Proof of Bernhard Riemann s Functional Equation using Gamma Function

Size: px
Start display at page:

Download "Proof of Bernhard Riemann s Functional Equation using Gamma Function"

Transcription

1 Journal of Mathematic and Statitic 4 (3): 8-85, 8 ISS Science Publication Proof of Bernhard Riemann Functional Equation uing Gamma Function Mbaïtiga Zacharie Department of Media Information Engineering, Okinawa ational College of Technology, 95 Henoko, ago, 95-9, Okinawa Prefecture, Japan Abtract: Thi tudy how the ue of gamma function to prove the Riemann functional equation. Two approache had been ued to olve thi problem: firt the value of t in the definition of the gamma function had been changed to pi nu if only if igma i greater than zero in the comple plane. Secondly, the Poion ummation formula i ued to how that zeta ha a imple pole at = with reidue, we had found that Riemann zeta function depended intimately on propertie of gamma function, which wa a new gate for olving comple problem related to zeta function. Key word: Gamma function, pecific vertical line ITRODUCTIO Bernhard Riemann paper, Ueber die Anzahl der primzahlen unter einer gegebenen Gröe (On the number of prime le than a given quantity) wa firt publihed in Monatberichte de Berliner AKademie, in ovember 859. Thi tudy, jut i manucript page in length, introduced radically new idea to the tudy of prime number, idea which led, in 896, to independent proof by Hadamard and de la Valleé Pouin of the prime number theorem. Thi theorem, firt conjectured by Gau when he wa a young man, tate that the number of prime le than i aymptotic to /log(). Very roughly peaking, thi mean that the probability that a randomly choen number of magnitude i a prime i /log(). Riemann gave a formula for the number of prime le than in term the integral of /log and the root (zero) of the zeta function, defined by: ζ () = = = n 3 n n= n= He alo formulated a conjecture about the location of thee zero, which fall into two clae: the obviou zero -, -4, -6, -8 and thoe real part lie between and. He checked the firt few zero zeta function by hand and they atify hi hypothei. By now over.5 billion zero have been checked by computer. Very trong eperimental evidence, but in mathematical we require a proof. A proof give certainty, but, jut a important, it help u to undertand why a reult i true. It i in thi direction that we ued the gamma function () to proof Riemann functional equation, where the gamma can be thought of a the natural way to generalize the concept of factorial to non-integer argument uch a: For non-negative integer n, denote n! can be defined by: Correponding Author: Mbaitiga Zacharie, Okinawa ational College of Technology, Department of Media Information Engineering, 95 Henoko, ago, 95-9, Okinawa Prefecture, Japan Tel: Fa: n n! = r n = where, for n = the empty product i taken to be For every non-integer n Γ (n + ) = n! where, Γ i Euler gamma function who come up with a formula for uch a generalization in 79. At around the ame time, Jame Stirling independently arrived at a different formal but wa unable to how that it alway converged. The proce of our proof i compared to other tudie on the open literature on the functional equation. MATERIALS AD METHODS Riemann functional equation: The function ζ () can be continued analytically over the whole comple plane C and atifie the functional equation: ( ) Γ( ) ζ () = Γ( ) ζ( ) ()

2 where, Γ denote the gamma function. In particular, the function ζ () i analytic everywhere, for a ingle pole at = with reidue. Proof: Firt note that the functional Eq. enable propertie of ζ () for σ < to be inferred from propertie of ζ () for σ > a can be oberved from () the tudy of Riemann zeta function depend on propertie of the gamma function: t () e t dt Γ = (3) J. Math. & Stat., 4 (3): 8-85, 8 In Riemann publihed paper, he formulated a conjecture about the location of zero of the zeta function, which fall into two clae: the obviou zero -,-4,-6,-8 and thoe whoe real part lie between and. He added alo in a conjecture that the real part of the non obviou zero i eactly /. That i, they all lie on a pecific vertical line in the comple plane Fig.. If the Riemann conjecture i true, the value of alo lie on that pecific vertical line in the comple plane, and we need to find the pecific vertical line that Riemann referred to in hi paper a our tudy i going to baed on it. From Fig. we found that: Fig. : The geometric repreentation of z and it conjugate z in the comple plane. The ditance along the black line from origin to the point z i the modulu or abolute value of z. The angle θ i the argument of z In the ditribution of prime number, Riemann etended Euler zeta function to the entire comple plane that: ζ () = = = n 3 4 n (5) n= n = vertical ai pecific vertical line = That i, from the origin to poitive ai, thu the value of can be replaced by S/. ow the pecific vertical line in the comple plane i known, we can uppoe that σ >. Writing t = n with dt = n d then ubtituting t and dt in the gamma function Γ Eq. 3, n Γ ( ) = e ( n ) n d Γ( ) n = n ( n ) e d ( ) ( ) n = ( n n )e d n n e d n = e d n = Γ = n ( )n e d definition of the (4) 8 ow by multiplying both the left hand ide and right hand ide of Eq. 4 by: n= Γ = n ( ) n e d n= n= Γ = n ( ) n ( e )d n= n = Γ ζ = n ( ) () ( e )d n = (6) where, the change of order of ummation and integration i jutified by the convergence of: n= n e d Writing n () e d n = ω = (7)

3 J. Math. & Stat., 4 (3): 8-85, 8 it follow for σ > Eq. 6 become: ( ) () Γ ζ = ω()d + y ω(y)dy (8) Due to the location of the non-obviou zero value that lie on the pecific vertical line in the comple plane according to Riemann Fig, we can write that: d = = = y and dy Subtituting the value of y and dy in the econd term of the integral Eq. 8 from to ( ) ω( ) d Uing the integration propertie by invering the integration border from to intead from to. We have: ( ) ω( ) d ( ) = ω( )d = ω ( )d (9) Subtituting Eq.9 into the econd term of the right hand ide of Eq.8 and letting = and =, we have: ( ) () Γ ζ = ω()d + ω ( )d () ow we have to how that for every >, the function: n () e () n = θ = = + ω () n n e = e () n = Hence: ω = θ ( ) ( ) ( ) = θ = + + ω() ω ( ) = + + ω() ubtituting ω ( ) d We obtain: ω ω ( ) into Eq.9 where ( ) d = ( + + ω()) d = + + ω() d (3) = and = (4) It follow on combining Eq. 9 and Eq. 4 that for σ > Eq. 8 become: Γ( ) ζ ( ) = + + ( + ) ω()d (5) The integral on the right hand ide of Eq. 5 converge abolutely for any, and uniformly in any bounded part of the plane, ince ω () = O(e ) when +. Hence the integral repreent an entire function of, and the formula give the analytic continuation of ζ() over the whole plane. ote that the right hand ide of Eq. 4 remain unchanged when, i replaced by -, o that the functional Eq. follow immediately. Finally note that the function: Satifie the functional equation which can be written: θ ( ) = θ () ξ () = ( ) Γ( ) ζ () (6) 83

4 J. Math. & Stat., 4 (3): 8-85, 8 i analytic everywhere, ince Γ () ha non zero, the only poible pole of ζ () i at = with reidue a we have hown in the previou equation. It remain to etablih the functional equation Eq. for every >. Which the tarting point i the Poion ummation formula, that under certain condition on a function f (t) B iν t 'f (n) = f (t)e dt (7) A A n B ν= Where, ' denote that the term in the um A n B correponding to n = A and n = B are f (A) f (B) and repectively. Uing (7) with = -A and : t = B and f (t) e = The function z e i an entire function of the comple variable z and from Cauchy theorem, we have: (ui ν) du u = e du = A e Where: A = e dy = y () The functional Eq. now follow on combining Eq. -3 and the proof of Eq. i completed. RESULTS AD DISCUSSIO (3) We have: n t i t e e ν = e dt (8) n = ν= Letting, we obtain: n t i t e e ν = e dt (9) n = ν= Thi i jutified by the fact that: ( + ) t iν t e e dt and that: ν t = e co(νt)dt, t e co( ν) dt a. now writing t = u and uing (9), n u i u e e ν = e du n ~ ν= (u i ν ) ν = e du ν= ν (u i ν ) = e e du. ν= () () 84 For more than two thouand year, mathematic ha been a part of the human earch for undertanding. Mathematical dicoverie have come both from the attempt to decribe the natural world and from the deire to arrive at a form of inecapable truth from careful reaoning. Thee remain fruitful and important motivation for mathematical thinking, but in the lat century mathematic ha been uccefully applied to many other apect of the human world. Such a, voting trend in politic, the dating of ancient artifact, the analyi of automobile traffic pattern, and long-term trategie for the utainable harvet of deciduou foret, to mention a few. Today, mathematic a a mode of thought and epreion i more valuable than ever before. Due to the importance or involvement of Mathematic in other cientific domain, many paper in the open literature have tried to prove the Riemann functional equation whoe mot of thee paper have encountered difficultie to give a real proof. For eample, in page of [] the author did a great effort to prove the Riemann functional equation, but unfortunately it wa unclear and unfinihed. When arrived at below tep: ( ) () Γ ζ ω()d = (4) The author wrote we take the natural tep of plitting the integration at = then ubtituting / for in the integral from -, where the integral from

5 J. Math. & Stat., 4 (3): 8-85, 8 - ha not been indicated and no reference ha been alo made on the value of d(d = - ) and furthermore no eplanation about how the left hand ide of Eq. 4 ha been obtained. Baed on the location of nonobviou zero on the comple plane the border of Eq. 4 hould be from - intead of -. In our proof, we have focued on the clue given by Riemann in hi conjecture tate that, the zeroe of the Riemann zeta function that are inide the Critical Strip. That i, the vertical trip of the comple plane where the real part of the comple variable i in [; ], are actually located on the Critical line. That i the pecific vertical line of the comple plane with real part equal to½. COCLUSIO In thi tudy, the gamma function i ued to prove the Riemann functional equation, baed on the real part of the non-obviou zero that i eactly /; following by the ue of Poion ummation formula to how that zeta ha a imple pole at = with reidue. From thi reearch we have found that the riemann zeta function depend on propertie of the gamma function when igma i greater than zero in the comple plane and that the non-obviou zero all lie on the pecific vertical line in the comple plane. Thi new founding may help to olve ome comple problem related to zeta function. REFERECES. Kedlaya, K.S., 7. The functional equation for riemann zeta function. J. Anal. Theor., Bochner, S., 958. On riemann functional equation with multiple gamma factor. Ann. Math., 67: Sondow, J., 994. Analytic continuation of riemann zeta function and value at negative integer via euler tranformation of erie. Proc. Am. Math. Soc., : Spanier, J. and K.B. Aldham, 987. The Zeta umber and Related Function: An Atla of Function. t Edn., Taylor and Franci, Hemipher, Wahington, DC., ISB: , pp: Srivatava, H.M.,. Some imple algorithm for the evaluation and repreentation of the zeta function at poitive integer argument. J. Math. Anal. Appl., 46: Caldwell, C. and H. Dubner, 998. Prime in pi. J. Recreat. Math., 9: InPi.pdf 7. Brian Conrey, J., 3. The riemann hypothei. otic. Am. Math. Soc., 5: &ETOC=R&from=earchengine 8. Molhem, H. and R. Pourgoli, 8. A numerical algorithm for olving a one-dimenional invere heat conduction problem. Am. J. Math. Stat., 4: Ayoub, R., 974. Euler and the zeta function. Am. Math. Monthly, 8: Biane, P., J. Pitman and M. Yor,. Probability law related to the jacobi theta and riemann zeta function and brownian ecurion. Bull. Am. Math. Soc., 38: /home.html. Bloch, S., 996. Zeta value and differential operator on the circle. J. Algebra, 8: DOI:.6/jabr

Demonstration of Riemann Hypothesis

Demonstration of Riemann Hypothesis Demontration of Riemann Hypothei Diego arin June 2, 204 Abtract We define an infinite ummation which i proportional to the revere of Riemann Zeta function ζ(). Then we demontrate that uch function can

More information

Riemann Paper (1859) Is False

Riemann Paper (1859) Is False Riemann Paper (859) I Fale Chun-Xuan Jiang P O Box94, Beijing 00854, China Jiangchunxuan@vipohucom Abtract In 859 Riemann defined the zeta function ζ () From Gamma function he derived the zeta function

More information

Riemann s Functional Equation is Not Valid and its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr.

Riemann s Functional Equation is Not Valid and its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr. Riemann Functional Equation i Not Valid and it Implication on the Riemann Hypothei By Armando M. Evangelita Jr. On November 4, 28 ABSTRACT Riemann functional equation wa formulated by Riemann that uppoedly

More information

Lecture 3. January 9, 2018

Lecture 3. January 9, 2018 Lecture 3 January 9, 208 Some complex analyi Although you might have never taken a complex analyi coure, you perhap till know what a complex number i. It i a number of the form z = x + iy, where x and

More information

Riemann s Functional Equation is Not a Valid Function and Its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr.

Riemann s Functional Equation is Not a Valid Function and Its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr. Riemann Functional Equation i Not a Valid Function and It Implication on the Riemann Hypothei By Armando M. Evangelita Jr. armando78973@gmail.com On Augut 28, 28 ABSTRACT Riemann functional equation wa

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

is defined in the half plane Re ( z ) >0 as follows.

is defined in the half plane Re ( z ) >0 as follows. 0 Abolute Value of Dirichlet Eta Function. Dirichlet Eta Function.. Definition Dirichlet Eta Function ( z) i defined in the half plane Re( z ) >0 a follow. () z = r- r z Thi erie i analytically continued

More information

Lecture 8: Period Finding: Simon s Problem over Z N

Lecture 8: Period Finding: Simon s Problem over Z N Quantum Computation (CMU 8-859BB, Fall 205) Lecture 8: Period Finding: Simon Problem over Z October 5, 205 Lecturer: John Wright Scribe: icola Rech Problem A mentioned previouly, period finding i a rephraing

More information

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or =

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or = Name Date Chapter 7 Fair Game Review Complete the number entence with , or =. 1. 3.4 3.45 2. 6.01 6.1 3. 3.50 3.5 4. 0.84 0.91 Find three decimal that make the number entence true. 5. 5.2 6. 2.65 >

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004 18.997 Topic in Combinatorial Optimization April 29th, 2004 Lecture 21 Lecturer: Michel X. Goeman Scribe: Mohammad Mahdian 1 The Lovaz plitting-off lemma Lovaz plitting-off lemma tate the following. Theorem

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

1. Preliminaries. In [8] the following odd looking integral evaluation is obtained.

1. Preliminaries. In [8] the following odd looking integral evaluation is obtained. June, 5. Revied Augut 8th, 5. VA DER POL EXPASIOS OF L-SERIES David Borwein* and Jonathan Borwein Abtract. We provide concie erie repreentation for variou L-erie integral. Different technique are needed

More information

Lecture 9: Shor s Algorithm

Lecture 9: Shor s Algorithm Quantum Computation (CMU 8-859BB, Fall 05) Lecture 9: Shor Algorithm October 7, 05 Lecturer: Ryan O Donnell Scribe: Sidhanth Mohanty Overview Let u recall the period finding problem that wa et up a a function

More information

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation IEOR 316: Fall 213, Profeor Whitt Topic for Dicuion: Tueday, November 19 Alternating Renewal Procee and The Renewal Equation 1 Alternating Renewal Procee An alternating renewal proce alternate between

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

The machines in the exercise work as follows:

The machines in the exercise work as follows: Tik-79.148 Spring 2001 Introduction to Theoretical Computer Science Tutorial 9 Solution to Demontration Exercie 4. Contructing a complex Turing machine can be very laboriou. With the help of machine chema

More information

Solving Radical Equations

Solving Radical Equations 10. Solving Radical Equation Eential Quetion How can you olve an equation that contain quare root? Analyzing a Free-Falling Object MODELING WITH MATHEMATICS To be proficient in math, you need to routinely

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q  ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of Vol 12 No 7, July 2003 cfl 2003 Chin. Phy. Soc. 1009-1963/2003/12(07)/0695-05 Chinee Phyic and IOP Publihing Ltd Lie ymmetrie and conerved quantitie of controllable nonholonomic dynamical ytem Fu Jing-Li(ΛΠ±)

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

A note on the bounds of the error of Gauss Turán-type quadratures

A note on the bounds of the error of Gauss Turán-type quadratures Journal of Computational and Applied Mathematic 2 27 276 282 www.elevier.com/locate/cam A note on the bound of the error of Gau Turán-type quadrature Gradimir V. Milovanović a, Miodrag M. Spalević b, a

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

Preemptive scheduling on a small number of hierarchical machines

Preemptive scheduling on a small number of hierarchical machines Available online at www.ciencedirect.com Information and Computation 06 (008) 60 619 www.elevier.com/locate/ic Preemptive cheduling on a mall number of hierarchical machine György Dóa a, Leah Eptein b,

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall Beyond Significance Teting ( nd Edition), Rex B. Kline Suggeted Anwer To Exercie Chapter. The tatitic meaure variability among core at the cae level. In a normal ditribution, about 68% of the core fall

More information

arxiv: v2 [math.nt] 30 Apr 2015

arxiv: v2 [math.nt] 30 Apr 2015 A THEOREM FOR DISTINCT ZEROS OF L-FUNCTIONS École Normale Supérieure arxiv:54.6556v [math.nt] 3 Apr 5 943 Cachan November 9, 7 Abtract In thi paper, we etablih a imple criterion for two L-function L and

More information

Singular perturbation theory

Singular perturbation theory Singular perturbation theory Marc R. Rouel June 21, 2004 1 Introduction When we apply the teady-tate approximation (SSA) in chemical kinetic, we typically argue that ome of the intermediate are highly

More information

A Generalisation of an Expansion for the Riemann Zeta Function Involving Incomplete Gamma Functions

A Generalisation of an Expansion for the Riemann Zeta Function Involving Incomplete Gamma Functions Applied Mathematical Science, Vol. 3, 009, no. 60, 973-984 A Generaliation of an Expanion for the Riemann Zeta Function Involving Incomplete Gamma Function R. B. Pari Diviion of Complex Sytem Univerity

More information

Local Fractional Laplace s Transform Based Local Fractional Calculus

Local Fractional Laplace s Transform Based Local Fractional Calculus From the SelectedWork of Xiao-Jun Yang 2 Local Fractional Laplace Tranform Baed Local Fractional Calculu Yang Xiaojun Available at: http://workbeprecom/yang_iaojun/8/ Local Fractional Laplace Tranform

More information

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Solving Differential Equations by the Laplace Transform and by Numerical Methods 36CH_PHCalter_TechMath_95099 3//007 :8 PM Page Solving Differential Equation by the Laplace Tranform and by Numerical Method OBJECTIVES When you have completed thi chapter, you hould be able to: Find the

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014 Phyic 7 Graduate Quantum Mechanic Solution to inal Eam all 0 Each quetion i worth 5 point with point for each part marked eparately Some poibly ueful formula appear at the end of the tet In four dimenion

More information

Multi-dimensional Fuzzy Euler Approximation

Multi-dimensional Fuzzy Euler Approximation Mathematica Aeterna, Vol 7, 2017, no 2, 163-176 Multi-dimenional Fuzzy Euler Approximation Yangyang Hao College of Mathematic and Information Science Hebei Univerity, Baoding 071002, China hdhyywa@163com

More information

Bio 112 Lecture Notes; Scientific Method

Bio 112 Lecture Notes; Scientific Method Bio Lecture ote; Scientific Method What Scientit Do: Scientit collect data and develop theorie, model, and law about how nature work. Science earche for natural caue to eplain natural phenomenon Purpoe

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Deign and Analyi of Algorithm April 29, 2015 Maachuett Intitute of Technology 6.046J/18.410J Prof. Erik Demaine, Srini Devada, and Nancy Lynch Problem Set 8 Solution Problem Set 8 Solution Thi problem

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamic in High Energy Accelerator Part 6: Canonical Perturbation Theory Nonlinear Single-Particle Dynamic in High Energy Accelerator Thi coure conit of eight lecture: 1. Introduction

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex oment of nertia of an Equilateral Triangle with Pivot at one Vertex There are two wa (at leat) to derive the expreion f an equilateral triangle that i rotated about one vertex, and ll how ou both here.

More information

Clustering Methods without Given Number of Clusters

Clustering Methods without Given Number of Clusters Clutering Method without Given Number of Cluter Peng Xu, Fei Liu Introduction A we now, mean method i a very effective algorithm of clutering. It mot powerful feature i the calability and implicity. However,

More information

arxiv: v1 [math.ca] 23 Sep 2017

arxiv: v1 [math.ca] 23 Sep 2017 arxiv:709.08048v [math.ca] 3 Sep 07 On the unit ditance problem A. Ioevich Abtract. The Erdő unit ditance conjecture in the plane ay that the number of pair of point from a point et of ize n eparated by

More information

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor Lecture 5: Overflow from lat lecture: Ewald contruction and Brillouin zone Structure factor Review Conider direct lattice defined by vector R = u 1 a 1 + u 2 a 2 + u 3 a 3 where u 1, u 2, u 3 are integer

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION. Xiaoqun Wang

ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION. Xiaoqun Wang Proceeding of the 2008 Winter Simulation Conference S. J. Maon, R. R. Hill, L. Mönch, O. Roe, T. Jefferon, J. W. Fowler ed. ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION Xiaoqun Wang

More information

Week 3 Statistics for bioinformatics and escience

Week 3 Statistics for bioinformatics and escience Week 3 Statitic for bioinformatic and escience Line Skotte 28. november 2008 2.9.3-4) In thi eercie we conider microrna data from Human and Moue. The data et repreent 685 independent realiation of the

More information

Dimensional Analysis A Tool for Guiding Mathematical Calculations

Dimensional Analysis A Tool for Guiding Mathematical Calculations Dimenional Analyi A Tool for Guiding Mathematical Calculation Dougla A. Kerr Iue 1 February 6, 2010 ABSTRACT AND INTRODUCTION In converting quantitie from one unit to another, we may know the applicable

More information

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis Proceeding of 01 4th International Conference on Machine Learning and Computing IPCSIT vol. 5 (01) (01) IACSIT Pre, Singapore Evolutionary Algorithm Baed Fixed Order Robut Controller Deign and Robutne

More information

SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU. I will collect my solutions to some of the exercises in this book in this document.

SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU. I will collect my solutions to some of the exercises in this book in this document. SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU CİHAN BAHRAN I will collect my olution to ome of the exercie in thi book in thi document. Section 2.1 1. Let A = k[[t ]] be the ring of

More information

HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES

HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES 15 TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS 0 ISGG 1-5 AUGUST, 0, MONTREAL, CANADA HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES Peter MAYRHOFER and Dominic WALTER The Univerity of Innbruck,

More information

Factor Analysis with Poisson Output

Factor Analysis with Poisson Output Factor Analyi with Poion Output Gopal Santhanam Byron Yu Krihna V. Shenoy, Department of Electrical Engineering, Neurocience Program Stanford Univerity Stanford, CA 94305, USA {gopal,byronyu,henoy}@tanford.edu

More information

Math 334 Fall 2011 Homework 10 Solutions

Math 334 Fall 2011 Homework 10 Solutions Nov. 5, Math 334 Fall Homework Solution Baic Problem. Expre the following function uing the unit tep function. And ketch their graph. < t < a g(t = < t < t > t t < b g(t = t Solution. a We

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.:

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.: MATEMATIK Datum: 20-08-25 Tid: eftermiddag GU, Chalmer Hjälpmedel: inga A.Heintz Telefonvakt: Ander Martinon Tel.: 073-07926. Löningar till tenta i ODE och matematik modellering, MMG5, MVE6. Define what

More information

Codes Correcting Two Deletions

Codes Correcting Two Deletions 1 Code Correcting Two Deletion Ryan Gabry and Frederic Sala Spawar Sytem Center Univerity of California, Lo Angele ryan.gabry@navy.mil fredala@ucla.edu Abtract In thi work, we invetigate the problem of

More information

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1.

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1. 1 I. CONTINUOUS TIME RANDOM WALK The continuou time random walk (CTRW) wa introduced by Montroll and Wei 1. Unlike dicrete time random walk treated o far, in the CTRW the number of jump n made by the walker

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

ON ASYMPTOTIC FORMULA OF THE PARTITION FUNCTION p A (n)

ON ASYMPTOTIC FORMULA OF THE PARTITION FUNCTION p A (n) #A2 INTEGERS 15 (2015) ON ASYMPTOTIC FORMULA OF THE PARTITION FUNCTION p A (n) A David Chritopher Department of Mathematic, The American College, Tamilnadu, India davchrame@yahoocoin M Davamani Chritober

More information

List coloring hypergraphs

List coloring hypergraphs Lit coloring hypergraph Penny Haxell Jacque Vertraete Department of Combinatoric and Optimization Univerity of Waterloo Waterloo, Ontario, Canada pehaxell@uwaterloo.ca Department of Mathematic Univerity

More information

6 Global definition of Riemann Zeta, and generalization of related coefficients. p + p >1 (1.1)

6 Global definition of Riemann Zeta, and generalization of related coefficients. p + p >1 (1.1) 6 Global definition of Riemann Zeta, and generalization of related coefficient 6. Patchy definition of Riemann Zeta Let' review the definition of Riemann Zeta. 6.. The definition by Euler The very beginning

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

Online supplementary information

Online supplementary information Electronic Supplementary Material (ESI) for Soft Matter. Thi journal i The Royal Society of Chemitry 15 Online upplementary information Governing Equation For the vicou flow, we aume that the liquid thickne

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Riemann Paper (1859) Is False

Riemann Paper (1859) Is False Riema Paper (859) I Fale Chu-Xua Jiag P O Box94, Beijig 00854, Chia Jiagchuxua@vipohucom Abtract I 859 Riema defied the zeta fuctio ζ () From Gamma fuctio he derived the zeta fuctio with Gamma fuctio ζ

More information

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability 5/7/2007 11_2 tability 1/2 112 tability eading Aignment: pp 542-548 A gain element i an active device One potential problem with every active circuit i it tability HO: TABIITY Jim tile The Univ of Kana

More information

AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE TRANSFORM

AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE TRANSFORM Journal of Inequalitie Special Function ISSN: 7-433, URL: http://www.iliria.com Volume 6 Iue 5, Page 5-3. AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE

More information

Chapter 12 Simple Linear Regression

Chapter 12 Simple Linear Regression Chapter 1 Simple Linear Regreion Introduction Exam Score v. Hour Studied Scenario Regreion Analyi ued to quantify the relation between (or more) variable o you can predict the value of one variable baed

More information

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama Note on Phae Space Fall 007, Phyic 33B, Hitohi Murayama Two-Body Phae Space The two-body phae i the bai of computing higher body phae pace. We compute it in the ret frame of the two-body ytem, P p + p

More information

Online Appendix for Managerial Attention and Worker Performance by Marina Halac and Andrea Prat

Online Appendix for Managerial Attention and Worker Performance by Marina Halac and Andrea Prat Online Appendix for Managerial Attention and Worker Performance by Marina Halac and Andrea Prat Thi Online Appendix contain the proof of our reult for the undicounted limit dicued in Section 2 of the paper,

More information

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem Chapter 1 Introduction to prime number theory 1.1 The Prime Number Theorem In the first part of this course, we focus on the theory of prime numbers. We use the following notation: we write f g as if lim

More information

Manprit Kaur and Arun Kumar

Manprit Kaur and Arun Kumar CUBIC X-SPLINE INTERPOLATORY FUNCTIONS Manprit Kaur and Arun Kumar manpreet2410@gmail.com, arun04@rediffmail.com Department of Mathematic and Computer Science, R. D. Univerity, Jabalpur, INDIA. Abtract:

More information

Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations

Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 7, 8197 1998 ARTICLE NO AY986078 Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Tranformation Evelyn

More information

arxiv: v1 [math.nt] 18 Jan 2016

arxiv: v1 [math.nt] 18 Jan 2016 A functional relation for L-function of graph equivalent to the Riemann Hypothei for Dirichlet L-function arxiv:60.04573v [math.nt] 8 Jan 206 Fabien Friedli September 9, 208 Abtract In thi note we define

More information

An introduction to the Riemann hypothesis

An introduction to the Riemann hypothesis An introduction to the Riemann hypothei Author: Alexander Bielik abielik@kth.e Supervior: Pär Kurlberg SA4X Degree Project in Engineering Phyic Royal Intitute of Technology KTH Department of Mathematic

More information

[Saxena, 2(9): September, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

[Saxena, 2(9): September, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Saena, (9): September, 0] ISSN: 77-9655 Impact Factor:.85 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Contant Stre Accelerated Life Teting Uing Rayleigh Geometric Proce

More information

A Note on the Sum of Correlated Gamma Random Variables

A Note on the Sum of Correlated Gamma Random Variables 1 A Note on the Sum of Correlated Gamma Random Variable Joé F Pari Abtract arxiv:11030505v1 [cit] 2 Mar 2011 The um of correlated gamma random variable appear in the analyi of many wirele communication

More information

THE DIVERGENCE-FREE JACOBIAN CONJECTURE IN DIMENSION TWO

THE DIVERGENCE-FREE JACOBIAN CONJECTURE IN DIMENSION TWO THE DIVERGENCE-FREE JACOBIAN CONJECTURE IN DIMENSION TWO J. W. NEUBERGER Abtract. A pecial cae, called the divergence-free cae, of the Jacobian Conjecture in dimenion two i proved. Thi note outline an

More information

A Simple Counterexample to Havil s Reformulation of the Riemann Hypothesis

A Simple Counterexample to Havil s Reformulation of the Riemann Hypothesis A Simple Counterexample to Havil s Reformulation of the Riemann Hypothesis Jonathan Sondow 209 West 97th Street New York, NY 0025 jsondow@alumni.princeton.edu The Riemann Hypothesis (RH) is the greatest

More information

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SBSTANCES. Work purpoe The analyi of the behaviour of a ferroelectric ubtance placed in an eternal electric field; the dependence of the electrical polariation

More information

L 2 -transforms for boundary value problems

L 2 -transforms for boundary value problems Computational Method for Differential Equation http://cmde.tabrizu.ac.ir Vol. 6, No., 8, pp. 76-85 L -tranform for boundary value problem Arman Aghili Department of applied mathematic, faculty of mathematical

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Laplace Tranform Paul Dawkin Table of Content Preface... Laplace Tranform... Introduction... The Definition... 5 Laplace Tranform... 9 Invere Laplace Tranform... Step Function...4

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

Theorem 1.1 (Prime Number Theorem, Hadamard, de la Vallée Poussin, 1896). let π(x) denote the number of primes x. Then x as x. log x.

Theorem 1.1 (Prime Number Theorem, Hadamard, de la Vallée Poussin, 1896). let π(x) denote the number of primes x. Then x as x. log x. Chapter 1 Introduction 1.1 The Prime Number Theorem In this course, we focus on the theory of prime numbers. We use the following notation: we write f( g( as if lim f(/g( = 1, and denote by log the natural

More information

Approximate Analytical Solution for Quadratic Riccati Differential Equation

Approximate Analytical Solution for Quadratic Riccati Differential Equation Iranian J. of Numerical Analyi and Optimization Vol 3, No. 2, 2013), pp 21-31 Approximate Analytical Solution for Quadratic Riccati Differential Equation H. Aminikhah Abtract In thi paper, we introduce

More information

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry Zeta-reciprocal Eteded reciprocal zeta fuctio ad a alterate formulatio of the Riema hypothei By. Alam Chaudhry Departmet of athematical Sciece, Kig Fahd Uiverity of Petroleum ad ieral Dhahra 36, Saudi

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Beta Burr XII OR Five Parameter Beta Lomax Distribution: Remarks and Characterizations

Beta Burr XII OR Five Parameter Beta Lomax Distribution: Remarks and Characterizations Marquette Univerity e-publication@marquette Mathematic, Statitic and Computer Science Faculty Reearch and Publication Mathematic, Statitic and Computer Science, Department of 6-1-2014 Beta Burr XII OR

More information

THE SPLITTING SUBSPACE CONJECTURE

THE SPLITTING SUBSPACE CONJECTURE THE SPLITTING SUBSPAE ONJETURE ERI HEN AND DENNIS TSENG Abtract We anwer a uetion by Niederreiter concerning the enumeration of a cla of ubpace of finite dimenional vector pace over finite field by proving

More information

Lecture #9 Continuous time filter

Lecture #9 Continuous time filter Lecture #9 Continuou time filter Oliver Faut December 5, 2006 Content Review. Motivation......................................... 2 2 Filter pecification 2 2. Low pa..........................................

More information

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011 NCAAPMT Calculu Challenge 011 01 Challenge #3 Due: October 6, 011 A Model of Traffic Flow Everyone ha at ome time been on a multi-lane highway and encountered road contruction that required the traffic

More information

Explicit formulae for J pectral factor for well-poed linear ytem Ruth F. Curtain Amol J. Saane Department of Mathematic Department of Mathematic Univerity of Groningen Univerity of Twente P.O. Box 800

More information

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis Source lideplayer.com/fundamental of Analytical Chemitry, F.J. Holler, S.R.Crouch Chapter 6: Random Error in Chemical Analyi Random error are preent in every meaurement no matter how careful the experimenter.

More information

Primitive Digraphs with the Largest Scrambling Index

Primitive Digraphs with the Largest Scrambling Index Primitive Digraph with the Larget Scrambling Index Mahmud Akelbek, Steve Kirkl 1 Department of Mathematic Statitic, Univerity of Regina, Regina, Sakatchewan, Canada S4S 0A Abtract The crambling index of

More information

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters Linearteam tech paper The analyi of fourth-order tate variable filter and it application to Linkwitz- iley filter Janne honen 5.. TBLE OF CONTENTS. NTOCTON.... FOTH-OE LNWTZ-LEY (L TNSFE FNCTON.... TNSFE

More information

The Power Series Expansion on a Bulge Heaviside Step Function

The Power Series Expansion on a Bulge Heaviside Step Function Applied Mathematical Science, Vol 9, 05, no 3, 5-9 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/0988/am054009 The Power Serie Expanion on a Bulge Heaviide Step Function P Haara and S Pothat Department of

More information