Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Monopile design

Size: px
Start display at page:

Download "Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Monopile design"

Transcription

1 Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering Monopile design Addis Ababa, September 2010

2 Monopile design Presentation structure: Design proofs required Calculation method (p-y) Consideration of large pile diameters Consideration of cyclic loading effects 2

3 Monopile foundations Foundation Substructure Superstructure Up to now mostly monopile foundations in North and Baltic Sea Pile diameter initially around 3m, recently 5m and more Usual requirement: maximum permanent inclination < 0.5 Effect of cyclic loading? Special for offshore windmills: large diameters, large H/V ratio

4 Projects carried out until

5 Required design proofs for Monopiles Bearing capacity and Serviceability under lateral (and axial) loads Consideration of cyclic effects (strength degradation / cyclic stability, accumulation of displacements) Worst- and best case-analyses regarding the stiffness under operational loads (calculation of natural frequency) 5

6 Design of horizontally loaded piles: Subgrade reaction method 1 p = k y e ph 2 z= L p E z= 0 ph, d DIN 1054: k s = E s /D, but admissible only for determination of bending moments and for max w < 2 cm Design proof is obsolete if: 1) Pile is fully embedded in soil and 2) Horizontal load in LC 1 is less than 3% of vertical load and in LC 2 maximum 5% of vertical load

7 p-y- method according to API RP 2A-WSD, 2000 Non-linear load-displacement curves (p-y curves) p-y curves are based on field tests with up to 1m pile diameter with up to 100 load cycles

8 p-y curves for sand acc. to API p/p u 1, k z / A p u = 1.0 k z p = A p y u tanh A pu y With: p = Soil resistance [kn/m] p u = maximum soil resistance [kn/m] y = pile deflection (lateral) [m] k = bedding modulus, dependent on ϕ [kn/m 3 ] A = Calibration factor [ - ] static : cyclic : z A = D A = 0.9 Initial stiffness Relative Density (API RP-2A WSD, 2000)

9 p-y curves for sand acc. to API Max. lateral soil resistance p u [kn/m] : 1) ( C z + C D) γ z pus = 1 2 2) = C D γ z (deep) pud 3 (near to surface) the smaller value is relevant with: z = Depth below soil surface [m] D = average pile diameter [m] γ = effective unit weight of soil [kn/m 3 ] C 1, C 2, C 3 = empirical coefficients, dependent on ϕ [-] ϕ = angle of internal friction [ ] Coefficients Coefficient Angle of internal friction (API RP-2A WSD, 2000)

10 p-y curves for soft clay acc. to API p/p u with: 1,0 0,72 0,5 p p static y = 0,5 u y c 1 3 p/p u y/y c 0 0 0,5 1,0 0,72 3,0 1,0 8,0 p = Soil resistance [kn/m 2 ] p u = maximum soil resistance [kn/m 2 ] y = pile deflection [mm] y c = 2,5 ε c x D [mm] 1,0 3,0 8,0 y/y c 1,0 ε c = Strain at 0.5 σ max in undrained uniaxial compression tests p/p u 1,0 0,72 0,5 static cyclic p/p u y/y c 0 0 0,5 1,0 0,72 3,0 Deep if z > z R 0,72 1,0 3,0 8,0 15,0 y/y c 1,0 p/p u static p/p u y/y c 0 0 0,72 0,5 cyclic 0,72 z R /z 0,5 1,0 0,72 3,0 0,72 z/z R 15,0 0,72 z/z R Near to surface - z < z R 1,0 3,0 8,0 15,0 y/y c

11 p-y curves for soft clay acc. to API Max. lateral soil resistance p u [kn/m]: 1) 2) p u = 3c + γz + p u = 9c cz J D (Near to surface - if z < z R ) (Deep - if z z R ) With: z = Depth below soil surface [m] z R = Depth of the zone of reduced soil resistance (near to surface) [m] 6D z R = γd + J c c = undrained shear strength of undisturbed samples [kn/m 2 ] D = Pile diameter [m] γ = effective unit weight of the soil [kn/m 3 ] J = Dimensionless empirical constant between 0.25 (medium stiff clay) and 0.5 (soft clay) [ - ]

12 p-y curves for cohesive soils O Neill und Gazioglu (1984): Integrated Clay Model no distinction between soft and stiff clay based on 21 field tests at 11 different locations p ult = F N p c u D F empirical soil degradation - factor N p bearing capacity coefficient N N p p = 3+ 6 = 9 z z crit for z z crit for z > z crit F (Failure)Strain ε from UU- triaxial test < > 0.06 F s (static) F c (cyclic) z L crit c = L c 4 EI = 3,0 E D 0,5 0,286 critical depth Critical pile length pile length, from which the length has no further influence on pile behavior

13 API-Method for Monopiles? Horizontal force in MN Horizontal force in MN Displacement w in cm Rotation in H-w-/H-φ-curves: Comparison API-FEM p-y-method acc. to API underestimates deflections Unmodified application is not recommended

14 Effect of large diameter Proposal of Soerensen et al. (2010) and results of Augustesen et al. (2010) for monopiles in sand Significant effect Estimation from numerical simulations 14

15 Piles under cyclic horizontal loads Test results Alizadeh & Davisson (1970) Hettler (1981): Model tests y K, N y K,1 = 1+ C N ln N

16 Cyclic Loading Offshore guidelines (GL, DNV) demand consideration of cyclic load effects BSH-Standard Soil Investigations : Cyclic laboratory tests should lead to a prediction of cyclic deformations and stability of the foundation structure. Loading Time

17 Usual requirement: Rigid clamping under design load But: for large-diameter monopiles this leads to extreme lengths! IGBE: Coupling of FE-simulations with cyclic triaxial tests (SDM-stiffness degradation method)

18 SDM method FE-Model Cyclic triaxial test device Principle: Result (Monopile D = 7.5m, dense sand, H=15 MN, h=20m)

19 E E a ε sn cp, N = 1 a s1 ε cp, N Degradation of secant modulus under cyclic loading in the pile-soil model (schematic) Degraded stiffness: E E sn s1 ε = ε a cp, N = 1 a cp, N = N b b 1( X ) 2 (Huurman 1996) with X σ = σ 1, cyc 1, sf b 1 and b 2 are cyclic parameters to be determined in triaxial tests 19

20 Timmerman & Wu (1969) Achmus et al. (2007) Simulation of plastic strain response in a cyclic triaxial test with dry sand using the degradation stiffness model Simulation of lateral pile deflection in a 1-g laboratory test using the degradation stiffness model 20

21 Variation of stiffness in two pile-soil systems dependent on the number of load cycles 21

22 On the effect of rigid clamping Depth below sea bed in m Deflection in cm Dimensionless pile deflection y k,n / y k,1 in 1 Number of load cycles N in 1 Rigid clamping ( vertical tangent or zero toe kick ) must not always secure favourable behavior under cyclic loads. For very large-diameter monopiles the requirement leads to too large embedded pile lengths.

23 Investigation regarding the minimum embedded length of Monopiles Pile deflection lines calculated with the FE method Dependence of the pile head deflection on different loading conditions 23

24 Accumulation of horizontal pile deflections at seabed level for monopiles D = 5 m Pile deflections under cyclic loading (D = 5 m, H = 15 MN, h = 15 m) 24

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading K. Abdel-Rahman Dr.-Ing., Institute of Soil Mechanics, Foundation Engineering and Waterpower

More information

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Offshore subsoil investigations

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Offshore subsoil investigations Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering Offshore subsoil investigations Addis Ababa, September 2010 Offshore subsoil investigations Presentation

More information

Lecture 7. Pile Analysis

Lecture 7. Pile Analysis Lecture 7 14.5 Release Pile Analysis 2012 ANSYS, Inc. February 9, 2013 1 Release 14.5 Pile definition in Mechanical - There are a number of methods that can be used to analyze piled foundations in ANSYS

More information

Cyclic lateral response of piles in dry sand: Effect of pile slenderness

Cyclic lateral response of piles in dry sand: Effect of pile slenderness Cyclic lateral response of piles in dry sand: Effect of pile slenderness Rafa S. 1, Rouaz I. 1,Bouaicha A. 1, Abed El Hamid A. 1 Rafa.sidali@gmail.com 1 National Center for Studies and Integrated Researches

More information

Axially Loaded Piles

Axially Loaded Piles Axially Loaded Piles 1 t- Curve Method using Finite Element Analysis The stress-strain relationship for an axially loaded pile can be described through three loading mechanisms: axial deformation in the

More information

Application of cyclic accumulation models for undrained and partially drained general boundary value problems

Application of cyclic accumulation models for undrained and partially drained general boundary value problems Application of cyclic accumulation models for undrained and partially drained general boundary value problems A. M. Page Risueño Yngres Dag 2014, May 15 th 2014 Introduction Cyclic loads in geotechnical

More information

Implementation of Laterally Loaded Piles in Multi-Layer Soils

Implementation of Laterally Loaded Piles in Multi-Layer Soils Implementation of Laterally Loaded Piles in Multi-Layer Soils JTRP SPR- 3261 Final SAC meeting SAC members Mir Zaheer and Keith Hoernschemeyer Purdue University Introduction Analysis developed for the

More information

Gapping effects on the lateral stiffness of piles in cohesive soil

Gapping effects on the lateral stiffness of piles in cohesive soil Gapping effects on the lateral stiffness of piles in cohesive soil Satyawan Pranjoto Engineering Geology, Auckland, New Zealand. M. J. Pender Department of Civil and Environmental Engineering, University

More information

PILE SOIL INTERACTION MOMENT AREA METHOD

PILE SOIL INTERACTION MOMENT AREA METHOD Pile IGC Soil 2009, Interaction Moment Guntur, INDIA Area Method PILE SOIL INTERACTION MOMENT AREA METHOD D.M. Dewaikar Professor, Department of Civil Engineering, IIT Bombay, Mumbai 400 076, India. E-mail:

More information

TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS

TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS Jérôme Racinais September 15, 215 TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON PRESSUMETER TEST RESULTS Table of contents 1. Reminder about pressuremeter tests 2. General behaviour

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

SCALE EFFECTS IN LATERAL LOAD RESPONSE OF LARGE DIAMETER MONOPILES

SCALE EFFECTS IN LATERAL LOAD RESPONSE OF LARGE DIAMETER MONOPILES GeoDenver 2007, February 18 to 21, Denver, USA 1 SCALE EFFECTS IN LATERAL LOAD RESPONSE OF LARGE DIAMETER MONOPILES K. Lesny, 1 S.G. Paikowsky 2 and A. Gurbuz 2 1 Institute of Soil Mechanics and Foundation

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

Flexural Behavior of Laterally Loaded Tapered Piles in Cohesive Soils

Flexural Behavior of Laterally Loaded Tapered Piles in Cohesive Soils Open Journal of Civil Engineering, 5, 5, 9-38 Published Online March 5 in SciRes. http://www.scirp.org/journal/ojce http://dx.doi.org/.436/ojce.5.54 Flexural Behavior of Laterally Loaded Tapered Piles

More information

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Finite Element analysis of Laterally Loaded Piles on Sloping Ground Indian Geotechnical Journal, 41(3), 2011, 155-161 Technical Note Finite Element analysis of Laterally Loaded Piles on Sloping Ground K. Muthukkumaran 1 and N. Almas Begum 2 Key words Lateral load, finite

More information

Behavior of Offshore Piles under Monotonic Inclined Pullout Loading

Behavior of Offshore Piles under Monotonic Inclined Pullout Loading Behavior of Offshore Piles under Monotonic Inclined Pullout Loading Mohamed I. Ramadan Lecturer, Civil Engineering Department, Faculty of Engineering, Assiut University, Assiut, Egypt, mihr81@gmail.com

More information

Rock Berm Restraint of an Untrenched Pipeline on Soft Clay

Rock Berm Restraint of an Untrenched Pipeline on Soft Clay Rock Berm Restraint of an Untrenched Pipeline on Soft Clay J.-C. Ballard, P.H. Yonatan and M.J. Rattley, Fugro GeoConsulting A. Griffiths, Shell UK Limited ABSTRACT This paper discusses soil structure

More information

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE CHAPTER ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE.1 INTRODUCTION An important objective of this research is to determine whether accurate analyses of the lateral load-deflection behavior

More information

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test.

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (d) COMPRESSIBILITY AND CONSOLIDATION D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (a) Plot the e - σ curve. (b)

More information

Foundation models for the dynamic response of offshore wind turbines

Foundation models for the dynamic response of offshore wind turbines Marine Renewable Energy Conference (MAREC), Newcastle, UK, September 00. Foundation models for the dynamic response of offshore wind turbines. M.B. Zaaijer, MSc Delft University of Technology, The Netherlands

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM

Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM *Hisatoshi Kashiwa 1) and Yuji Miyamoto 2) 1), 2) Dept. of Architectural Engineering Division

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

Engineeringmanuals. Part2

Engineeringmanuals. Part2 Engineeringmanuals Part2 Engineering manuals for GEO5 programs Part 2 Chapter 1-12, refer to Engineering Manual Part 1 Chapter 13. Pile Foundations Introduction... 2 Chapter 14. Analysis of vertical load-bearing

More information

Chapter (11) Pile Foundations

Chapter (11) Pile Foundations Chapter (11) Introduction Piles are structural members that are made of steel, concrete, or timber. They are used to build pile foundations (classified as deep foundations) which cost more than shallow

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

cyclic loading in Germany

cyclic loading in Germany Note to actual al design of micropiles under axial cyclic loading in Germany according to DIN 1054 and further guidelines Jennifer Kleih 9th International Workshop on Micropiles London 13th May 2009 Outline

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

Analysis of Pile Foundation Subjected to Lateral and Vertical Loads

Analysis of Pile Foundation Subjected to Lateral and Vertical Loads Analysis of Pile Foundation Subjected to Lateral and Vertical Loads Thadapaneni Kanakeswararao 1, B.Ganesh 2 1,2 Department of soil mechanics and foundation engg, Lenora college of Engineering and technology,

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Centrifuge modelling of a laterally cyclic loaded pile

Centrifuge modelling of a laterally cyclic loaded pile Physical Modelling in Geotechnics Springman, Laue & Seward (eds) 21 Taylor & Francis Group, London, ISBN 978--415-59288-8 Centrifuge modelling of a laterally cyclic loaded pile R.T. Klinkvort, C.T. Leth

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Correlations between soil parameters and penetration testing results

Correlations between soil parameters and penetration testing results 1 A 1 6 Correlations between soil parameters and penetration testing results Corrélation entre paramètres du sol et résultats de sondage J. FORMAZIN, Director, VEB SBK Wasserbau, KB Baugrund Berlin, Berlin,

More information

Shakedown analysis of pile foundation with limited plastic deformation. *Majid Movahedi Rad 1)

Shakedown analysis of pile foundation with limited plastic deformation. *Majid Movahedi Rad 1) Shakedown analysis of pile foundation with limited plastic deformation *Majid Movahedi Rad 1) 1) Department of Structural and Geotechnical Engineering, Széchenyi István University Egyetem Tér1, H-9026

More information

CHAPTER 8 CALCULATION THEORY

CHAPTER 8 CALCULATION THEORY CHAPTER 8 CALCULATION THEORY. Volume 2 CHAPTER 8 CALCULATION THEORY Detailed in this chapter: the theories behind the program the equations and methods that are use to perform the analyses. CONTENTS CHAPTER

More information

Foundations of High Rise Buildings

Foundations of High Rise Buildings Foundations of High Rise Buildings Prof. Dr.-Ing. Yasser El-Mossallamy Professor of Geotechnical Engineering Ain Shams Univ. Cairo, Egypt c/o Arcadis Consult, Germany y.el-mossallamy@arcadis.de Slide:

More information

Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung

Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung Dr.-Ing. Fabian Kirsch GuD Geotechnik und Dynamik Consult GmbH, Berlin Offshoretage, 18. März 2016, TU Berlin

More information

Design of Axially and Laterally Loaded Piles for the Support of Offshore Wind Energy Converters

Design of Axially and Laterally Loaded Piles for the Support of Offshore Wind Energy Converters Indian Geotechnical Conference 2010, GOtrendz December 16 18, 2010 IGS Mumbai Chapter & IIT Bombay Design of Axially and Laterally Loaded Piles for the Support of Offshore Wind nergy Converters Achmus,

More information

Small-Scale Testing of Cyclic Laterally Loaded Monopiles in Dense Saturated Sand

Small-Scale Testing of Cyclic Laterally Loaded Monopiles in Dense Saturated Sand Journal of Ocean and Wind Energy (ISSN 2310-3604) Copyright by The International Society of Offshore and Polar Engineers Vol. 1, No. 4, November 2014, pp. 240 245 http://www.isope.org/publications Small-Scale

More information

Monopile foundations. Kjell Inge Sævdal. Effect of scour protection on eigenfrequency of offshore wind turbines

Monopile foundations. Kjell Inge Sævdal. Effect of scour protection on eigenfrequency of offshore wind turbines Monopile foundations Effect of scour protection on eigenfrequency of offshore wind turbines Kjell Inge Sævdal Geotechnics and Geohazards Submission date: June 217 Supervisor: Arnfinn Emdal, IBM Norwegian

More information

Analysis of the horizontal bearing capacity of a single pile

Analysis of the horizontal bearing capacity of a single pile Engineering manual No. 16 Updated: 07/2018 Analysis of the horizontal bearing capacity of a single pile Program: Soubor: Pile Demo_manual_16.gpi The objective of this engineering manual is to explain how

More information

EXPERIMENTAL INVESTIGATIONS ON THE LATERAL BEARING BEHAVIOR OF VIBRATORY-DRIVEN OPEN STEEL PIPE PILES

EXPERIMENTAL INVESTIGATIONS ON THE LATERAL BEARING BEHAVIOR OF VIBRATORY-DRIVEN OPEN STEEL PIPE PILES EXPERIMENTAL INVESTIGATIONS ON THE LATERAL BEARING BEHAVIOR OF VIBRATORY-DRIVEN OPEN STEEL PIPE PILES Johannes Labenski, Institute for Geotechnical Engineering (IGS), University of Stuttgart, Germany,

More information

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS Hideaki Nishida 1,Toshiaki Nanazawa 2, Masahiro Shirato 3, Tetsuya Kohno 4, and Mitsuaki Kitaura 5 Abstract One of the motivations

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL SHEAR STRENGTH OF SOIL Necessity of studying Shear Strength of soils : Soil failure usually occurs in the form of shearing along internal surface within the soil. Shear Strength: Thus, structural strength

More information

INTRODUCTION TO STATIC ANALYSIS PDPI 2013

INTRODUCTION TO STATIC ANALYSIS PDPI 2013 INTRODUCTION TO STATIC ANALYSIS PDPI 2013 What is Pile Capacity? When we load a pile until IT Fails what is IT Strength Considerations Two Failure Modes 1. Pile structural failure controlled by allowable

More information

Report No. K-TRAN: KU-10-2 FINAL REPORT November 2013

Report No. K-TRAN: KU-10-2 FINAL REPORT November 2013 Report No. K-TRAN: KU-10-2 FINAL REPORT November 2013 Capacity of Scour-Damaged Bridges, Part 2: Integrated Analysis Program (IAP) A Program for the Analysis of Lateral Performance of Pile-Supported Structures

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

FLAC3D analysis on soil moving through piles

FLAC3D analysis on soil moving through piles University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 211 FLAC3D analysis on soil moving through piles E H. Ghee Griffith University

More information

EVALUATION OF BENDING LOAD IN BATTER PILES SET IN SOFT CLAY

EVALUATION OF BENDING LOAD IN BATTER PILES SET IN SOFT CLAY EVALUATION OF BENDING LOAD IN BATTER PILES SET IN SOFT CLAY Tetsuya KOHNO 1, Hiroyuki TANAKA 2, Masahiro SHIRATO 3 and Shoichi NAKATANI 4 Abstract In this study, we conducted centrifuge tests to evaluate

More information

OPTIMAL SHAKEDOWN ANALYSIS OF LATERALLY LOADED PILE WITH LIMITED RESIDUAL STRAIN ENERGY

OPTIMAL SHAKEDOWN ANALYSIS OF LATERALLY LOADED PILE WITH LIMITED RESIDUAL STRAIN ENERGY INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING Int. J. Optim. Civil Eng., 2018; 8(3):347-355 OPTIMAL SHAKEDOWN ANALYSIS OF LATERALLY LOADED PILE WITH LIMITED RESIDUAL STRAIN ENERGY M. Movahedi

More information

COEFFICIENT OF DYNAMIC HORIZONTAL SUBGRADE REACTION OF PILE FOUNDATIONS ON PROBLEMATIC GROUND IN HOKKAIDO Hirofumi Fukushima 1

COEFFICIENT OF DYNAMIC HORIZONTAL SUBGRADE REACTION OF PILE FOUNDATIONS ON PROBLEMATIC GROUND IN HOKKAIDO Hirofumi Fukushima 1 COEFFICIENT OF DYNAMIC HORIZONTAL SUBGRADE REACTION OF PILE FOUNDATIONS ON PROBLEMATIC GROUND IN HOKKAIDO Hirofumi Fukushima 1 Abstract In this study, static loading tests and dynamic shaking tests of

More information

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading. Hatanaka and Uchida (1996); ' 20N 20 12N 20 ' 45 A lower bound for the above equation is given as; 12N 15 ' 45 Table 3. Empirical Coefficients for BS 8002 equation A Angularity 1) A (degrees) Rounded 0

More information

EXAMPLE OF PILED FOUNDATIONS

EXAMPLE OF PILED FOUNDATIONS EXAMPLE OF PILED FOUNDATIONS The example developed below is intended to illustrate the various steps involved in the determination of the seismic forces developed in piles during earthquake shaking. The

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

Centrifuge experiments on laterally loaded piles with wings

Centrifuge experiments on laterally loaded piles with wings Centrifuge experiments on laterally loaded piles with wings J. Dührkop & J. Grabe Hamburg University of Technology, Hamburg, Germany B. Bienen, D.J. White & M.F. Randolph Centre for Offshore Foundation

More information

Analysis of a single pile settlement

Analysis of a single pile settlement Engineering manual No. 14 Updated: 06/2018 Analysis of a single pile settlement Program: Pile File: Demo_manual_14.gpi The objective of this engineering manual is to explain the application of the GEO

More information

Verification of a Micropile Foundation

Verification of a Micropile Foundation Engineering manual No. 36 Update 02/2018 Verification of a Micropile Foundation Program: File: Pile Group Demo_manual_en_36.gsp The objective of this engineering manual is to explain the application of

More information

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil Appendix F Notation a b B C c C k C N C s C u C wt C θ D r D 1 D 2 D 10 D 30 Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus

More information

A boundary element analysis on the influence of K rc and e/d on the performance of cyclically loaded single pile in clay

A boundary element analysis on the influence of K rc and e/d on the performance of cyclically loaded single pile in clay 7(21) 265 284 A boundary element analysis on the influence of K rc and e/d on the performance of cyclically loaded single pile in clay Abstract The environment prevalent in oceans necessitates the piles

More information

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7.

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7. App'd by Construction Stages Name Term Objects present in this stage Stage 1 Long Wall 1 (Generated) (Generated) On retained side: Ground 1 (Generated), Borehole 1 (Generated), On excavated side: Excavation

More information

Dynamic Earth Pressure Problems and Retaining Walls. Behavior of Retaining Walls During Earthquakes. Soil Dynamics week # 12

Dynamic Earth Pressure Problems and Retaining Walls. Behavior of Retaining Walls During Earthquakes. Soil Dynamics week # 12 Dynamic Earth Pressure Problems and Retaining Walls 1/15 Behavior of Retaining Walls During Earthquakes - Permanent displacement = cc ' 2 2 due to one cycle of ground motion 2/15 Hence, questions are :

More information

Validation of empirical formulas to derive model parameters for sands

Validation of empirical formulas to derive model parameters for sands Validation of empirical formulas to derive model parameters for sands R.B.J. Brinkgreve Geo-Engineering Section, Delft University of Technology, Delft, Netherlands/Plaxis B.V., Delft, Netherlands E. Engin

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ)

S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ) Wang, S. & Orense, R.P. (2013) Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ) Jackson.wang@beca.com R P Orense

More information

Laterally Loaded Piles. Rocscience 2018

Laterally Loaded Piles. Rocscience 2018 Laterally Loaded Piles Rocscience 2018 Contents 1 Soil Response Modelled by p-y Curves... 3 2 Governing Differential Equation... 4 3 Finite Element Method... 5 4 Pile Bending Stiffness... 5 5 Soil Models...

More information

Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading

Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading February, 2011 1 INTRODUCTION Past earthquakes offer many examples of bridges that either collapsed or incurred

More information

ABSTRACT. SUAREZ, VINICIO. Implementation of Direct Displacement Based Design for Pile and

ABSTRACT. SUAREZ, VINICIO. Implementation of Direct Displacement Based Design for Pile and ABSTRACT SUAREZ, VINICIO. Implementation of Direct Displacement Based Design for Pile and Drilled Shaft Bents. (Under the direction of Dr. Mervyn Kowalsky) The work in this thesis attempts to implement

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

HORIZONTAL LOAD DISTRIBUTION WITHIN PILE GROUP IN LIQUEFIED GROUND

HORIZONTAL LOAD DISTRIBUTION WITHIN PILE GROUP IN LIQUEFIED GROUND 4 th International Conference on Earthquake Geotechnical Engineering June 2-28, 7 Paper No. 127 HORIZONTAL LOAD DISTRIBUTION WITHIN PILE GROUP IN LIQUEFIED GROUND Hiroko SUZUKI 1 and Kohji TOKIMATSU 2

More information

Nonlinear pushover analysis for pile foundations

Nonlinear pushover analysis for pile foundations Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland Michael Pender Department of Civil and Environmental Engineering, University of Auckland Keywords: piles, lateral

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

When can we rely on a pseudo-static approach for pile group seismic analysis?

When can we rely on a pseudo-static approach for pile group seismic analysis? 28-3 May 29, Near East University, Nicosia, North Cyprus When can we rely on a pseudo-static approach for pile group seismic analysis? H. Elahi, M. Moradi, A. Ghalandarzadeh School of civil engineering,

More information

The Bearing Capacity of Soils. Dr Omar Al Hattamleh

The Bearing Capacity of Soils. Dr Omar Al Hattamleh The Bearing Capacity of Soils Dr Omar Al Hattamleh Example of Bearing Capacity Failure Omar Play the move of bearing Capacity failure The Philippine one Transcona Grain Silos Failure - Canada The Bearing

More information

Pile-Soil Interaction in Unsaturated Soil Conditions

Pile-Soil Interaction in Unsaturated Soil Conditions University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2014 Pile-Soil Interaction in Unsaturated Soil Conditions Megan Hamilton

More information

ANALYSIS OF LATERALLY LOADED FIXED HEADED SINGLE FLOATING PILE IN MULTILAYERED SOIL USING BEF APPROACH

ANALYSIS OF LATERALLY LOADED FIXED HEADED SINGLE FLOATING PILE IN MULTILAYERED SOIL USING BEF APPROACH INDIAN GEOTECHNICAL SOCIETY, KOLKATA CHAPTER GEOTECHNICS FOR INFRASTRUCTURE DEVELOPMENT KOLKATA 11 th 12 th March 2016, Kolkata, West Bengal, India ANALYSIS OF LATERALLY LOADED FIXED HEADED SINGLE FLOATING

More information

Buckling of slender piles in soft soils. Large scale loading tests and introduction of a simple calculation scheme

Buckling of slender piles in soft soils. Large scale loading tests and introduction of a simple calculation scheme Dipl.-Ing. Stefan Vogt Zentrum Geotechnik, Technische Universität München Buckling of slender piles in soft soils Large scale loading tests and introduction of a simple calculation scheme Research work

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

Response of a stiff monopile for a long-term cyclic loading Koteras, Aleksandra Katarzyna; Gres, Szymon; Nicolai, Giulio; Ibsen, Lars Bo

Response of a stiff monopile for a long-term cyclic loading Koteras, Aleksandra Katarzyna; Gres, Szymon; Nicolai, Giulio; Ibsen, Lars Bo Aalborg Universitet Response of a stiff monopile for a long-term cyclic loading Koteras, Aleksandra Katarzyna; Gres, Szymon; Nicolai, Giulio; Ibsen, Lars Bo Publication date: 2014 Document Version Publisher's

More information

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida SOIL SHEAR STRENGTH Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida What is shear strength Shear strength of a soil is the maximum internal resistance to applied shearing forces Why it is

More information

(C) Global Journal of Engineering Science and Research Management

(C) Global Journal of Engineering Science and Research Management GEOTECHNCIAL ASSESSMENT OF PART OF PORT HARCOURT, NIGER DELTA FOR STRUCTURAL ANALYSIS Warmate Tamunonengiyeofori Geostrat International Services Limited, www.geostratinternational.com. *Correspondence

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

Analysis of pile foundation Simplified methods to analyse the pile foundation under lateral and vertical loads

Analysis of pile foundation Simplified methods to analyse the pile foundation under lateral and vertical loads Analysis of pile foundation Simplified methods to analyse the pile foundation under lateral and vertical loads 1 Kanakeswararao Thadapaneni, 2 Sarikonda Venkata sivaraju, 3 Ravi teja Grandhi 1 PG Student,

More information

Seabed instability and 3D FE jack-up soil-structure interaction analysis

Seabed instability and 3D FE jack-up soil-structure interaction analysis Seabed instability and 3D FE jack-up soil-structure interaction analysis Lindita Kellezi, GEO Danish Geotechnical Institute, Denmark Gregers Kudsk, Maersk Contractors, Denmark Hugo Hofstede, Marine Structure

More information

Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus.

Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus. 1 Introduction Test on Cyclic Lateral Loaded Piles in Sand Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus. Abstract The following paper

More information

Small-displacement soil-structure interaction for horizontally

Small-displacement soil-structure interaction for horizontally Small-displacement soil-structure interaction for horizontally S. P. H. Sørensen COWI A/S, Denmark, spso@cowi.dk A. H. Augustesen COWI A/S, Denmark ABSTRACT Monopile foundations with diameters of 4 to

More information

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil [Jafar Bolouri Bazaz, Javad Keshavarz] Abstract Almost all types of piles are subjected to lateral loads. In many cases,

More information

Influence of pullout loads on the lateral response of pile foundation

Influence of pullout loads on the lateral response of pile foundation Influence of pullout loads on the lateral response of pile foundation Mahmoud N. Hussien & Mourad Karray Department of Civil Engineering, Sherbrooke University (QC), Canada Tetsuo Tobita & Susumu Iai Disaster

More information

APPLICATION OF A NUMERICAL-BASED DESIGN METHOD FOR LATERALLY LOADED MONOPILES IN LAYERED SOILS

APPLICATION OF A NUMERICAL-BASED DESIGN METHOD FOR LATERALLY LOADED MONOPILES IN LAYERED SOILS APPLICATION OF A NUMERICAL-BASED DESIGN METHOD FOR LATERALLY LOADED MONOPILES IN LAYERED SOILS Y He AECOM, Birmingham, UK; formerly Department of Engineering Science, University of Oxford, Oxford, UK;

More information

Evolution Group 7 - Pile Design

Evolution Group 7 - Pile Design Evolution Group 7 - Pile Design Summary of UK Design for Pile Groups - Chris Raison In the UK there are no specific requirements given in the National Annex covering design of pile groups. Particular issues

More information

Pre-failure Deformability of Geomaterials. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Pre-failure Deformability of Geomaterials. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Pre-failure Deformability of Geomaterials Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Strain Levels Strain at failure Sand Clay Rock Distribution of strain of soil in the field

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLE LIST OF FIGURES LIST OF SYMBOLS LIST OF APENDICES i ii iii iv v

More information

Investigation of Pile- Soil Interaction Subjected to Lateral Loads in Layered Soils

Investigation of Pile- Soil Interaction Subjected to Lateral Loads in Layered Soils American J. of Engineering and Applied Sciences (): 76-8, 008 ISSN 9-700 008 Science Publications Investigation of Pile- Soil Interaction Subjected to Lateral Loads in Layered Soils A. Avaei, Abdoul R.

More information

Clayey sand (SC)

Clayey sand (SC) Pile Bearing Capacity Analysis / Verification Input data Project Task : PROJECT: "NEW STEAM BOILER U-5190 Part : A-1 Descript. : The objective of this Analysis is the Pile allowable bearing Capacity Analysis

More information

Technical Note 16 Equivalent Static Method

Technical Note 16 Equivalent Static Method Technical Note 16 Equivalent Static Method Contents Technical Note 21 -... 1 1 Introduction... 1 2 Operational Strain in the Pipeline... 2 3 Seismicity... 2 4 Vertical Uplift... 3 5 Vertical Bearing...

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 1, 2011 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 1, 2011 Copyright 2011 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Dynamic nonlinear behavior

More information

ANALYSES OF SOIL-STRUCTURE INTERACTION BASED ON VERTICAL LOAD TESTS OF DISPLACEMENT PILES

ANALYSES OF SOIL-STRUCTURE INTERACTION BASED ON VERTICAL LOAD TESTS OF DISPLACEMENT PILES Technical Sciences 18(4), 2015, 261 270 ANALYSES OF SOIL-STRUCTURE INTERACTION BASED ON VERTICAL LOAD TESTS OF DISPLACEMENT PILES Department of Geotechnical engineering Vilnius Gediminas Technical University

More information

SHEAR STRENGTH OF SOIL UNCONFINED COMPRESSION TEST

SHEAR STRENGTH OF SOIL UNCONFINED COMPRESSION TEST SHEAR STRENGTH OF SOIL DEFINITION The shear strength of the soil mass is the internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it. INTRODUCTION

More information

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm 444 Chapter : Shear Strength of Soil Example. Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 5 mm Normal Shear force

More information