Integer and Combinatorial Optimization: Introduction

Size: px
Start display at page:

Download "Integer and Combinatorial Optimization: Introduction"

Transcription

1 Integer and Combinatorial Optimization: Introduction John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY USA November 2018 Mitchell Introduction 1 / 18

2 Integer and Combinatorial Optimization Outline 1 Integer and Combinatorial Optimization Complexity Solution techniques Quadratic constraints and objective functions 2 Cutting planes 3 Branch-and-bound: An example Mitchell Introduction 2 / 18

3 Integer and Combinatorial Optimization Combinatorial optimization An optimization problem is a problem of the form min x subject to f (x) x 2 S where f (x) is the objective function and S is the feasible region. A combinatorial optimization problem is one where there is only a finite number of points in S. For example: colorings of the countries of a map, so that no two adjacent coutries have the same color. Mitchell Introduction 3 / 18

4 Integer and Combinatorial Optimization Integer optimization In an integer optimization problem, the variables are constrained to take integer values. In a mixed integer optimization problem, some of the variables are required to take integer values, and the remainder can take fractional values. Mitchell Introduction 4 / 18

5 Integer and Combinatorial Optimization Integer optimization For example, a mixed integer linear optimization problem has the form min x2r n,y2r p ct x + d T y subject to Ax + By apple g x, y 0, y integer Here, A and B are given matrices, A 2 R m n, B 2 R m p. The remaining parameters c, d, g are vectors, c 2 R n, d 2 R p, g 2 R m. All vectors are understood to be column vectors in this course. Transpose is denoted by the superscript T. The dot product between two vectors c and x can be denoted c T x. In a mixed integer nonlinear optimization problem, the objective function and/or the constraints may be nonlinear functions. Mitchell Introduction 5 / 18

6 Integer and Combinatorial Optimization Complexity Outline 1 Integer and Combinatorial Optimization Complexity Solution techniques Quadratic constraints and objective functions 2 Cutting planes 3 Branch-and-bound: An example Mitchell Introduction 6 / 18

7 Integer and Combinatorial Optimization Complexity Computational complexity Linear optimization problems can be solved in polynomial time. This implies the required runtime doesn t grow too quickly as the problem size grows. By contrast, integer optimization problems are often NP-hard (to be defined later), which means that the runtime can grow very quickly in the problem size in the worst case. So mixed integer linear optimization problems are a lot harder to solve to global optimality than linear optimization problems. Mitchell Introduction 7 / 18

8 Integer and Combinatorial Optimization Solution techniques Outline 1 Integer and Combinatorial Optimization Complexity Solution techniques Quadratic constraints and objective functions 2 Cutting planes 3 Branch-and-bound: An example Mitchell Introduction 8 / 18

9 Integer and Combinatorial Optimization Solution techniques Solution techniques Our emphasis will be on methods for finding global optimal solutions to integer optimization problems. If we have a global minimizer x then there is no other feasible point x 2 S with f (x) < f (x ). In order to prove optimality, we will look at relaxations. The simplest relaxation of a mixed integer linear optimization problem is to ignore integrality, giving a linear optimization problem. The principal solution techniques we then examine are cutting planes: try to improve the relaxation branching: subdivide the feasible region. Mitchell Introduction 9 / 18

10 Integer and Combinatorial Optimization Solution techniques Solution techniques Our emphasis will be on methods for finding global optimal solutions to integer optimization problems. If we have a global minimizer x then there is no other feasible point x 2 S with f (x) < f (x ). In order to prove optimality, we will look at relaxations. The simplest relaxation of a mixed integer linear optimization problem is to ignore integrality, giving a linear optimization problem. The principal solution techniques we then examine are cutting planes: try to improve the relaxation branching: subdivide the feasible region. Mitchell Introduction 9 / 18

11 Integer and Combinatorial Optimization Quadratic constraints and objective functions Outline 1 Integer and Combinatorial Optimization Complexity Solution techniques Quadratic constraints and objective functions 2 Cutting planes 3 Branch-and-bound: An example Mitchell Introduction 10 / 18

12 Integer and Combinatorial Optimization Quadratic constraints and objective functions Quadratic constraints and objective functions f (x) = I x t I x t Qx Some combinatorial optimization problems can be formulated with quadratic constraints and/or a quadratic objective function. For other problems, it can be helpful to look at a quadratic relaxation. These problems can sometimes be attacked as semidefinite optimization problems, which have a matrix of variables that must be symmetric and positive semidefinite. A useful observation: we can replace the requirement that x is a binary variable by the requirement that x = x 2. :::::::::: -1 Mitchell Introduction 11 / 18

13 Cutting planes Outline 1 Integer and Combinatorial Optimization Complexity Solution techniques Quadratic constraints and objective functions 2 Cutting planes 3 Branch-and-bound: An example Mitchell Introduction 12 / 18

14 Cutting planes A cutting plane example Initial relaxation: Solve linear optimization relaxation min{c T x : Ax apple b, x 0} - c Solution to linear optimization relaxation Mitchell Introduction 13 / 18

15 Cutting planes A cutting plane example Initial relaxation: Solve linear optimization relaxation min{c T x : Ax apple b, x 0} Cutting plane a T 1 x = b 1 Solution to linear optimization relaxation Mitchell Introduction 13 / 18

16 Cutting planes Add a cutting plane and reoptimize Solve linear optimization relaxation min{c T x : Ax apple b, x 0, a T 1 x apple b 1} Cutting plane a T 1 x = b 1 Solution to linear optimization relaxation Mitchell Introduction 14 / 18

17 Cutting planes Add a cutting plane and reoptimize Solve linear optimization relaxation min{c T x : Ax apple b, x 0, a T 1 x apple b 1} Cutting plane a T 1 x = b 1 Solution to linear optimization relaxation Cutting plane a T 2 x = b 2 Mitchell Introduction 14 / 18

18 Cutting planes Add a cutting plane and reoptimize Solve linear optimization relaxation min{c T x : Ax apple b, x 0, a T 1 x apple b 1, a T 2 x apple b 2} Cutting plane a T 1 x = b 1 Solution to linear optimization relaxation Cutting plane a T 2 x = b 2 Solution to relaxation is integral, so it solves the integer optimization problem. Mitchell Introduction 15 / 18

19 Branch-and-bound: An example Outline 1 Integer and Combinatorial Optimization Complexity Solution techniques Quadratic constraints and objective functions 2 Cutting planes 3 Branch-and-bound: An example Mitchell Introduction 16 / 18

20 An example Branch-and-bound: An example We look at the integer optimization problem min x2r 3 5x 1 + 5x 2 13x 3 subject to x 1 + x 2 + x 3 apple 6 10x 1 8x 2 apple 15 (IOP) 6x 1 x 2 + 9x 3 apple 9 x i 0, x i integer, i = 1, 2, 3 It s easy to find a feasible solution for this problem: x =(0, 0, 0). Hence we can initialize with z u = 0. We let F = {x 2 R 3 : x 1 + x 2 + x 3 apple 6, 10x 1 8x 2 apple 15, 6x 1 x 2 + 9x 3 apple 9, x 1, x 2, x 3 0}. Mitchell Introduction 17 / 18

21 Branch-and-bound: An example The tree for the example Root node: min{c T x : x 2 F } x 0 =(1.5, 0, 2), z 0 = 18.5 Mitchell Introduction 18 / 18

22 Branch-and-bound: An example The tree for the example Root node: min{c T x : x 2 F } x 0 =(1.5, 0, 2), z 0 = 18.5 x 1 apple 1 x 1 2 x 2 =(2, 5 8, ), z 2 = Mitchell Introduction 18 / 18

23 Branch-and-bound: An example The tree for the example x 1 =(1, 0, ), z 1 = Root node: min{c T x : x 2 F } x 0 =(1.5, 0, 2), z 0 = 18.5 x 1 apple 1 x 1 2 x 2 =(2, 5 8, ), z 2 = Mitchell Introduction 18 / 18

24 Branch-and-bound: An example The tree for the example x 1 =(1, 0, ), z 1 = Root node: min{c T x : x 2 F} x 0 =(1.5, 0, 2), z 0 = 18.5 x 1 apple 1 x 1 2 x 2 =(2, 5 8, ), z 2 = x 3 3 infeasible, z 6 =+1 fathom by infeasibility Mitchell Introduction 18 / 18

25 Branch-and-bound: An example The tree for the example x 1 =(1, 0, ), z 1 = Root node: min{c T x : x 2 F} x 0 =(1.5, 0, 2), z 0 = 18.5 x 1 apple 1 x 1 2 x 5 =(2, 5 8, 2), z 5 = x 2 =(2, 5 8, ), z 2 = x 3 apple 2 x 3 3 infeasible, z 6 =+1 fathom by infeasibility Mitchell Introduction 18 / 18

26 Branch-and-bound: An example The tree for the example x 1 =(1, 0, ), z 1 = Root node: min{c T x : x 2 F } x 0 =(1.5, 0, 2), z 0 = 18.5 x 1 apple 1 *. x 1 2 x 2 =(2, 5 8, ), z 2 = x 3 apple 1 x 3 apple 2 x 3 3 x 3 =(0, 0, 1), z 3 = 13 fathom by integrality x 5 =(2, 5 8, 2), z 5 = fathom by bounds infeasible, z 6 =+1 fathom by infeasibility Mitchell Introduction 18 / 18

27 Branch-and-bound: An example The tree for the example Root node: min{c T x : x 2 F } x 1 =(1, 0, ), z 1 = x 0 =(1.5, 0, 2), z 0 = 18.5 x 1 apple 1 x 1 2 x 2 =(2, 5 8, ), z 2 = x 3 apple 1 x 3 2 x 3 apple 2 x 3 3 x 3 =(0, 0, 1), z 3 = 13 x 4 =(1, 3, 2), z 4 = 6 x 5 =(2, 5 8, 2), z 5 = infeasible, z 6 =+1 fathom by integrality fathom by bounds fathom by bounds fathom by infeasibility Mitchell Introduction 18 / 18

28 Branch-and-bound: An example The tree for the example Root node: min{c T x : x 2 F } x 1 =(1, 0, ), z 1 = x 0 =(1.5, 0, 2), z 0 = 18.5 x 1 apple 1 x 1 2 x 2 =(2, 5 8, ), z 2 = x 3 apple 1 x 3 2 x 3 apple 2 x 3 3 x 3 =(0, 0, 1), z 3 = 13 x 4 =(1, 3, 2), z 4 = 6 x 5 =(2, 5 8, 2), z 5 = infeasible, z 6 =+1 fathom by integrality fathom by bounds fathom by bounds fathom by infeasibility The optimal solution to (IOP) is x =(0, 0, 1), with value z = 13. Mitchell Introduction 18 / 18

Math Models of OR: Branch-and-Bound

Math Models of OR: Branch-and-Bound Math Models of OR: Branch-and-Bound John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Branch-and-Bound 1 / 15 Branch-and-Bound Outline 1 Branch-and-Bound

More information

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009

Lecture 23 Branch-and-Bound Algorithm. November 3, 2009 Branch-and-Bound Algorithm November 3, 2009 Outline Lecture 23 Modeling aspect: Either-Or requirement Special ILPs: Totally unimodular matrices Branch-and-Bound Algorithm Underlying idea Terminology Formal

More information

Math Models of OR: Sensitivity Analysis

Math Models of OR: Sensitivity Analysis Math Models of OR: Sensitivity Analysis John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 8 USA October 8 Mitchell Sensitivity Analysis / 9 Optimal tableau and pivot matrix Outline Optimal

More information

Linear integer programming and its application

Linear integer programming and its application Linear integer programming and its application Presented by Dr. Sasthi C. Ghosh Associate Professor Advanced Computing & Microelectronics Unit Indian Statistical Institute Kolkata, India Outline Introduction

More information

The Ellipsoid Algorithm

The Ellipsoid Algorithm The Ellipsoid Algorithm John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA 9 February 2018 Mitchell The Ellipsoid Algorithm 1 / 28 Introduction Outline 1 Introduction 2 Assumptions

More information

Math Models of OR: Extreme Points and Basic Feasible Solutions

Math Models of OR: Extreme Points and Basic Feasible Solutions Math Models of OR: Extreme Points and Basic Feasible Solutions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 1180 USA September 018 Mitchell Extreme Points and Basic Feasible Solutions

More information

Structured Problems and Algorithms

Structured Problems and Algorithms Integer and quadratic optimization problems Dept. of Engg. and Comp. Sci., Univ. of Cal., Davis Aug. 13, 2010 Table of contents Outline 1 2 3 Benefits of Structured Problems Optimization problems may become

More information

LP Relaxations of Mixed Integer Programs

LP Relaxations of Mixed Integer Programs LP Relaxations of Mixed Integer Programs John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA February 2015 Mitchell LP Relaxations 1 / 29 LP Relaxations LP relaxations We want

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Part 4. Decomposition Algorithms

Part 4. Decomposition Algorithms In the name of God Part 4. 4.4. Column Generation for the Constrained Shortest Path Problem Spring 2010 Instructor: Dr. Masoud Yaghini Constrained Shortest Path Problem Constrained Shortest Path Problem

More information

Chapter 6 Constraint Satisfaction Problems

Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems CS5811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline CSP problem definition Backtracking search

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints.

Section Notes 8. Integer Programming II. Applied Math 121. Week of April 5, expand your knowledge of big M s and logical constraints. Section Notes 8 Integer Programming II Applied Math 121 Week of April 5, 2010 Goals for the week understand IP relaxations be able to determine the relative strength of formulations understand the branch

More information

Learning to Branch. Ellen Vitercik. Joint work with Nina Balcan, Travis Dick, and Tuomas Sandholm. Published in ICML 2018

Learning to Branch. Ellen Vitercik. Joint work with Nina Balcan, Travis Dick, and Tuomas Sandholm. Published in ICML 2018 Learning to Branch Ellen Vitercik Joint work with Nina Balcan, Travis Dick, and Tuomas Sandholm Published in ICML 2018 1 Integer Programs (IPs) a maximize subject to c x Ax b x {0,1} n 2 Facility location

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 13: Branch and Bound (I) Yiling Chen SEAS Example: max 5x 1 + 8x 2 s.t. x 1 + x 2 6 5x 1 + 9x 2 45 x 1, x 2 0, integer 1 x 2 6 5 x 1 +x

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 3: Computational Complexity and the Steiner Tree Problem Marcus Brazil 2015

More information

Math Models of OR: Traveling Salesman Problem

Math Models of OR: Traveling Salesman Problem Math Models of OR: Traveling Salesman Problem John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Traveling Salesman Problem 1 / 19 Outline 1 Examples 2

More information

Math Models of OR: Some Definitions

Math Models of OR: Some Definitions Math Models of OR: Some Definitions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Some Definitions 1 / 20 Active constraints Outline 1 Active constraints

More information

Introduction to integer programming II

Introduction to integer programming II Introduction to integer programming II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

23. Cutting planes and branch & bound

23. Cutting planes and branch & bound CS/ECE/ISyE 524 Introduction to Optimization Spring 207 8 23. Cutting planes and branch & bound ˆ Algorithms for solving MIPs ˆ Cutting plane methods ˆ Branch and bound methods Laurent Lessard (www.laurentlessard.com)

More information

Math Models of OR: Handling Upper Bounds in Simplex

Math Models of OR: Handling Upper Bounds in Simplex Math Models of OR: Handling Upper Bounds in Simplex John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 280 USA September 208 Mitchell Handling Upper Bounds in Simplex / 8 Introduction Outline

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 02: Optimization (Convex and Otherwise) What is Optimization? An Optimization Problem has 3 parts. x F f(x) :

More information

1 The linear algebra of linear programs (March 15 and 22, 2015)

1 The linear algebra of linear programs (March 15 and 22, 2015) 1 The linear algebra of linear programs (March 15 and 22, 2015) Many optimization problems can be formulated as linear programs. The main features of a linear program are the following: Variables are real

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Section #2: Linear and Integer Programming

Section #2: Linear and Integer Programming Section #2: Linear and Integer Programming Prof. Dr. Sven Seuken 8.3.2012 (with most slides borrowed from David Parkes) Housekeeping Game Theory homework submitted? HW-00 and HW-01 returned Feedback on

More information

Column Generation. i = 1,, 255;

Column Generation. i = 1,, 255; Column Generation The idea of the column generation can be motivated by the trim-loss problem: We receive an order to cut 50 pieces of.5-meter (pipe) segments, 250 pieces of 2-meter segments, and 200 pieces

More information

Integer Programming Part II

Integer Programming Part II Be the first in your neighborhood to master this delightful little algorithm. Integer Programming Part II The Branch and Bound Algorithm learn about fathoming, bounding, branching, pruning, and much more!

More information

Week Cuts, Branch & Bound, and Lagrangean Relaxation

Week Cuts, Branch & Bound, and Lagrangean Relaxation Week 11 1 Integer Linear Programming This week we will discuss solution methods for solving integer linear programming problems. I will skip the part on complexity theory, Section 11.8, although this is

More information

Basic notions of Mixed Integer Non-Linear Programming

Basic notions of Mixed Integer Non-Linear Programming Basic notions of Mixed Integer Non-Linear Programming Claudia D Ambrosio CNRS & LIX, École Polytechnique 5th Porto Meeting on Mathematics for Industry, April 10, 2014 C. D Ambrosio (CNRS) April 10, 2014

More information

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting

to work with) can be solved by solving their LP relaxations with the Simplex method I Cutting plane algorithms, e.g., Gomory s fractional cutting Summary so far z =max{c T x : Ax apple b, x 2 Z n +} I Modeling with IP (and MIP, and BIP) problems I Formulation for a discrete set that is a feasible region of an IP I Alternative formulations for the

More information

1 Strict local optimality in unconstrained optimization

1 Strict local optimality in unconstrained optimization ORF 53 Lecture 14 Spring 016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, April 14, 016 When in doubt on the accuracy of these notes, please cross check with the instructor s

More information

Appendix A Taylor Approximations and Definite Matrices

Appendix A Taylor Approximations and Definite Matrices Appendix A Taylor Approximations and Definite Matrices Taylor approximations provide an easy way to approximate a function as a polynomial, using the derivatives of the function. We know, from elementary

More information

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Math 141 Review for Final The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Part 1 (no calculator) graphing (polynomial, rational, linear, exponential, and logarithmic

More information

3.3 Easy ILP problems and totally unimodular matrices

3.3 Easy ILP problems and totally unimodular matrices 3.3 Easy ILP problems and totally unimodular matrices Consider a generic ILP problem expressed in standard form where A Z m n with n m, and b Z m. min{c t x : Ax = b, x Z n +} (1) P(b) = {x R n : Ax =

More information

Dual bounds: can t get any better than...

Dual bounds: can t get any better than... Bounds, relaxations and duality Given an optimization problem z max{c(x) x 2 }, how does one find z, or prove that a feasible solution x? is optimal or close to optimal? I Search for a lower and upper

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

APPLIED MECHANISM DESIGN FOR SOCIAL GOOD

APPLIED MECHANISM DESIGN FOR SOCIAL GOOD APPLIED MECHANISM DESIGN FOR SOCIAL GOOD JOHN P DICKERSON Lecture #4 09/08/2016 CMSC828M Tuesdays & Thursdays 12:30pm 1:45pm PRESENTATION LIST IS ONLINE! SCRIBE LIST COMING SOON 2 THIS CLASS: (COMBINATORIAL)

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information

Decision Procedures An Algorithmic Point of View

Decision Procedures An Algorithmic Point of View An Algorithmic Point of View ILP References: Integer Programming / Laurence Wolsey Deciding ILPs with Branch & Bound Intro. To mathematical programming / Hillier, Lieberman Daniel Kroening and Ofer Strichman

More information

16.1 L.P. Duality Applied to the Minimax Theorem

16.1 L.P. Duality Applied to the Minimax Theorem CS787: Advanced Algorithms Scribe: David Malec and Xiaoyong Chai Lecturer: Shuchi Chawla Topic: Minimax Theorem and Semi-Definite Programming Date: October 22 2007 In this lecture, we first conclude our

More information

Linear Programming: Simplex

Linear Programming: Simplex Linear Programming: Simplex Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016

More information

Conic optimization under combinatorial sparsity constraints

Conic optimization under combinatorial sparsity constraints Conic optimization under combinatorial sparsity constraints Christoph Buchheim and Emiliano Traversi Abstract We present a heuristic approach for conic optimization problems containing sparsity constraints.

More information

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems MATHEMATICS OF OPERATIONS RESEARCH Vol. 35, No., May 010, pp. 84 305 issn 0364-765X eissn 156-5471 10 350 084 informs doi 10.187/moor.1090.0440 010 INFORMS On the Power of Robust Solutions in Two-Stage

More information

Computational and Statistical Tradeoffs via Convex Relaxation

Computational and Statistical Tradeoffs via Convex Relaxation Computational and Statistical Tradeoffs via Convex Relaxation Venkat Chandrasekaran Caltech Joint work with Michael Jordan Time-constrained Inference o Require decision after a fixed (usually small) amount

More information

Separation Techniques for Constrained Nonlinear 0 1 Programming

Separation Techniques for Constrained Nonlinear 0 1 Programming Separation Techniques for Constrained Nonlinear 0 1 Programming Christoph Buchheim Computer Science Department, University of Cologne and DEIS, University of Bologna MIP 2008, Columbia University, New

More information

where X is the feasible region, i.e., the set of the feasible solutions.

where X is the feasible region, i.e., the set of the feasible solutions. 3.5 Branch and Bound Consider a generic Discrete Optimization problem (P) z = max{c(x) : x X }, where X is the feasible region, i.e., the set of the feasible solutions. Branch and Bound is a general semi-enumerative

More information

Bounds on the Traveling Salesman Problem

Bounds on the Traveling Salesman Problem Bounds on the Traveling Salesman Problem Sean Zachary Roberson Texas A&M University MATH 613, Graph Theory A common routing problem is as follows: given a collection of stops (for example, towns, stations,

More information

Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope

Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope Kurt M. Anstreicher Dept. of Management Sciences University of Iowa Seminar, Chinese University of Hong Kong, October 2009 We consider

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs Raphael Louca & Eilyan Bitar School of Electrical and Computer Engineering American Control Conference (ACC) Chicago,

More information

Chapter 3 Deterministic planning

Chapter 3 Deterministic planning Chapter 3 Deterministic planning In this chapter we describe a number of algorithms for solving the historically most important and most basic type of planning problem. Two rather strong simplifying assumptions

More information

Intractable Problems Part Two

Intractable Problems Part Two Intractable Problems Part Two Announcements Problem Set Five graded; will be returned at the end of lecture. Extra office hours today after lecture from 4PM 6PM in Clark S250. Reminder: Final project goes

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Chapter 26 Semidefinite Programming Zacharias Pitouras 1 Introduction LP place a good lower bound on OPT for NP-hard problems Are there other ways of doing this? Vector programs

More information

IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique.

IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, You wish to solve the IP below with a cutting plane technique. IP Cut Homework from J and B Chapter 9: 14, 15, 16, 23, 24, 31 14. You wish to solve the IP below with a cutting plane technique. Maximize 4x 1 + 2x 2 + x 3 subject to 14x 1 + 10x 2 + 11x 3 32 10x 1 +

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 6.4/43 Principles of Autonomy and Decision Making Lecture 8: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS

POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS Sercan Yıldız syildiz@samsi.info in collaboration with Dávid Papp (NCSU) OPT Transition Workshop May 02, 2017 OUTLINE Polynomial optimization and

More information

15.083J/6.859J Integer Optimization. Lecture 2: Efficient Algorithms and Computational Complexity

15.083J/6.859J Integer Optimization. Lecture 2: Efficient Algorithms and Computational Complexity 15.083J/6.859J Integer Optimization Lecture 2: Efficient Algorithms and Computational Complexity 1 Outline Efficient algorithms Slide 1 Complexity The classes P and N P The classes N P-complete and N P-hard

More information

Relations between Semidefinite, Copositive, Semi-infinite and Integer Programming

Relations between Semidefinite, Copositive, Semi-infinite and Integer Programming Relations between Semidefinite, Copositive, Semi-infinite and Integer Programming Author: Faizan Ahmed Supervisor: Dr. Georg Still Master Thesis University of Twente the Netherlands May 2010 Relations

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source Shortest

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

Math Models of OR: The Revised Simplex Method

Math Models of OR: The Revised Simplex Method Math Models of OR: The Revised Simplex Method John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell The Revised Simplex Method 1 / 25 Motivation Outline 1

More information

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem

Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Multi-objective branch-and-cut algorithm and multi-modal traveling salesman problem Nicolas Jozefowiez 1, Gilbert Laporte 2, Frédéric Semet 3 1. LAAS-CNRS, INSA, Université de Toulouse, Toulouse, France,

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Chapter 5 AIMA2e Slides, Stuart Russell and Peter Norvig, Completed by Kazim Fouladi, Fall 2008 Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

More information

Bilevel Integer Optimization: Theory and Algorithms

Bilevel Integer Optimization: Theory and Algorithms : Theory and Algorithms Ted Ralphs 1 Joint work with Sahar Tahernajad 1, Scott DeNegre 3, Menal Güzelsoy 2, Anahita Hassanzadeh 4 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

Multivalued Decision Diagrams. Postoptimality Analysis Using. J. N. Hooker. Tarik Hadzic. Cork Constraint Computation Centre

Multivalued Decision Diagrams. Postoptimality Analysis Using. J. N. Hooker. Tarik Hadzic. Cork Constraint Computation Centre Postoptimality Analysis Using Multivalued Decision Diagrams Tarik Hadzic Cork Constraint Computation Centre J. N. Hooker Carnegie Mellon University London School of Economics June 2008 Postoptimality Analysis

More information

On the Computational Hardness of Graph Coloring

On the Computational Hardness of Graph Coloring On the Computational Hardness of Graph Coloring Steven Rutherford June 3, 2011 Contents 1 Introduction 2 2 Turing Machine 2 3 Complexity Classes 3 4 Polynomial Time (P) 4 4.1 COLORED-GRAPH...........................

More information

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1

Branch-and-Bound. Leo Liberti. LIX, École Polytechnique, France. INF , Lecture p. 1 Branch-and-Bound Leo Liberti LIX, École Polytechnique, France INF431 2011, Lecture p. 1 Reminders INF431 2011, Lecture p. 2 Problems Decision problem: a question admitting a YES/NO answer Example HAMILTONIAN

More information

Complexity and Simplicity of Optimization Problems

Complexity and Simplicity of Optimization Problems Complexity and Simplicity of Optimization Problems Yurii Nesterov, CORE/INMA (UCL) February 17 - March 23, 2012 (ULg) Yu. Nesterov Algorithmic Challenges in Optimization 1/27 Developments in Computer Sciences

More information

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine.

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine. The Class NP NP is the problems that can be solved in polynomial time by a nondeterministic machine. NP The time taken by nondeterministic TM is the length of the longest branch. The collection of all

More information

NP-problems continued

NP-problems continued NP-problems continued Page 1 Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity.

More information

Integer Quadratic Programming is in NP

Integer Quadratic Programming is in NP Alberto Del Pia 1 Santanu S. Dey 2 Marco Molinaro 2 1 IBM T. J. Watson Research Center, Yorktown Heights. 2 School of Industrial and Systems Engineering, Atlanta Outline 1 4 Program: Definition Definition

More information

PART 4 INTEGER PROGRAMMING

PART 4 INTEGER PROGRAMMING PART 4 INTEGER PROGRAMMING 102 Read Chapters 11 and 12 in textbook 103 A capital budgeting problem We want to invest $19 000 Four investment opportunities which cannot be split (take it or leave it) 1.

More information

Reconnect 04 Introduction to Integer Programming

Reconnect 04 Introduction to Integer Programming Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Reconnect 04 Introduction to Integer Programming Cynthia Phillips, Sandia National Laboratories Integer programming

More information

4-1 The Algebraic-Geometric Dictionary P. Parrilo and S. Lall, ECC

4-1 The Algebraic-Geometric Dictionary P. Parrilo and S. Lall, ECC 4-1 The Algebraic-Geometric Dictionary P. Parrilo and S. Lall, ECC 2003 2003.09.02.02 4. The Algebraic-Geometric Dictionary Equality constraints Ideals and Varieties Feasibility problems and duality The

More information

CHAPTER 3: INTEGER PROGRAMMING

CHAPTER 3: INTEGER PROGRAMMING CHAPTER 3: INTEGER PROGRAMMING Overview To this point, we have considered optimization problems with continuous design variables. That is, the design variables can take any value within a continuous feasible

More information

Copositive Programming and Combinatorial Optimization

Copositive Programming and Combinatorial Optimization Copositive Programming and Combinatorial Optimization Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria joint work with I.M. Bomze (Wien) and F. Jarre (Düsseldorf) IMA

More information

Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation -

Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation - Online generation via offline selection - Low dimensional linear cuts from QP SDP relaxation - Radu Baltean-Lugojan Ruth Misener Computational Optimisation Group Department of Computing Pierre Bonami Andrea

More information

MDD-based Postoptimality Analysis for Mixed-integer Programs

MDD-based Postoptimality Analysis for Mixed-integer Programs MDD-based Postoptimality Analysis for Mixed-integer Programs John Hooker, Ryo Kimura Carnegie Mellon University Thiago Serra Mitsubishi Electric Research Laboratories Symposium on Decision Diagrams for

More information

Stochastic Integer Programming

Stochastic Integer Programming IE 495 Lecture 20 Stochastic Integer Programming Prof. Jeff Linderoth April 14, 2003 April 14, 2002 Stochastic Programming Lecture 20 Slide 1 Outline Stochastic Integer Programming Integer LShaped Method

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

A new family of facet defining inequalities for the maximum edge-weighted clique problem

A new family of facet defining inequalities for the maximum edge-weighted clique problem A new family of facet defining inequalities for the maximum edge-weighted clique problem Franklin Djeumou Fomeni June 2016 Abstract This paper considers a family of cutting planes, recently developed for

More information

Integer Programming and Branch and Bound

Integer Programming and Branch and Bound Courtesy of Sommer Gentry. Used with permission. Integer Programming and Branch and Bound Sommer Gentry November 4 th, 003 Adapted from slides by Eric Feron and Brian Williams, 6.40, 00. Integer Programming

More information

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization Professor M. Chiang Electrical Engineering Department, Princeton University March 16, 2007 Lecture

More information

Lecture 2. MATH3220 Operations Research and Logistics Jan. 8, Pan Li The Chinese University of Hong Kong. Integer Programming Formulations

Lecture 2. MATH3220 Operations Research and Logistics Jan. 8, Pan Li The Chinese University of Hong Kong. Integer Programming Formulations Lecture 2 MATH3220 Operations Research and Logistics Jan. 8, 2015 Pan Li The Chinese University of Hong Kong 2.1 Agenda 1 2 3 2.2 : a linear program plus the additional constraints that some or all of

More information

MATHEMATICS. Units Topics Marks I Relations and Functions 10

MATHEMATICS. Units Topics Marks I Relations and Functions 10 MATHEMATICS Course Structure Units Topics Marks I Relations and Functions 10 II Algebra 13 III Calculus 44 IV Vectors and 3-D Geometry 17 V Linear Programming 6 VI Probability 10 Total 100 Course Syllabus

More information

Integer Linear Programs

Integer Linear Programs Lecture 2: Review, Linear Programming Relaxations Today we will talk about expressing combinatorial problems as mathematical programs, specifically Integer Linear Programs (ILPs). We then see what happens

More information

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and 7.2 - Quadratic Forms quadratic form on is a function defined on whose value at a vector in can be computed by an expression of the form, where is an symmetric matrix. The matrix R n Q R n x R n Q(x) =

More information

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle Directed Hamiltonian Cycle Chapter 8 NP and Computational Intractability Claim. G has a Hamiltonian cycle iff G' does. Pf. Suppose G has a directed Hamiltonian cycle Γ. Then G' has an undirected Hamiltonian

More information

Development of an algorithm for solving mixed integer and nonconvex problems arising in electrical supply networks

Development of an algorithm for solving mixed integer and nonconvex problems arising in electrical supply networks Development of an algorithm for solving mixed integer and nonconvex problems arising in electrical supply networks E. Wanufelle 1 S. Leyffer 2 A. Sartenaer 1 Ph. Toint 1 1 FUNDP, University of Namur 2

More information