. That's where calculus really is applied. And these will be equations that describe growth.

More information

Non-Linear Models. Non-Linear Models Cont d

Non-Linear Models. Non-Linear Models Cont d Focus on more sophistiated interaction models between systems. These lead to non-linear, rather than linear, DEs; often not soluble exactly in analytical form so use Phase-Plane Analysis. This is a method

More information

Chapter1. Ordinary Differential Equations

Chapter1. Ordinary Differential Equations Chapter1. Ordinary Differential Equations In the sciences and engineering, mathematical models are developed to aid in the understanding of physical phenomena. These models often yield an equation that

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Practice Midterm 1 Solutions Written by Victoria Kala July 10, 2017

Practice Midterm 1 Solutions Written by Victoria Kala July 10, 2017 Practice Midterm 1 Solutions Written by Victoria Kala July 10, 2017 1. Use the slope field plotter link in Gauchospace to check your solution. 2. (a) Not linear because of the y 2 sin x term (b) Not linear

More information

Dynamical Systems: Lecture 1 Naima Hammoud

Dynamical Systems: Lecture 1 Naima Hammoud Dynamical Systems: Lecture 1 Naima Hammoud Feb 21, 2017 What is dynamics? Dynamics is the study of systems that evolve in time What is dynamics? Dynamics is the study of systems that evolve in time a system

More information

Math Applied Differential Equations

Math Applied Differential Equations Math 256 - Applied Differential Equations Notes Existence and Uniqueness The following theorem gives sufficient conditions for the existence and uniqueness of a solution to the IVP for first order nonlinear

More information

EXAM. Exam #1. Math 3350 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3350 Summer II, July 21, 2000 ANSWERS EXAM Exam #1 Math 3350 Summer II, 2000 July 21, 2000 ANSWERS i 100 pts. Problem 1. 1. In each part, find the general solution of the differential equation. dx = x2 e y We use the following sequence of

More information

Interactions between predators and prey

Interactions between predators and prey Interactions between predators and prey What is a predator? Predator An organism that consumes other organisms and inevitably kills them. Predators attack and kill many different prey individuals over

More information

Math 3B: Lecture 14. Noah White. February 13, 2016

Math 3B: Lecture 14. Noah White. February 13, 2016 Math 3B: Lecture 14 Noah White February 13, 2016 Last time Accumulated change problems Last time Accumulated change problems Adding up a value if it is changing over time Last time Accumulated change problems

More information

UCLA: Math 3B Problem set 8 (solutions) Fall, 2016

UCLA: Math 3B Problem set 8 (solutions) Fall, 2016 This week you will get practice applying the exponential and logistic models and describing their qualitative behaviour. Some of these questions take a bit of thought, they are good practice if you generally

More information

QUESTION 1: Find the derivatives of the following functions. DO NOT TRY TO SIMPLIFY.

QUESTION 1: Find the derivatives of the following functions. DO NOT TRY TO SIMPLIFY. QUESTION 1: Find the derivatives of the following functions. DO NOT TRY TO SIMPLIFY. (a) f(x) =tan(1/x) (b) f(x) =sin(e x ) (c) f(x) =(1+cos(x)) 1/3 (d) f(x) = ln x x +1 QUESTION 2: Using only the definition

More information

ENGI 2422 First Order ODEs - Separable Page 3-01

ENGI 2422 First Order ODEs - Separable Page 3-01 ENGI 4 First Order ODEs - Separable Page 3-0 3. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with

More information

SIMPLE MATHEMATICAL MODELS WITH EXCEL

SIMPLE MATHEMATICAL MODELS WITH EXCEL SIMPLE MATHEMATICAL MODELS WITH EXCEL Traugott H. Schelker Abstract Maybe twenty or thirty years ago only physicists and engineers had any use for mathematical models. Today the situation has totally changed.

More information

Ecology 302: Lecture VII. Species Interactions.

Ecology 302: Lecture VII. Species Interactions. Ecology 302: Lecture VII. Species Interactions. (Gotelli, Chapters 6; Ricklefs, Chapter 14-15) MacArthur s warblers. Variation in feeding behavior allows morphologically similar species of the genus Dendroica

More information

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide GENERAL INFORMATION AND FINAL EXAM RULES The exam will have a duration of 3 hours. No extra time will be given. Failing to submit your solutions

More information

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations. The Initial Value Problem. Linear variable coefficients equations. The Bernoulli equation: A nonlinear equation.

More information

Example (#1) Example (#1) Example (#2) Example (#2) dv dt

Example (#1) Example (#1) Example (#2) Example (#2) dv dt 1. Become familiar with a definition of and terminology involved with differential equations Calculus - Santowski. Solve differential equations with and without initial conditions 3. Apply differential

More information

Problem Set. Assignment #1. Math 3350, Spring Feb. 6, 2004 ANSWERS

Problem Set. Assignment #1. Math 3350, Spring Feb. 6, 2004 ANSWERS Problem Set Assignment #1 Math 3350, Spring 2004 Feb. 6, 2004 ANSWERS i Problem 1. [Section 1.4, Problem 4] A rocket is shot straight up. During the initial stages of flight is has acceleration 7t m /s

More information

Modeling with differential equations

Modeling with differential equations Mathematical Modeling Lia Vas Modeling with differential equations When trying to predict the future value, one follows the following basic idea. Future value = present value + change. From this idea,

More information

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x Solutions to Homewor 1, Introduction to Differential Equations, 3450:335-003, Dr. Montero, Spring 2009 problem 2. The problem says that the function yx = ce 2x + e x solves the ODE y + 2y = e x, and ass

More information

CHAPTER 1: FIRST ORDER ORDINARY DIFFERENTIAL EQUATION

CHAPTER 1: FIRST ORDER ORDINARY DIFFERENTIAL EQUATION Classification by type - Ordinary Differential Equations (ODE) Contains one or more dependent variables with respect to one independent variable is the dependent variable while is the independent variable

More information

Ecological Relationships

Ecological Relationships Why? Ecological Relationships What symbiotic relationships are seen in ecosystems? All living organisms need each other in some way to survive. This can include the interactions between predators and their

More information

14 Periodic phenomena in nature and limit cycles

14 Periodic phenomena in nature and limit cycles 14 Periodic phenomena in nature and limit cycles 14.1 Periodic phenomena in nature As it was discussed while I talked about the Lotka Volterra model, a great deal of natural phenomena show periodic behavior.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) u = - x15 cos (x15) + C

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) u = - x15 cos (x15) + C AP Calculus AB Exam Review Differential Equations and Mathematical Modelling MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the general solution

More information

1 The pendulum equation

1 The pendulum equation Math 270 Honors ODE I Fall, 2008 Class notes # 5 A longer than usual homework assignment is at the end. The pendulum equation We now come to a particularly important example, the equation for an oscillating

More information

Diffusion of point source and biological dispersal

Diffusion of point source and biological dispersal Chapter 3 Diffusion of point source and biological dispersal 3.1 Diffusion of a point source Suppose that a new species is introduced to an existing environment, then naturally the individuals of the species

More information

Introduction to Ordinary Differential Equations (Online)

Introduction to Ordinary Differential Equations (Online) 7in x 10in Felder c01_online.tex V3 - January 24, 2015 2:15 P.M. Page 1 CHAPTER 1 Introduction to Ordinary Differential Equations (Online) 1.7 Coupled Equations When two or more dependent variables depend

More information

Non-Dimensionalization of Differential Equations. September 9, 2014

Non-Dimensionalization of Differential Equations. September 9, 2014 Non-Dimensionalization of Differential Equations September 9, 2014 1 Non-dimensionalization The most elementary idea of dimensional analysis is this: in any equation, the dimensions of the right hand side

More information

Differential Equations Spring 2007 Assignments

Differential Equations Spring 2007 Assignments Differential Equations Spring 2007 Assignments Homework 1, due 1/10/7 Read the first two chapters of the book up to the end of section 2.4. Prepare for the first quiz on Friday 10th January (material up

More information

Instabilities In A Reaction Diffusion Model: Spatially Homogeneous And Distributed Systems

Instabilities In A Reaction Diffusion Model: Spatially Homogeneous And Distributed Systems Applied Mathematics E-Notes, 10(010), 136-146 c ISSN 1607-510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Instabilities In A Reaction Diffusion Model: Spatially Homogeneous And

More information

The acceleration of gravity is constant (near the surface of the earth). So, for falling objects:

The acceleration of gravity is constant (near the surface of the earth). So, for falling objects: 1. Become familiar with a definition of and terminology involved with differential equations Calculus - Santowski. Solve differential equations with and without initial conditions 3. Apply differential

More information

4.1 Modelling with Differential Equations

4.1 Modelling with Differential Equations Chapter 4 Differential Equations The rate equations with which we began our study of calculus are called differential equations when we identify the rates of change that appear within them as derivatives

More information

1.1. Bacteria Reproduce like Rabbits. (a) A differential equation is an equation. a function, and both the function and its

1.1. Bacteria Reproduce like Rabbits. (a) A differential equation is an equation. a function, and both the function and its G NAGY ODE January 7, 2018 1 11 Bacteria Reproduce like Rabbits Section Objective(s): Overview of Differential Equations The Discrete Equation The Continuum Equation Summary and Consistency 111 Overview

More information