INTRODUCTION TO STATIC ANALYSIS PDPI 2013

Size: px
Start display at page:

Download "INTRODUCTION TO STATIC ANALYSIS PDPI 2013"

Transcription

1 INTRODUCTION TO STATIC ANALYSIS PDPI 2013

2 What is Pile Capacity? When we load a pile until IT Fails what is IT

3 Strength Considerations Two Failure Modes 1. Pile structural failure controlled by allowable driving stresses 2. Soil failure controlled by factor of safety (ASD) resistance factors (LRFD) In addition, driveability is evaluated by wave equation

4 STATIC ANALYSIS METHODS Foundation designer must know design loads and performance requirements. Many static analysis methods are available. - methods in manual are relatively simple - methods provide reasonable agreement with full scale tests - other more sophisticated methods could be used Designer should fully know the basis for, limitations of, and applicability of a chosen method.

5 BASICS OF STATIC ANALYSIS Static capacity is the sum of the soil/rock resistances along the pile shaft and at the pile toe. Static analyses are performed to determine ultimate pile capacity and the pile group response to applied loads. The ultimate capacity of a pile and pile group is the smaller of the soil rock medium to support the pile loads or the structural capacity of the piles.

6 ASD for Driven Piles /Drilled Shafts: Axial Loading Traditional allowable stress design: F des < Q all Q ult FS In plain English: the design load may not exceed the allowable load, taken as the ultimate capacity divided by a factor of safety

7 LRFD: Load and Resistance Factor Design where: The following inequality must be satisfied i Q i R = sum of nominal side resistance & base resistance Q = applied axial force γ = load factors > 1.0 φ = resistance factors < 1.0 i R i

8 ULTIMATE CAPACITY, ASD Qu = (Design Load x FS) + other Other could be the resistance provided by scourable soil Other could be the resistance provided by Liquefiable soil Other is soil resistance at the time of driving not present later during the design life of the pile

9 ULTIMATE CAPACITY, LRFD Qu =(Σγ i Q i )/φ i + other Q i = various load components γ i = load factors φ = resistance factors ASD, LRFD, regardless-a target capacity for contractor is shown on plans

10 LRFD

11

12 Professor's Driven Pile Institute, Utah State University Structural Engineer Geotechnical Engineer Estimates, magnitude and direction of loads: Estimates soil resistance and calculates size, length and quantity of piles to resist the given loads. Any SCOUR?? Any SET UP The factored resistance must be greater than the factored applied loads!

13 TWO STATIC ANALYSIS ARE OFTEN REQUIRED 1. Design stage soil profile with sourable and/or unsuitable soils removed establish a pile tip elevation to accommodate the appropriate load (LRFD, ASD) 2. Construction stage soil profile, establish the soil resistance provided by soil profile at time of pile installation. This is the target resistance and includes scourable and unsuitable soils. This value should be shown on the plans.

14 Professor's Driven Pile Institute, Utah State University TWO STATIC ANALYSIS REQUIRED Bridge Pier 1. Calculate the required pile length to accommodate the factored load. Ignore resistance provided by scourable material. Estimated Maximum Scour Depth Contractor s Target 2. Given the required length now include the resistance of scourable soils when estimating soil resistance at time of Driving. (show on plans)

15 LOAD TRANSFER The ultimate pile capacity is typically expressed as the sum of the shaft and toe resistances: Q u = R s + R t This may also be expressed in terms of unit resistances: Q u = f s A s + q t A t The above equations assume that the ultimate shaft and toe resistances are simultaneously developed.

16 LOAD TRANSFER Q u Axial Load vs Depth Soil Resistance vs Depth R s = 0 R s R t R t Uniform R t R s 9-9 R t R s Triangular

17 DESIGN SOIL STRENGTH PARAMETERS Most of the static analysis methods in cohesionless soils use the soil friction angle determined from laboratory tests or SPT N values. In coarse granular deposits, the soil friction angle should be chosen conservatively. What does this mean??

18 DESIGN SOIL STRENGTH PARAMETERS In soft, rounded gravel deposits, use a maximum soil friction angle,, of 32 for shaft resistance calculations. In hard, angular gravel deposits, use a maximum friction angle of 36 for shaft resistance calculations.

19 DESIGN SOIL STRENGTH PARAMETERS In cohesive soils, accurate assessments of the soil shear strength and consolidation properties are needed for static analysis. The sensitivity of cohesive soils should be known during the design stage so that informed assessments of pile driveability and soil setup can be made.

20 DESIGN SOIL STRENGTH PARAMETERS For a cost effective design with any static analysis method, the foundation designer must consider time dependent soil strength changes. Ignore set up --- uneconomical Ignore relaxation --- unsafe

21 Static Analysis - Single Piles Methods for estimating axial static resistance of soils

22 Soil Mechanics Review Angle of friction Undrained shear strength Unconfined Compression Strength

23 Cohesionless Soils, Drained Strength Normal Force, N Friction Force, F F 1 2 F = N μ μ = coefficient of friction between material 1 and material 2 Tan ( ) = F/N Soil on Soil, we use Soil on Pile, we use δ N F = N TAN ( ) phi = angle such that TAN ( ) is coefficient of friction between materials 1 and 2

24 Cohesive Soils, Undrained Strength F c = zero F = Friction resistance (stress) N = Normal force (stress) N C is independent of overburden pressures (i.e. N) c = cohesion, stickiness, soil / soil a = adhesion, stickiness, soil / pile

25 Unconfined Compression σ 1 Strength σ 3 zero C C = cohesion = ½ q u σ 3 Maximum σ 1 = unconfined compression strength, q u

26 STATIC CAPACITY OF PILES IN COHESIONLESS SOILS

27 9-19 METHODS OF STATIC ANALYSIS FOR PILES IN COHESIONLESS SOILS Method Approach Design Parameters Meyerhof Method Brown Method Nordlund Method. FHWA Empirical Experience Empirical Semiempirical Part Theory Part Experience Results of SPT tests. N Results of SPT tests based of N 60 values. Charts provided by Nordlund. Estimate of soil friction angle is needed. Advantages Disadvantages Remarks Widespread use of SPT test and input data availability. Simple method to use. Widespread use of SPT test and input data availability. Simple method to use. Allows for increased shaft resistance of tapered piles and includes effects of pile-soil friction coefficient for different pile materials. Non reproducibility of N values. Not as reliable as the other methods presented in this chapter. N 60 values not always available. No limiting value on unit shaft resistance is recommended by Nordlund. Soil friction angle often estimated from SPT data. Due to non reproducibility of N values and simplifying assumptions, use should be limited to preliminary estimating purposes. Simple method based on correlations with 71 static load test results. Details provided in Section b. Good approach to design that is widely used. Method is based on field observations. Details provided in Section c.

28 METHODS OF STATIC ANALYSIS FOR PILES IN COHESIONLESS SOILS Method Approach Design Parameters Effective Stress Method. Methods based on Cone Penetration Test (CPT) data. Semiempirical Empirical Soil classification and estimated friction angle for β and N t selection. Results of CPT tests. Advantages Disadvantages Remarks β value considers pile-soil friction coefficient for different pile materials. Soil resistance related to effective overburden pressure. Testing analogy between CPT and pile. Reliable correlations and reproducible test data. Results effected by range in β values and in particular by range in N t chosen. Limitations on pushing cone into dense strata. Good approach for design. Details provided in Section Good approach for design. Details provided in Section

29 Nordlund Data Base Pile Types Timber, H-piles, Closed-end Pipe, Monotube, Raymond Step-Taper Pile Sizes Pile widths of mm (10-20 in) Pile Loads Ultimate pile capacities of kn ( tons) 9-25 Nordlund Method tends to overpredict capacity of piles greater than 600 mm (24 in)

30 Nordlund Method Considers: 1. The friction angle of the soil. 2. The friction angle of the sliding surface. 3. The taper of the pile. 4. The effective unit weight of the soil. 5. The pile length. 6. The minimum pile perimeter The volume of soil displaced.

31 9-27 Q u = d=d d=0 K C F p d sin( + ) cos C d d + t N q A t p t

32 Nordlund Method For a pile of uniform cross section ( =0) and embedded length D, driven in soil layers of the same effective unit weight and friction angle, the Nordlund equation becomes: Q u = (K δ C F p d sinδ C d D)+ (α t N q A t p ) t 9-26 R S R T

33 Nordlund Shaft Resistance R s = K δ C F p d sin δ C d D K = coefficient of lateral earth pressure Figures C F = correction factor for K when Figure 9.15 p d = effective overburden pressure at center of layer = friction angle between pile and soil Figure 9.10 C d = pile perimeter D = embedded pile length

34 Nordlund Toe Resistance Lesser of R T = T N q p T A T R T = q L A T T = dimensionless factor Figure 9.16a N q = bearing capacity factor Figure 9.16b A T = pile toe area p T = effective overburden pressure at pile toe 150 kpa q L = limiting unit toe resistance Figure 9.17

35 Nordlund Method Procedure Steps 1 through 6 are for computing shaft resistance and steps 7 through 9 are for computing the pile toe resistance (cookbook) STEP 1 Delineate the soil profile into layers and determine the angle for each layer a. Construct p o diagram using procedure described in Section 9.4. b. Correct SPT field N values for overburden pressure using Figure 4.4 from Chapter 4 and obtain corrected SPT N' values. Delineate soil profile into layers based on corrected SPT N' values. c. Determine angle for each layer from laboratory tests or in-situ data d. In the absence of laboratory or in-situ test data, determine the average corrected SPT N' value, N', for each soil layer and estimate angle from Table 4-5 in Chapter 4.

36 Nordlund Method Procedure STEP 10 Compute the ultimate capacity, Q u. Q u = R s + R t STEP 11 Compute the allowable design load, Q a. Q a = Q u / Factor of Safety (ASD) 9-31

37 STATIC CAPACITY OF PILES IN COHESIVE SOILS

38 9-42 METHODS OF STATIC ANALYSIS FOR PILES IN COHESIVE SOILS Method Approach Method of Obtaining Design Parameters Advantages Disadvantages Remarks α-method (Tomlinson Method). FHWA Empirical, total stress analysis. Undrained shear strength estimate of soil is needed. Adhesion calculated from Figures 9.18 and Simple calculation from laboratory undrained shear strength values to adhesion. Wide scatter in adhesion versus undrained shear strengths in literature. Widely used method described in Section a. Effective Stress Method. Semi- Empirical, based on effective stress at failure. β and N t values are selected from Table 9-6 based on drained soil strength estimates. Ranges in β and N t values for most cohesive soils are relatively small. Range in N t values for hard cohesive soils such as glacial tills can be large. Good design approach theoretically better than undrained analysis. Details in Section Methods based on Cone Penetration Test data. Empirical. Results of CPT tests. Testing analogy between CPT and pile. Reproducible test data. Cone can be difficult to advance in very hard cohesive soils such as glacial tills. Good approach for design. Details in Section

39 Tomlinson or α-method Unit Shaft Resistance, f s : f s = c a = αc u Where: c a = adhesion (Figure 9.18) α = empirical adhesion factor (Figure 9.19) 9-41

40 Tomlinson or α-method Shaft Resistance, R s : R s = f s A s Where: A s = pile surface area in layer (pile perimeter x length)

41 Tomlinson or α-method (US) Figure 9.18 Concrete, Timber, Corrugated Steel Piles Smooth Steel Piles D = distance from ground surface to bottom of clay layer or pile toe, whichever is less b = Pile Diameter

42 Tomlinson or α-method Unit Toe Resistance, q t : q t = c u N c Where: c u = undrained shear strength of the soil at pile toe N c = dimensionless bearing capacity factor (9 for deep foundations)

43 Tomlinson or α-method Toe Resistance, R t : R t = q t A t The toe resistance in cohesive soils is sometimes ignored since the movement required to mobilize the toe resistance is several times greater than the movement required to mobilize the shaft resistance.

44 Tomlinson or α-method R u = R S + R T and Q a = R U / FS

45 DRIVEN COMPUTER PROGRAM DRIVEN uses the FHWA recommended Nordlund (cohesionless) and α-methods (cohesive). Can be used to calculate the static capacity of open and closed end pipe piles, H-piles, circular or square solid concrete piles, timber piles, and Monotube piles. Analyses can be performed in SI or US units. Available at:

46 The Pile Design is not complete until the pile has been driven that s when we can estimate the capacity (E.O.D)

47 STATIC ANALYSIS SINGLE PILES LATERAL CAPACITY METHODS Reference Manual Chapter

48 Lateral Capacity of Single Piles Potential sources of lateral loads include vehicle acceleration & braking, wind loads, wave loading, debris loading, ice forces, vessel impact, lateral earth pressures, slope movements, and seismic events. These loads can be of the same magnitude as axial compression loads.

49 Lateral Capacity of Single Piles Soil, pile, and load parameters significantly affect lateral capacity. Soil Parameters Soil type & strength Horizontal subgrade reaction Pile Parameters Pile properties Pile head condition Method of installation Group action Lateral Load Parameters Static or Dynamic Eccentricity

50 Lateral Capacity of Single Piles Design Methods Lateral load tests Analytical methods Broms method, 9-86, (long pile, short pile) Reese s COM624P method LPILE program FB-PIER 9-85

51 Short pile soil fails Long pile pile fails

52 Figure 9.36 Soil Resistance to a Lateral Pile Load (adapted from Smith, 1989) 9-83

53 NIM

54 9-101 Figure 9.44 LPILE Pile-Soil Model

55 NIM

56

57 We have n equations and (n+4) unknowns BOUNDARY CONDITIONS (long Pile Bottom Moment = 0 Shear = Pile Top??

58 Figure 9.45 Typical p-y Curves for Ductile and Brittle Soil (after Coduto, 1994) 9-102

59 Integrate Differentiate Figure 9.36 Graphical Presentation of LPILE Results (Reese, et al. 2000) 9-92

60 LET S EAT!!

Chapter (11) Pile Foundations

Chapter (11) Pile Foundations Chapter (11) Introduction Piles are structural members that are made of steel, concrete, or timber. They are used to build pile foundations (classified as deep foundations) which cost more than shallow

More information

CHAPTER 8 CALCULATION THEORY

CHAPTER 8 CALCULATION THEORY CHAPTER 8 CALCULATION THEORY. Volume 2 CHAPTER 8 CALCULATION THEORY Detailed in this chapter: the theories behind the program the equations and methods that are use to perform the analyses. CONTENTS CHAPTER

More information

LRFD GEOTECHNICAL IMPLEMENTATION

LRFD GEOTECHNICAL IMPLEMENTATION LRFD GEOTECHNICAL IMPLEMENTATION Ching-Nien Tsai, P.E. LADOTD Pavement and Geotechnical Services In Conjunction with LTRC WHY LRFD FHWA deadline - October 2007 LRFD is a better method Risk is quantified

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18 Lesson 25 Static Pile Load Testing, O-cell, and Statnamic Reference Manual Chapter 18 STATIC LOAD TESTING Most accurate method to determine static pile capacity Perform at design or construction stage

More information

Piles Capacity Reference Manual

Piles Capacity Reference Manual Piles Capacity Reference Manual hetge hetge geotechnics on the go Piles Capacity Reference Manual January 3, 2013 Version: PC-1.3.130103 hetge LLC Moscow Virginia Istanbul E info@hetge.com W www.hetge.com

More information

The Bearing Capacity of Soils. Dr Omar Al Hattamleh

The Bearing Capacity of Soils. Dr Omar Al Hattamleh The Bearing Capacity of Soils Dr Omar Al Hattamleh Example of Bearing Capacity Failure Omar Play the move of bearing Capacity failure The Philippine one Transcona Grain Silos Failure - Canada The Bearing

More information

3-BEARING CAPACITY OF SOILS

3-BEARING CAPACITY OF SOILS 3-BEARING CAPACITY OF SOILS INTRODUCTION The soil must be capable of carrying the loads from any engineered structure placed upon it without a shear failure and with the resulting settlements being tolerable

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

Axially Loaded Piles

Axially Loaded Piles Axially Loaded Piles 1 t- Curve Method using Finite Element Analysis The stress-strain relationship for an axially loaded pile can be described through three loading mechanisms: axial deformation in the

More information

LRFD Calibration of Axially-Loaded Concrete Piles Driven into Louisiana Soils

LRFD Calibration of Axially-Loaded Concrete Piles Driven into Louisiana Soils LRFD Calibration of Axially-Loaded Concrete Piles Driven into Louisiana Soils Louisiana Transportation Conference February 10, 2009 Sungmin Sean Yoon, Ph. D., P.E. (Presenter) Murad Abu-Farsakh, Ph. D.,

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

Calibration of Resistance Factors for Drilled Shafts for the 2010 FHWA Design Method

Calibration of Resistance Factors for Drilled Shafts for the 2010 FHWA Design Method Calibration of Resistance Factors for Drilled Shafts for the 21 FHWA Design Method Murad Y. Abu-Farsakh, Ph.D., P.E. Qiming Chen, Ph.D., P.E. Md Nafiul Haque, MS Feb 2, 213 213 Louisiana Transportation

More information

Analysis of Pile Foundation Subjected to Lateral and Vertical Loads

Analysis of Pile Foundation Subjected to Lateral and Vertical Loads Analysis of Pile Foundation Subjected to Lateral and Vertical Loads Thadapaneni Kanakeswararao 1, B.Ganesh 2 1,2 Department of soil mechanics and foundation engg, Lenora college of Engineering and technology,

More information

Drilled Shaft Foundations in Limestone. Dan Brown, P.E., Ph.D. Dan Brown and Associates

Drilled Shaft Foundations in Limestone. Dan Brown, P.E., Ph.D. Dan Brown and Associates Drilled Shaft Foundations in Limestone Dan Brown, P.E., Ph.D. Dan Brown and Associates Foundation Engineering How we teach our students Fundamental understanding of soil and rock behavior (good!) Focus

More information

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University SHEET PILE WALLS Mehdi Mokhberi Islamic Azad University Lateral Support In geotechnical engineering, it is often necessary to prevent lateral soil movements. Tie rod Anchor Sheet pile Cantilever retaining

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

Engineeringmanuals. Part2

Engineeringmanuals. Part2 Engineeringmanuals Part2 Engineering manuals for GEO5 programs Part 2 Chapter 1-12, refer to Engineering Manual Part 1 Chapter 13. Pile Foundations Introduction... 2 Chapter 14. Analysis of vertical load-bearing

More information

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S 1. P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S Helical foundation pile includes a lead and extension(s). The lead section is made of a central steel

More information

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland. EN 1997 1: Sections 3 and 6 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 3 Geotechnical Data Section 6 Spread Foundations Trevor L.L. Orr

More information

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading. Hatanaka and Uchida (1996); ' 20N 20 12N 20 ' 45 A lower bound for the above equation is given as; 12N 15 ' 45 Table 3. Empirical Coefficients for BS 8002 equation A Angularity 1) A (degrees) Rounded 0

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL SHEAR STRENGTH OF SOIL Necessity of studying Shear Strength of soils : Soil failure usually occurs in the form of shearing along internal surface within the soil. Shear Strength: Thus, structural strength

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

Assessment of Calculation Procedures for Piles in Clay based on Static Loading Tests Anders Hust Augustesen

Assessment of Calculation Procedures for Piles in Clay based on Static Loading Tests Anders Hust Augustesen Assessment of Calculation Procedures for Piles in Clay based on Static Loading Tests By Anders Hust Augustesen 1 Agenda Presentation of calculation procedures Basis for the evaluation of the calculation

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013 Gregg Drilling & Testing, Inc. Site Investigation Experts CPT Applications - Deep Foundations Dr. Peter K. Robertson Webinar #6 2013 CPT Guide 5 th Edition Robertson & Cabal (Robertson) 5 th Edition 2012

More information

Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee

Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Module 01 Lecture - 03 Shallow Foundation So, in the last lecture, we discussed the

More information

Chapter 12 Subsurface Exploration

Chapter 12 Subsurface Exploration Page 12 1 Chapter 12 Subsurface Exploration 1. The process of identifying the layers of deposits that underlie a proposed structure and their physical characteristics is generally referred to as (a) subsurface

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Additional Pile Design Considerations

Additional Pile Design Considerations Additional Pile Design Considerations PDCA 2015 Professor Driven Pile Institute Patrick Hannigan GRL Engineers, Inc. What Are Additional Pile Design Considerations? Time Dependent Soil Strength Changes

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

!!!!!! Piles Capacity Reference Manual

!!!!!! Piles Capacity Reference Manual Piles Capacity Reference Manual Foreword July 26, 2014 Piles Capacity is simply the pocket calculator for deep foundation designers dealing with pile bearing capacity of cast-in-place bored piles (also

More information

LRFD Application in Driven Piles (Recent Development in Pavement & Geotech at LTRC)

LRFD Application in Driven Piles (Recent Development in Pavement & Geotech at LTRC) LRFD Application in Driven Piles (Recent Development in Pavement & Geotech at LTRC) 2007 Louisiana Transportation Engineering Conference February 12, 2007 Sungmin Sean Yoon, Ph. D., P.E. and Murad Abu-Farsakh,

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

CHAPTER 7 ANALYSES OF THE AXIAL LOAD TESTS AT THE ROUTE 351 BRIDGE

CHAPTER 7 ANALYSES OF THE AXIAL LOAD TESTS AT THE ROUTE 351 BRIDGE CHAPTER 7 ANALYSES OF THE AXIAL LOAD TESTS AT THE ROUTE 351 BRIDGE 7.1 INTRODUCTION In this chapter, calculations using methods commonly employed in practice are presented for the pile axial load capacity,

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Introduction To perform satisfactorily, shallow foundations must have two main characteristics: 1. They have to be safe against overall shear

More information

Shear Strength of Soils

Shear Strength of Soils Shear Strength of Soils Soil strength Most of problems in soil engineering (foundations, slopes, etc.) soil withstands shear stresses. Shear strength of a soil is defined as the capacity to resist shear

More information

Analysis of a single pile settlement

Analysis of a single pile settlement Engineering manual No. 14 Updated: 06/2018 Analysis of a single pile settlement Program: Pile File: Demo_manual_14.gpi The objective of this engineering manual is to explain the application of the GEO

More information

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE CHAPTER ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE.1 INTRODUCTION An important objective of this research is to determine whether accurate analyses of the lateral load-deflection behavior

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Nasim Adami for the degree of Master of Science in Civil Engineering presented on October 28, 213. Title: Development of an ACIP Pile-Specific Load-Displacement Model. Abstract

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS Hideaki Nishida 1,Toshiaki Nanazawa 2, Masahiro Shirato 3, Tetsuya Kohno 4, and Mitsuaki Kitaura 5 Abstract One of the motivations

More information

Chapter 6 Bearing Capacity

Chapter 6 Bearing Capacity Chapter 6 Bearing Capacity 6-1. Scope This chapter provides guidance for the determination of the ultimate and allowable bearing stress values for foundations on rock. The chapter is subdivided into four

More information

Piles and Pile Foundations

Piles and Pile Foundations Piles and Pile Foundations Carlo Viggiani, Alessandro Mandolini and Gianpiero Russo * j \ Spon Press an imprint of Taylor & Francis LONDON AND NEWYORK Contents List of illustrations Introduction PART I

More information

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test.

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (d) COMPRESSIBILITY AND CONSOLIDATION D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (a) Plot the e - σ curve. (b)

More information

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS CONTENTS: 1.0 INTRODUCTION 2.0 SHALLOW FOUNDATIONS 2.1 Design criteria 2.2 Spreading load 2.3 Types of foundations 2.4 Ground failure modes 2.5 Definitions

More information

Transmission Line Design Structures & Foundations TADP 549

Transmission Line Design Structures & Foundations TADP 549 Transmission Line Design Structures & Foundations TADP 549 Steel Poles - Direct Embedment Foundations - Point of Fixity Presentation 6.3 Dr. Prasad Yenumula Transmission & Distribution Program Reference

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

Lateral Strength and Stiffness of Post and Pier Foundations

Lateral Strength and Stiffness of Post and Pier Foundations An ASABE Meeting Presentation Paper Number: 152190408 Lateral Strength and Stiffness of Post and Pier Foundations David Roy Bohnhoff Professor, Biological Systems Engineering Department University of Wisconsin-Madison,

More information

(Refer Slide Time: 02:18)

(Refer Slide Time: 02:18) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture 40 Shear Strength of Soil - C Keywords: Shear strength of soil, direct shear test,

More information

Harmonized European standards for construction in Egypt

Harmonized European standards for construction in Egypt Harmonized European standards for construction in Egypt EN 1998 - Design of structures for earthquake resistance Jean-Armand Calgaro Chairman of CEN/TC250 Organised with the support of the Egyptian Organization

More information

Congreso Internacional de Fundaciones Profundas de Bolivia Santa Cruz, Bolivia, 12 al 15 de Mayo de 2015 Day 1: Software Demonstrations

Congreso Internacional de Fundaciones Profundas de Bolivia Santa Cruz, Bolivia, 12 al 15 de Mayo de 2015 Day 1: Software Demonstrations Applications of Stress Wave Theory to Deep Foundations with an Emphasis on The Wave Equation (GRLWEAP) Congreso Internacional de Fundaciones Profundas de Bolivia Santa Cruz, Bolivia, 12 al 15 de Mayo de

More information

Liquefaction Induced Negative Skin Friction from Blast-induced Liquefaction Tests with Auger-cast Piles

Liquefaction Induced Negative Skin Friction from Blast-induced Liquefaction Tests with Auger-cast Piles 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Liquefaction Induced Negative Skin Friction from Blast-induced Liquefaction Tests with Auger-cast

More information

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise In-class Exercise Problem: Select load factors for the Strength I and Service I Limit States for the problem illustrated below. Loading Diagram for Student Exercise For this exercise, complete the following

More information

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS Shin-Tower Wang 1, Luis Vasquez 2, and Lymon C. Reese 3, Honorary Member,, ASCE ABSTRACT : 1&2 President & Project Manager, Ensoft, Inc. Email: ensoft@ensoftinc.com

More information

Analysis of pile foundation Simplified methods to analyse the pile foundation under lateral and vertical loads

Analysis of pile foundation Simplified methods to analyse the pile foundation under lateral and vertical loads Analysis of pile foundation Simplified methods to analyse the pile foundation under lateral and vertical loads 1 Kanakeswararao Thadapaneni, 2 Sarikonda Venkata sivaraju, 3 Ravi teja Grandhi 1 PG Student,

More information

TECHNICAL REPORT STANDARD PAGE

TECHNICAL REPORT STANDARD PAGE TECHNICAL REPORT STANDARD PAGE 1. Report No. FHWA/LA.9/449 2. Government Accession No. 3. Recipient's Catalog No. 4. Title and Subtitle Calibration of Resistance Factors Needed in the LRFD Design of Driven

More information

A presentation of UniPile software for calculation of Capacity, Drag Force, Downdrag, and Settlement for Piles and Piled Foundations

A presentation of UniPile software for calculation of Capacity, Drag Force, Downdrag, and Settlement for Piles and Piled Foundations 528 River Road, Ottawa, Ontario, Canada, K1V 1E9 E: info@unisoftgs.com A presentation of UniPile software for calculation of Capacity, Drag Force, Downdrag, and Settlement for Piles and Piled Foundations

More information

CPT Data Interpretation Theory Manual

CPT Data Interpretation Theory Manual CPT Data Interpretation Theory Manual 2016 Rocscience Inc. Table of Contents 1 Introduction... 3 2 Soil Parameter Interpretation... 5 3 Soil Profiling... 11 3.1 Non-Normalized SBT Charts... 11 3.2 Normalized

More information

Shear Strength of Soils

Shear Strength of Soils Shear Strength of Soils STRESSES IN A SOIL ELEMENT t s v Analyze Effective Stresses (s ) Load carried by Soil t Where: s H t t s H s = t f = s v = s H = t = s v Stresses in a Soil Element after Figure

More information

A Comparative Study on Bearing Capacity of Shallow Foundations in Sand from N and /

A Comparative Study on Bearing Capacity of Shallow Foundations in Sand from N and / DOI 10.1007/s40030-017-0246-7 ORIGINAL CONTRIBUTION A Comparative Study on Bearing Capacity of Shallow Foundations in Sand from N and / V. A. Sakleshpur 1 C. N. V. Satyanarayana Reddy 1 Received: 9 January

More information

Introduction to Soil Mechanics

Introduction to Soil Mechanics Introduction to Soil Mechanics Sela Sode and Colin Jones WILEY Blackwell Contents Preface Dedication and Acknowledgments List of Symbols Soil Structure 1.1 Volume relationships 1.1.1 Voids ratio (e) 1.1.2

More information

Technical Supplement 14Q. Abutment Design for Small Bridges. (210 VI NEH, August 2007)

Technical Supplement 14Q. Abutment Design for Small Bridges. (210 VI NEH, August 2007) Technical Supplement 14Q (10 VI NEH, August 007) Issued August 007 Cover photo: Design of abutments for small bridges reuires geotechnical analysis. Advisory Note Techniues and approaches contained in

More information

Reliability Analysis of Anchored and Cantilevered Flexible Retaining Structures

Reliability Analysis of Anchored and Cantilevered Flexible Retaining Structures LSD2003: International Workshop on Limit State Design in Geotechnical Engineering Practice Phoon, Honjo & Gilbert (eds) 2003 World Scientific Publishing Company Reliability Analysis of Anchored and Cantilevered

More information

Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading

Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading February, 2011 1 INTRODUCTION Past earthquakes offer many examples of bridges that either collapsed or incurred

More information

PECivilExam.com. Copyright 2015 Pecivilexam.com all rights reserved- E-Book Geotechnical Depth Exam: 80 problems

PECivilExam.com. Copyright 2015 Pecivilexam.com all rights reserved- E-Book Geotechnical Depth Exam: 80 problems PECivilExam.com PE Civil Exam 80- Geotechnical Questions & Answers (pdf Format) For Depth Exam (Evening Session) PE Civil Depth Exam (Evening Session): This practice exam contains 80- Geotechnical questions,

More information

Analysis of the horizontal bearing capacity of a single pile

Analysis of the horizontal bearing capacity of a single pile Engineering manual No. 16 Updated: 07/2018 Analysis of the horizontal bearing capacity of a single pile Program: Soubor: Pile Demo_manual_16.gpi The objective of this engineering manual is to explain how

More information

Neutral Plane Method for Drag Force of Deep Foundations and the AASHTO LRFD Bridge Design Specifications

Neutral Plane Method for Drag Force of Deep Foundations and the AASHTO LRFD Bridge Design Specifications Neutral Plane Method for Drag Force of Deep Foundations and the AASHTO LRFD Bridge Design Specifications Timothy C. Siegel, P.E., G.E., D.GE Dan Brown and Associates, PC, Knoxville, Tennessee USA Rich

More information

Report No. K-TRAN: KU-10-2 FINAL REPORT November 2013

Report No. K-TRAN: KU-10-2 FINAL REPORT November 2013 Report No. K-TRAN: KU-10-2 FINAL REPORT November 2013 Capacity of Scour-Damaged Bridges, Part 2: Integrated Analysis Program (IAP) A Program for the Analysis of Lateral Performance of Pile-Supported Structures

More information

Numerical modelling of tension piles

Numerical modelling of tension piles Numerical modelling of tension piles S. van Baars Ministry of Public Works, Utrecht, Netherlands W.J. van Niekerk Ballast Nedam Engineering, Amstelveen, Netherlands Keywords: tension piles, shaft friction,

More information

A design Model for Pile Walls Used to Stabilize Landslides

A design Model for Pile Walls Used to Stabilize Landslides WV DOH RP #121 Experimental and Analytical Behavior of Slide Suppressors Embedded in Bedrock A design Model for Pile Walls Used to Stabilize Landslides By: Tia Maria Richardson, P.E. Principal Investigator

More information

A study on the bearing capacity of steel pipe piles with tapered tips

A study on the bearing capacity of steel pipe piles with tapered tips Japanese Geotechnical Society Special Publication The 6th Japan-China Geotechnical Symposium A study on the bearing capacity of steel pipe piles with tapered tips Hironobu Matsumiya i), Yoshiro Ishihama

More information

Gapping effects on the lateral stiffness of piles in cohesive soil

Gapping effects on the lateral stiffness of piles in cohesive soil Gapping effects on the lateral stiffness of piles in cohesive soil Satyawan Pranjoto Engineering Geology, Auckland, New Zealand. M. J. Pender Department of Civil and Environmental Engineering, University

More information

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Hany El Naggar, Ph.D., P. Eng. and M. Hesham El Naggar, Ph.D., P. Eng. Department of Civil Engineering

More information

Correlations between soil parameters and penetration testing results

Correlations between soil parameters and penetration testing results 1 A 1 6 Correlations between soil parameters and penetration testing results Corrélation entre paramètres du sol et résultats de sondage J. FORMAZIN, Director, VEB SBK Wasserbau, KB Baugrund Berlin, Berlin,

More information

ANALYSIS OF LATERALLY LOADED FIXED HEADED SINGLE FLOATING PILE IN MULTILAYERED SOIL USING BEF APPROACH

ANALYSIS OF LATERALLY LOADED FIXED HEADED SINGLE FLOATING PILE IN MULTILAYERED SOIL USING BEF APPROACH INDIAN GEOTECHNICAL SOCIETY, KOLKATA CHAPTER GEOTECHNICS FOR INFRASTRUCTURE DEVELOPMENT KOLKATA 11 th 12 th March 2016, Kolkata, West Bengal, India ANALYSIS OF LATERALLY LOADED FIXED HEADED SINGLE FLOATING

More information

Pile-Soil Interaction in Unsaturated Soil Conditions

Pile-Soil Interaction in Unsaturated Soil Conditions University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2014 Pile-Soil Interaction in Unsaturated Soil Conditions Megan Hamilton

More information

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc.

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. Portland, Oregon In situ testing of soil, which essentially consists of evaluating

More information

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee Module - 03 Lecture - 05 Field Tests Hello viewers, welcome back to the course on Foundation

More information

Bearing Capacity of Soils in Deep Foundations Course No. CE0148 PDH: 5

Bearing Capacity of Soils in Deep Foundations Course No. CE0148 PDH: 5 Bearing Capacity of Soils in Deep Foundations Course No. CE0148 PDH: 5 ** PLEASE NOTE: THIS COURSE IS A SUBSECTION OF COURSE # CE0009 ** In order to obtain credit for this course, the following steps listed

More information

Cavity Expansion Methods in Geomechanics

Cavity Expansion Methods in Geomechanics Cavity Expansion Methods in Geomechanics by Hai-Sui Yu School of Civil Engineering, University of Nottingham, U. K. KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON TABLE OF CONTENTS Foreword Preface

More information

NCHRP LRFD Design Specifications for Shallow Foundations TRB AFS30 Committee Meeting January 26, 2011

NCHRP LRFD Design Specifications for Shallow Foundations TRB AFS30 Committee Meeting January 26, 2011 Geotechnical Engineering Research Laboratory Dept. of Civil and Environmental Engineering University of Massachusetts Lowell. NCHRP 24-31 LRFD Design Specifications for Shallow Foundations TRB AFS3 Committee

More information

KDOT Geotechnical Manual Edition. Table of Contents

KDOT Geotechnical Manual Edition. Table of Contents KDOT Geotechnical Manual 2007 Edition The KDOT Geotechnical Manual is available two volumes. Both volumes are very large electronic (pdf) files which may take several minutes to download. The table of

More information

Structure, Member Design - Geotechnics Piles XX

Structure, Member Design - Geotechnics Piles XX E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC ) 40 N/mm 2 OK Yield strength of longitudinal steel, f y 460 N/mm 2 Yield strength

More information

Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods)

Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods) Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods) Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar Conventional Field Testing 1 Field Test: In-situ shear strength

More information

vulcanhammer.info the website about Vulcan Iron Works Inc. and the pile driving equipment it manufactured Terms and Conditions of Use:

vulcanhammer.info the website about Vulcan Iron Works Inc. and the pile driving equipment it manufactured Terms and Conditions of Use: this document downloaded from vulcanhammer.info the website about Vulcan Iron Works Inc. and the pile driving equipment it manufactured Terms and Conditions of Use: All of the information, data and computer

More information

Design of Reinforced Soil Walls By Lrfd Approach

Design of Reinforced Soil Walls By Lrfd Approach IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 16-26 www.iosrjournals.org Design of Reinforced Soil Walls By Lrfd Approach A.D. Maskar 1, N.T. Suryawanshi 2 1 Assistant

More information

23.1 Effective Stress 23.2 Settlement of Foundations Time-Dependent Settlement Magnitude of Acceptable Settlement

23.1 Effective Stress 23.2 Settlement of Foundations Time-Dependent Settlement Magnitude of Acceptable Settlement 23 Foundations Bengt H. Fellenius University of Ottawa 23.1 Effective Stress 23.2 Settlement of Foundations Time-Dependent Settlement Magnitude of Acceptable Settlement 23.3 Bearing Capacity of Shallow

More information

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS 1 2 C. Vipulanandan 1, Ph.D., M. ASCE and Omer F. Usluogullari 2 Chairman, Professor, Director of Center for Innovative Grouting Materials

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLE LIST OF FIGURES LIST OF SYMBOLS LIST OF APENDICES i ii iii iv v

More information

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Finite Element analysis of Laterally Loaded Piles on Sloping Ground Indian Geotechnical Journal, 41(3), 2011, 155-161 Technical Note Finite Element analysis of Laterally Loaded Piles on Sloping Ground K. Muthukkumaran 1 and N. Almas Begum 2 Key words Lateral load, finite

More information

(Refer Slide Time: 01:15)

(Refer Slide Time: 01:15) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 56 Stability analysis of slopes II Welcome to lecture two on stability analysis of

More information

DEEP FOUNDATIONS. Lesson 09 - Topic 4 Drilled Shafts

DEEP FOUNDATIONS. Lesson 09 - Topic 4 Drilled Shafts DEEP FOUNDATIONS Lesson 09 - Topic 4 Drilled Shafts Learning Outcomes gat the end of this session, the participant will be able to: - Contrast driven piles and drilled shafts - Compare mobilization of

More information

Evaluation of Geotechnical Hazards

Evaluation of Geotechnical Hazards Evaluation of Geotechnical Hazards by Geoffrey R. Martin Appendix B: Evaluation of Geotechnical Hazards Describes Evaluation Procedures Soil Liquefaction Soil Settlement Surface Fault Rupture Flooding

More information

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete.

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete. Chapter 8 Shear Strength Dr. Talat Bader May 2006 Soil and Rock Strength Unconfined compressive strength (MPa) Steel Concrete 20 100 250 750 0.001 0.01 Soil 0.1 1.0 10 Rock 100 250 F y = 250 to 750 MPa

More information

Performance Based Design of Laterally Loaded Drilled Shafts

Performance Based Design of Laterally Loaded Drilled Shafts Performance Based Design of Laterally Loaded Drilled Shafts Prepared by: Robert Y. Liang Haijian Fan Prepared for: The Ohio Department of Transportation, Office of Statewide Planning & Research State Job

More information