Plastic mechanism analysis of CHS stub columns strengthened using CFRP

Size: px
Start display at page:

Download "Plastic mechanism analysis of CHS stub columns strengthened using CFRP"

Transcription

1 Plastic mechanism analis o CHS stub columns strengthened using CFRP M. Elchalakani School o rchitectural, Civil and Mechanical Engineering, Victoria University, Melbourne, ustralia M.R. Bambach Department o Civil Engineering, Monash University, Melbourne, ustralia BSTRCT: This paper presents a plastic mechanism analis or circular hollow section (CHS) tubes strengthened using carbon iber reinorced polymer (CFRP) deorming in an axi-symmetric (elephant oot) collapse mode under large deormation axial loading. The collapse proceeded progressively by olding about three concentrated hinge lines and hoop extension o the shell. n expression or the plastic collapse axial load was obtained by equating the total energy absorbed in bending and extension to the external work carried out during deormation o the tube. The newly derived mathematical model takes into account the contribution o the CFRP towards energy absorption during collapse. Comparisons o the predicted instantaneous post-buckling collapse loads with those obtained rom experiments carried out elsewhere show good agreement. 1 INTRODUCTION Hollow steel tubes are widely used as columns in many structural stems and a common ailure mode o such tubes when subjected to axial compression (or combined loading) is local buckling near a column end. For example hollow steel tubes are used as bridge biers in Japan and such piers suered extensive damage and even collapse during the 1995 Hyogoken-nanbu earthquake [1]. One o the methods used to in seismic retroit o such bridge piers is the use o CFRP rapping (see Fig 1). Thus, it is important to predict the response o the composite section (CHS+CFRP) under large deormation axial compression. Plastic mechanism analis is widely used to derive such predictions. (b) nti-symmetric mode o collapse (c) Elephant oot with a racture (a) Typical Column Figure 1. Damaged bridge piers in Japan [1]. 1

2 The collapse mechanisms o tubular stub columns were studied in the past by Johnson et al [], bramowicz and Jones [3], and Meng et al [4]. Wierzbicki bramowicz [5] used velocity iled approach to derive general ormulations or the crushing o thin-walled structures. The basic olding o an isolated plate orming the roo mechanism was studied by Davies et al [6] and Mahendran [7]. Ohkubo et al [8] provided an expression or the mean crushing load o hat sections commonly used in the utomotive industry where they showed that the radius o the rolling hinge has signiicant eect on such load. Mamalis et al [9] studied non-metallic plastic square tubes under axial load. The eect o CFRP on the collapse o composite circular tubes was studied by Mamalis et al [1], Song et al [11], Gupta and bbas [1], Hanei and Wierzbicki [13] and more recently by Wang and Lu [14]. However, these precious crush studies derive ormulations or the mean crush load and little research ocused on the development o the collapse curves such as Key and Hancock [15], Zhao et al [16], Grzebieta [17] and more recently Elchalakani et al [18, 19] or bending o CHS. Grzebieta [17] developed ormulation or the instantaneous axial collapse load versus axial delection or an empty CHS orming an axi-symmetric collapse mode. It is shown in this paper that his rigid plastic mechanism is modiied to include the eects o the inite length o the plastic hinges and the CFRP strengthening. The newly derived collapse curves and those developed by Grzebieta s [17] will be compared against experimental collapse curves obtained recently by Teng and Hu [1]. Neutral axis t t s t x σ σ y o o σ Figure. Stress distribution in composite tube wall. σ ( t x) = σ ( x t ) + σ t (1) σ ( t + t ) σ t s x = () σ To evaluate the ull plastic moment per unit width to bend plastically the composite section M p we take moment about the neutral axis ( t x) ( x t ) t M p = σ + σ + σ y t ( x ) (3) Introducing the dimensionless ratios k =σ y / σ and t r = t / t s, Equation 3 can be written as σ ts M p = (1 + ktr + ktr k tr ) (4) 4 Expressing the ull plastic moment M p in a relation to equivalent yield stress or the ace ( σ ) ' 1+ k tr + k tr k tr σ y.σ (1 + tr ) y = (5) ' y PREDICTION OF COLLPSE CURVES.1 Eect o CFRP Consider the bimetallic plate (shown in Fig. ) consisting o ully adhering dierent materials o thickness ts (or CHS lats) and t or (FRP sheet) and corresponding yield stresses σ and σ y, respectively. Examining the ull yielding o the composite cross section o overall thickness t = t s + t and unit width and requiring the orces on the composite section we obtain the position o the plastic neutral axis x rom. Work dissipated by bending The key mechanical properties o the mild steel specimens reinorced using normal modulus CRP sheets tested in [1] are listed in Table 1. The geometry o the CHS and the external CFRP sheets are shown in Figure 3. The elastic modulus o the steel and CFRP sheet was 1 and 8.1 GPa, respectively. The stub columns were about 5 mm long and tested under uniorm axial compression. The theoretical expressions or the energy components consumed in bending and hoop stretching are developed below and combined to give the overall load-axial displacement relationship or the composite section. 5 Table 1. Details o specimens [1]. Spec. D t s σ σ y t t r mm mm MPa MPa mm (=t /t s ) ST-F ST-F ST-F ST-F

3 t CFRP t P R D t s Figure 3. Geometry o SHS+CFRP. Figures 4 and 5 show the outward olding mechanism and its kinematics, respectively, developed at large axial deormations. The deormation energy consumed during bending at the three plastic hinges in Fig 5 (, B and B) o the outward olding mechanism can be expressed as dw = 4 π ( R + R M d (6) b B ) p in which is the angular change deined in Figure 5, R and R B are the radii o the deormed tube at the plastic hinges and B, and M p = σ y t /4. Note that R =R and ρ = L / and L(1 cos) R B = R + ρ (1 cos) = R + (7) Using Equation 7, Equation 6 can be simpliied to L(1 cos) dwb = 4 πm p R + d (8) where is the angular change at the plastic hinge or B in Figure 5. L is the hal-wave length o the elephant oot mechanism which was assumed constant during the course o deormation..3 Work dissipated by hoop extension s the tube is compressed, the tube expands in the hoop direction. The deormation energy or the elephant oot due to this expansion can be given by dw h = πσ θ tl cosζdζ (9) Knowing that ζ = / and assuming ull composite action in the hoop direction using Equation 5, ie, σ θ = σ y, where σ θ is the hoop stresses, γ is an angle deined in Figure 5 and ρ is the current radius. Thus Equation 9 can be simpliied rom the kinematical relations given in Figure 5 to ζ B L/ C L- δ max P Figure 4. The theoretical model. dw 4 πσ y tl sin ( / ) cos( / ) = d (1) h Most o the work carried out by the internal orces have now been determined and can be summed and equated to the work carried out by those orces external to the structure (dw ext = dw int ). This external energy can be expressed as dw ext = P. dδ (11) sin δ = L (1 ) (1) sin cos dw ext = P. dδ = PL d (13) where δ is the axial displacement and is the total angular change shown in Figure 5. Thereore, denoting the increment o rotation d, the instantaneous post buckling collapse load can be written as L(1 cos 4πM p R + P = L(sin cos) C E ' C' B' 4πσ y tl sin ( / ) cos( / ) L(sin cos) + B D F (14) 53

4 L B ρ (1-cos ) ζ ρ γ γ B R = R ρ R B= R+ ρ (1-cos ) L(1 cos tσ y R + + πttl P = 3 L(sin cos) 4σ L sin ( / ) cos( / ) (15) Note L = Rt was adopted in Grzebieta [17] and subsequently was used in Equation 15. slightly larger average value o L = Rt was used in Equation 14. larger hal-wave length was used in the numerical modelling perormed by Teng and Hu [1] to match the experimental collapse curves or the plain and strengthened CHS specimens. dδ/ L +d ρ (1-cos( +d )) R = R ρ ζ+d B ζ γ -dγ +d γ -dγ B' R B = R+ ρ (1-cos(+d)) Figure 5. Mechanism kinematics. Note, the contribution o the CFRP is depicted in the 1 st and nd terms in Equation 14 which represents the energy consumed in the bending and hoop extension, respectively. Note, in the tests the CFRP sheets were rapped in the hoop direction, where it has no strength in the axial direction. The collapse curves can be plotted by irst assuming a value or and substituting in Equation 14, the value o P can be readily determined. From the geometrical compatibility given in Equation 1, δ can be computed. similar Equation can be derived by slightly modiying Equation 3 in Reerence [17] by assuming ull composite action in the hoop direction as ollows 1 Test ST-F Test ST-F (Teng and Hu 7) New Model-Plain Grzebieta (199)-Plain Figure 6. nalis results or ST-F 3 RESULTS OF THE NLYSIS The collapse curves predicted using both Equations 14 (the New Theory) and 15 (Grzebieta [17]) are plotted in Figures 6 to 9 together with the experimental curves or all the specimens tested recently by Teng and Hu [1]. Test specimen ST-F represents a plain CHS with no strengthening. Specimens ST- F1, ST-F and ST-F3 represent CHS strengthened with one, two and three layers o CFRP sheets, respectively. It is seen that there is a good agreement in the slope o the collapse curve and values o the post-buckling axial load particularly at large axial deormations. It is also seen that Grzebieta [17] model or plain CHS signiicantly underestimates the axial load, but its modiied version (Equation 15) provides reasonable predictions. It is seen that Equation 15 under estimates the axial load compared to Equation 14. It appears that adding more layers ater Reer ppendix or Figure

5 strengthening with layers o CFRP does not have signiicant eect on strength. This is also shown correct by the new model. 4 CONCLUSIONS This paper presented a plastic mechanism analis or circular hollow section (CHS) tubes strengthened using carbon ibre reinorced polymer (CFRP) deorming in an axi-symmetric (elephant oot) collapse mode under large deormation axial loading. The collapse proceeded progressively by olding about three concentrated hinge lines and hoop extension o the shell. n expression or the plastic collapse axial load was obtained by equating the total energy absorbed in bending and extension to the external work carried out during deormation o the tube. The newly derived mathematical model takes into account the contribution o the CFRP towards energy absorption during collapse. Comparisons o the predicted instantaneous post-buckling with those obtained rom experiments carried out elsewhere show good agreement. REFERENCES 1. Teng, J.G. and Y.M. Hu, Behaviour o FRP- Jacketed Circular Steel Tubes and Cylindrical Shells under xial Compression. Construction and Building Materials, 7. 1(9): p Johnson, W., Soden, P. D. and S.T.S. l- Hassani, Inextensional Collapse o Thin- Walled Tubes under xial Compression. Journal o Strain nalis, (4): p bramowicz, W. and N. Jones, Dynamic Progressive Buckling o Circular and Square Tubes. International Journal o Impact Engineering, 1984a. 4(4): p Meng, Q., l-hassani, S. T. S. and P.D. Soden, xial Crushing o Square Tubes. International Journal o Mechanical Science, (9-1): p Wierzbicki, T. and W. bramowicz, On the Crushing Mechanics o Thin-Walled Structures. Journal o pplied Mechanics, 1983c. 5: p Davies, P., Kemp, K. O. and.c. Walker, n nalis o the Failure Mechanism o an xially Loaded Simply Supported Steel Plate. 55 Proceedings o Institute o Civil Engineers, (Part ): p Mahendran, M., Local plastic mechanisms in thin steel plates under in-plane compression. Thin-Walled Structures, (3): p Ohkubo, Y., kamatus, T. and K. Shirasawa, Mean Crushing Strength o Closed-Hat Section Members. Society o utomotive Engineers, Paper 74: p Mamalis,.G., Manolakas, D.E., Baldoukas,.K. and G.L. Viegelahn, The xial Crushing o Thin Walled Steel PVC Tubes and Frusta o square Cross Section. International Journal o impact Engineering, 1989b. 8(3): p Mamalis,.G., Manolakas, D.E., Demosthenous, G.. and Johnson, W., xial Plastic Collapse o Thin Bi-Material Tubes as Energy Dissipating Stems. International Journal o impact Engineering, (): p Song, H.-W., et al., xial Impact Behaviour and Energy bsorption Eiciency o Composite Wrapped Metal Tubes. International Journal o impact Engineering,. 4(): p Gupta, N.K. and H. bbas, Lateral Collapse o Composite Cylindrical Tubes between Flat Platens. International Journal o impact Engineering,. 4(): p Hanei, E.H. and T. Wierzbicki, xial Resistance and Energy bsorption o Externally Reinorced Metal Tubes. Composites, Part B, B: p Wang, X. and G. Lu, xial Crushing Force o Externally Fibre-Reinorced Metal Tubes. Proceedings o the Institute o Mechanical Engineers,. 16( ). 15. Key, P.W. and G.J. Hancock. Plastic Collapse Mechanisms or Thin-Walled Cold Formed Square Tube Columns. in 1th ustralian Conerence on the Mechanics o Structures and Materials The University o delaide. 16. Zhao, X.-L., B. Han, and R.H. Grzebieta, Plastic mechanism analis o concrete-illed double-skin (SHS inner and SHS outer) stub

6 columns. Thin-Walled Structures,. 4(1): p Grzebieta, H., n alternative Method or Determining the Behaviour o Round Stocky Tubes subjected to an xial Crush Load. Thin-Walled Structures, : p Elchalakani, M., X.L. Zhao, and R.H. Grzebieta, Plastic mechanism analis o circular tubes under pure bending. International Journal o Mechanical Sciences,. 44(6): p Elchalakani, M., Zhao, X. L., Grzebieta, H., Plastic Collapse nalis o Slender Circular tubes Subjected to Large Deormation Pure Bending. dvances in Structural Engineering -n International Journal a. 5(4): p

7 ppendix 1 Test ST-F1 (Teng and Hu 7) New model-composite Grzebieta (199)-Composite ppendix Test ST-F Figure 7 nalis results or ST-F1 1 Test ST-F (Teng and Hu 7) New Model-Composite Grzebieta (199) - Composite Test ST-F Figure 8 nalis results or ST-F 1 Test ST-F3 (Teng and Hu 7) New Model-Composite Grzebieta (199) - Composite Test ST-F Figure 9 nalis results or ST-F3 57

PLASTIC COLLAPSE MECHANISMS IN COMPRESSED ELLIPTICAL HOLLOW SECTIONS

PLASTIC COLLAPSE MECHANISMS IN COMPRESSED ELLIPTICAL HOLLOW SECTIONS SDSS Rio 010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 010 PLASTIC COLLAPSE MECHANISMS IN COMPRESSED ELLIPTICAL HOLLOW

More information

Bond strength model for interfaces between nearsurface mounted (NSM) CFRP strips and concrete

Bond strength model for interfaces between nearsurface mounted (NSM) CFRP strips and concrete University o Wollongong Research Online Faculty o Engineering and Inormation Sciences - Papers: Part A Faculty o Engineering and Inormation Sciences 2014 Bond strength model or interaces between nearsurace

More information

AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS

AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS Bernát Csuka Budapest University o Technology and Economics Department o Mechanics Materials and Structures Supervisor: László P. Kollár 1.

More information

Design criteria for Fiber Reinforced Rubber Bearings

Design criteria for Fiber Reinforced Rubber Bearings Design criteria or Fiber Reinorced Rubber Bearings J. M. Kelly Earthquake Engineering Research Center University o Caliornia, Berkeley A. Calabrese & G. Serino Department o Structural Engineering University

More information

WELDED ALUMINUM ALLOY PLATE GIRDERS SUBJECTED TO SHEAR FORCE

WELDED ALUMINUM ALLOY PLATE GIRDERS SUBJECTED TO SHEAR FORCE Advanced Steel Construction Vol. 8, No. 1, pp. 71-94 (2012) 71 WELDED ALUMINUM ALLOY PLATE GIRDERS SUBJECTED TO SHEAR FORCE Feng Zhou 1a, 1b, Ben Young 2,* and Hin-Chung Lam 3 1a Department o Building

More information

S. Srinivasan, Technip Offshore, Inc., Houston, TX

S. Srinivasan, Technip Offshore, Inc., Houston, TX 9 th ASCE Specialty Conerence on Probabilistic Mechanics and Structural Reliability PROBABILISTIC FAILURE PREDICTION OF FILAMENT-WOUND GLASS-FIBER Abstract REINFORCED COMPOSITE TUBES UNDER BIAXIAL LOADING

More information

Reliability assessment on maximum crack width of GFRPreinforced

Reliability assessment on maximum crack width of GFRPreinforced Fourth International Conerence on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Reliability assessment on maximum crack width o GFRPreinorced concrete beams Z. He and

More information

NUMERICAL ASSESSMENT OF REINFORCED CONCRETE MEMBERS RETROFITTED WITH FIBER REINFORCED POLYMER FOR RESISTING BLAST LOADING

NUMERICAL ASSESSMENT OF REINFORCED CONCRETE MEMBERS RETROFITTED WITH FIBER REINFORCED POLYMER FOR RESISTING BLAST LOADING NUMERICAL ASSESSMENT OF REINFORCED CONCRETE MEMBERS RETROFITTED WITH FIBER REINFORCED POLYMER FOR RESISTING BLAST LOADING By GRAHAM LONG A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA

More information

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural

More information

Available online at ScienceDirect. Transportation Research Procedia 14 (2016 )

Available online at   ScienceDirect. Transportation Research Procedia 14 (2016 ) Available online at www.sciencedirect.com ScienceDirect Transportation Research Procedia 14 (016 ) 411 40 6th Transport Research Arena April 18-1, 016 Resistance o reinorced concrete columns subjected

More information

Behavior of RC Columns Confined with CFRP Sheets and Subjected to Eccentric Loading

Behavior of RC Columns Confined with CFRP Sheets and Subjected to Eccentric Loading Lie Science Journal 2018;15(6) http:www.liesciencesite.com Behavior o RC Columns Conined with CFRP Sheets and Subjected to Eentric Loading Omar A. Farghal 1 and Mamdouh A. Kenawi 2 1 Civil Engineering

More information

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS EEMENTS OF RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SRING 2016 Mechanics o Materials MECHNICS MTERIS lecture our mechanics o materials www.carttalk.com Mechanics o Materials 1 S2009abn

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

Consequently, retrofit of many poor existing structures is a very important issue. for Turkey!

Consequently, retrofit of many poor existing structures is a very important issue. for Turkey! Turkey Placed on one of the most active tectonic plates in the world ~96% of the country is under the threat of earthquakes ~98% of the population are live with that risk. Istanbul 1 st degree of earthquake

More information

Calibration of Bond Coefficient for Deflection Control of FRP RC Members

Calibration of Bond Coefficient for Deflection Control of FRP RC Members Fourth International Conerence on FRP Composites in Civil Engineering (CICE008) -4July 008, Zurich, Switzerland Calibration o Bond Coeicient or Delection Control o FRP RC Members R. Fico, A. Prota & G.

More information

FATIGUE DURABILITY OF CONCRETE EXTERNALLY STRENGTHENED WITH FRP SHEETS

FATIGUE DURABILITY OF CONCRETE EXTERNALLY STRENGTHENED WITH FRP SHEETS FATIGUE DURABILITY OF CONCRETE EXTERNALLY STRENGTHENED WITH FRP SHEETS H. Diab () and Zhishen Wu () () Department o Urban and Civil Engineering, Ibaraki University, Japan Abstract A primary concern o the

More information

Materials and Shape. Part 1: Materials for efficient structure. A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka. Learning Objectives

Materials and Shape. Part 1: Materials for efficient structure. A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka. Learning Objectives MME445: Lecture 27 Materials and Shape Part 1: Materials for efficient structure A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Learning Objectives Knowledge & Understanding Understand the

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation

Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation M Shakeri, S Salehghaffari and R. Mirzaeifar Department of Mechanical Engineering, Amirkabir

More information

Finite element modeling incorporating nonlinearity of material behavior based on the fib Model Code 2010

Finite element modeling incorporating nonlinearity of material behavior based on the fib Model Code 2010 Peer-reviewed & Open access journal www.academicpublishingplatorms.com Finite element modeling incorporating non-linearity o material behavior ATI - Applied Technologies & Innovations Volume 5 Issue November

More information

SIMPLIFIED MODELING OF THIN-WALLED TUBES WITH OCTAGONAL CROSS SECTION AXIAL CRUSHING. Authors and Correspondance: Abstract:

SIMPLIFIED MODELING OF THIN-WALLED TUBES WITH OCTAGONAL CROSS SECTION AXIAL CRUSHING. Authors and Correspondance: Abstract: SIMPLIFIED MODELING OF THIN-WALLED TUBES WITH OCTAGONAL CROSS SECTION AXIAL CRUSHING Authors and Correspondance: Yucheng Liu, Michael L. Day Department of Mechanical Engineering University of Louisville

More information

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3 The 14 th World Conerence on Earthquake Engineering COMPARISON OF FRP-RETROFITTING STRATEGIES IN CHINESE AND ITALIAN CODES J. W. DAI 1, Y.R. WANG 2, B. JIN 1, 3, D.F.ZU 4, Silvia Alessandri 5, Giorgio

More information

AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS

AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS PhD Thesis by Bernát Csuka Budapest University o Technology and Economics Department o Mechanics Materials and Structures Supervisor: László

More information

Explanatory Examples for Ductile Detailing of RC Buildings

Explanatory Examples for Ductile Detailing of RC Buildings Document No. :: IITK-GSD-EQ-V3.0 Final Report :: - Earthquake Codes IITK-GSD Project on Building Codes Explanatory Examples or Ductile Detailing o RC Buildings by Dr. R. K. Ingle Department o pplied echanics

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:

More information

MICROMECHANICAL FAILURE ANALYSIS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES UNDER IN-PLANE AND TRANSVERSE SHEAR

MICROMECHANICAL FAILURE ANALYSIS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES UNDER IN-PLANE AND TRANSVERSE SHEAR THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MICROMECHANICAL FAILURE ANALYSIS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES UNDER IN-PLANE AND TRANSVERSE SHEAR Lei Yang*, Ying Yan, Zhiguo

More information

Shear Behaviour of Fin Plates to Tubular Columns at Ambient and Elevated Temperatures

Shear Behaviour of Fin Plates to Tubular Columns at Ambient and Elevated Temperatures Shear Behaviour of Fin Plates to Tubular Columns at Ambient and Elevated Temperatures Mark Jones Research Student, University of Manchester, UK Dr. Yong Wang Reader, University of Manchester, UK Presentation

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

two structural analysis (statics & mechanics) Structural Requirements Structure Requirements Structure Requirements serviceability efficiency

two structural analysis (statics & mechanics) Structural Requirements Structure Requirements Structure Requirements serviceability efficiency LIED RCHITECTURL STRUCTURES: STRUCTURL NLYSIS ND SYSTEMS DR. NNE NICHOLS SRING 018 lecture two structural analysis (statics & mechanics) nalysis 1 pplied rchitectural Structures 009abn Structural Requirements

More information

Collapse behaviour and simplified modeling of triangular cross-section columns

Collapse behaviour and simplified modeling of triangular cross-section columns Indian Journal of ngineering & Materials Sciences Vol. 16, April 2009, pp. 71-78 Collapse behaviour and simplified ing of triangular cross-section columns Yucheng Liu* Department of Mechanical ngineering,

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Buckling of Double-walled Carbon Nanotubes

Buckling of Double-walled Carbon Nanotubes Buckling o Double-walled Carbon anotubes Y. H. Teo Engineering Science Programme ational University o Singapore Kent idge Singapore 960 Abstract This paper is concerned with the buckling o double-walled

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those studying

More information

Practice Final Examination. Please initial the statement below to show that you have read it

Practice Final Examination. Please initial the statement below to show that you have read it EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use

More information

An Estimation of Critical Buckling Strain for Pipe Subjected Plastic Bending

An Estimation of Critical Buckling Strain for Pipe Subjected Plastic Bending Cent. Eur. J. Eng. 4(3) 014 36-333 DOI: 10.478/s13531-013-0168-8 Central European Journal of Engineering An Estimation of Critical Buckling Strain for Pipe Subjected Plastic Bending Research Article L.

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

A STUDY OF 0 -FIBRE MICROBUCKLING IN MULTIDIRECTIONAL COMPOSITE LAMINATES

A STUDY OF 0 -FIBRE MICROBUCKLING IN MULTIDIRECTIONAL COMPOSITE LAMINATES A STUDY OF -FIBRE MICROBUCKLING IN MULTIDIRECTIONAL COMPOSITE LAMINATES P. Berbinau and C. Soutis Department o Aeronautics, Imperial College o Science, Technology & Medicine Prince Consort Rd, London SW7

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

Reliability of Axially Loaded Fiber-Reinforced-Polymer Confined Reinforced Concrete Circular Columns

Reliability of Axially Loaded Fiber-Reinforced-Polymer Confined Reinforced Concrete Circular Columns American J. o Engineering and Applied Sciences (1): 31-38, 009 ISSN 1941-700 009 Science Publications Reliability o Axially Loaded Fiber-Reinorced-Polymer Conined Reinorced Concrete Circular Columns Venkatarman

More information

STRUCTURAL RESPONSE OF K AND T TUBULAR JOINTS UNDER STATIC LOADING

STRUCTURAL RESPONSE OF K AND T TUBULAR JOINTS UNDER STATIC LOADING STRUCTURAL RESPONSE OF K AND T TUBULAR JOINTS UNDER STATIC LOADING Luciano R. O. de Lima, Pedro C. G. da S. Vellasco, Sebastião A. L. de Andrade Structural Engineering Department, UERJ, Rio de Janeiro,

More information

Manufacturing Remaining Stresses in Truck Frame Rail's Fatigue Life Prediction

Manufacturing Remaining Stresses in Truck Frame Rail's Fatigue Life Prediction Manuacturing Remaining Stresses in Truck Frame Rail's Fatigue Lie Prediction Claudiomar C. Cunha & Carlos A. N. Dias MSX International & Department o Naval Engineering EPUSP/USP/Brazil Department o Mechanical

More information

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) 1 University of Science & Technology Beijing, China, niukm@ustb.edu.cn 2 Tsinghua University, Department of Engineering Mechanics, Beijing, China,

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

More information

Unit 18 Other Issues In Buckling/Structural Instability

Unit 18 Other Issues In Buckling/Structural Instability Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability

More information

IMPACT BEHAVIOR OF COMPOSITE MATERIALS USED FOR AUTOMOTIVE INTERIOR PARTS

IMPACT BEHAVIOR OF COMPOSITE MATERIALS USED FOR AUTOMOTIVE INTERIOR PARTS 0 th HSTAM International Congress on Mechanics Chania, Crete, Greece, 5 7 May, 03 IMPACT BEHAVIOR OF COMPOSITE MATERIALS USED FOR AUTOMOTIVE INTERIOR PARTS Mariana D. Stanciu, Ioan Curtu and Ovidiu M.

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

FRP Seismic Strengthening of Columns in Frames

FRP Seismic Strengthening of Columns in Frames FRP Seismic Strengthening of Columns in Frames Dr Mihaela-Anca Ciupala (EU Marie Curie Research Fellow) Dr Kypros Pilakoutas (Reader) Professor Nicolae Taranu Centre for Cement and Concrete Department

More information

POST-TENSIONED MOMENT CONNECTIONS WITH A BOTTOM FLANGE FRICTION DEVICE FOR SEISMIC RESISTANT SELF- CENTERING STEEL MRFS

POST-TENSIONED MOMENT CONNECTIONS WITH A BOTTOM FLANGE FRICTION DEVICE FOR SEISMIC RESISTANT SELF- CENTERING STEEL MRFS 4th International Conerence on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No. 108 POST-TENSIONED OENT CONNECTIONS WITH A BOTTO FLANGE FRICTION DEVICE FOR SEISIC RESISTANT SELF- CENTERING

More information

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21 [7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

More information

Module 2 Selection of Materials and Shapes. IIT, Bombay

Module 2 Selection of Materials and Shapes. IIT, Bombay Module Selection o Materials and Shapes Lecture Selection o Materials - I Instructional objectives By the end o this lecture, the student will learn (a) what is a material index and how does it help in

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions

Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions Vol:, No:1, 2 Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions Sajjad Dehghanpour, Ali Yousefi International Science Index, Mechanical and Mechatronics

More information

Drucker-Prager yield criterion application to study the behavior of CFRP confined concrete under compression

Drucker-Prager yield criterion application to study the behavior of CFRP confined concrete under compression XXXVII IAHS World ongress on Housing October 6 9, 00, Santander, Spain Drucker-Prager yield criterion application to study the behavior of FRP confined concrete under compression Salvador Ivorra, Ramón

More information

Mechanics of Energy Absorption by Progressive Plastic Deformation of a Square Column with an Ellipsoidal Bulge Base

Mechanics of Energy Absorption by Progressive Plastic Deformation of a Square Column with an Ellipsoidal Bulge Base Appl. Math. Inf. Sci. 9, No. 1L, 51-58 (015) 51 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.1785/amis/091l06 Mechanics of Energy Absorption by Progressive Plastic

More information

Life Prediction Under Multiaxial Fatigue

Life Prediction Under Multiaxial Fatigue Lie Prediction Under Multiaxial Fatigue D. Ramesh and M.M. Mayuram Department o Mechanical Engineering Indian Institute o Technology, Madras Chennai-600 036 (India) e-mail: mayuram@iitm.ac.in ABSTRACT

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

Lecture #10: Anisotropic plasticity Crashworthiness Basics of shell elements

Lecture #10: Anisotropic plasticity Crashworthiness Basics of shell elements Lecture #10: 151-0735: Dynamic behavior of materials and structures Anisotropic plasticity Crashworthiness Basics of shell elements by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering,

More information

Indentation tests of aluminium honeycombs

Indentation tests of aluminium honeycombs Journal of Physics: Conference Series OPEN ACCESS Indentation tests of aluminium honeycombs To cite this article: A Ashab et al 213 J. Phys.: Conf. Ser. 451 123 View the article online for updates and

More information

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure ISSN : 48-96, Vol. 6, Issue 8, ( Part -4 August 06, pp.3-38 RESEARCH ARTICLE Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure Dr.Ragbe.M.Abdusslam Eng. Khaled.S.Bagar ABSTRACT

More information

Chapter 6 Reliability-based design and code developments

Chapter 6 Reliability-based design and code developments Chapter 6 Reliability-based design and code developments 6. General Reliability technology has become a powerul tool or the design engineer and is widely employed in practice. Structural reliability analysis

More information

Design Guidelines A Scandinavian Approach

Design Guidelines A Scandinavian Approach Design Guidelines A Scandinavian Approach Pro. Björn Täljsten Luleå University o Technology SWEDEN Presented by Tech. Lic Anders Carolin 1 Pro. B. Täljsten Departmento Civiland Mining Engineering Division

More information

3.5 Analysis of Members under Flexure (Part IV)

3.5 Analysis of Members under Flexure (Part IV) 3.5 Analysis o Members under Flexure (Part IV) This section covers the ollowing topics. Analysis o a Flanged Section 3.5.1 Analysis o a Flanged Section Introduction A beam can have langes or lexural eiciency.

More information

Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Torsion - I

Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Torsion - I Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Torsion - I Welcome to the first lesson of Module 4 which is on Torsion

More information

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods DESIGN OF COLUMN BSE PLTES ND STEEL NCHORGE TO CONCRETE OUTLINE 1. Introduction 2. Base plates a. Material b. Design using ISC Steel Design Guide Concentric axial load xial load plus moment xial load plus

More information

A SHEAR TRANSFER MODEL FOR ROUGH JOINTS BASED ON CONTACT AND FRACTURE MECHANICS

A SHEAR TRANSFER MODEL FOR ROUGH JOINTS BASED ON CONTACT AND FRACTURE MECHANICS VIII International Conerence on Fracture Mechanics o Concrete and Concrete Structures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) A SHEAR TRANSFER MODEL FOR ROUGH JOINTS

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

8.3 Design of Base Plate for Thickness

8.3 Design of Base Plate for Thickness 8.3 Design o Base Plate or Thickness 8.3.1 Design o base plate or thickness (Elastic Design) Upto this point, the chie concern has been about the concrete oundation, and methods o design have been proposed

More information

Towards The. Design of Super Columns. Prof. AbdulQader Najmi

Towards The. Design of Super Columns. Prof. AbdulQader Najmi Towards The Design of Super Columns Prof. AbdulQader Najmi Description: Tubular Column Square or Round Filled with Concrete Provided with U-Links welded to its Walls as shown in Figure 1 Compression Specimen

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

Failure Diagrams of FRP Strengthened RC Beams

Failure Diagrams of FRP Strengthened RC Beams Failure Diagrams o FRP Strengthened RC Beams Abstract Bo GAO a, Christopher K. Y. LEUNG b and Jang-Kyo KIM a* a Department o Mechanical Engineering and b Department o Civil Engineering Hong Kong University

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

EXPERIMENTAL AND NUMERICAL STUDY OF THE ENERGY ABSORPTION CAPACITY OF PULTRUDED COMPOSITE TUBES

EXPERIMENTAL AND NUMERICAL STUDY OF THE ENERGY ABSORPTION CAPACITY OF PULTRUDED COMPOSITE TUBES EXPERIMENTAL AND NUMERICAL STUDY OF THE ENERGY ABSORPTION CAPACITY OF PULTRUDED COMPOSITE TUBES D. Kakogiannis 1, D. Van Hemelrijck 1, J. Wastiels 1, S. Palanivelu 2, W. Van Paepegem 2, K. De Wolf 3, J.

More information

PLASTIC DEFORMATION CAPACITY OF H-SHAPED STEEL BEAM CONNECTED TO CONCRETE FILLED STEEL TUBULAR COLUMN

PLASTIC DEFORMATION CAPACITY OF H-SHAPED STEEL BEAM CONNECTED TO CONCRETE FILLED STEEL TUBULAR COLUMN PLASTIC DEFORMATION CAPACITY OF H-SHAPED STEEL BEAM CONNECTED TO CONCRETE FILLED STEEL TUBULAR COLUMN Y. Sameshima, M. Kido and K. Tsuda 3 Graduate student, Graduate School of Environmental Engineering,

More information

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXILE FIER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS Hu Shaoqing Supervisor: Susumu KONO ** MEE8165 ASTRACT FRP with low Young

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

Energy absorption of an egg-box material

Energy absorption of an egg-box material Journal of the Mechanics and Physics of Solids 51 (2003) 187 208 www.elsevier.com/locate/jmps Energy absorption of an egg-box material V.S. Deshpande, N.A. Fleck Department of Engineering, Cambridge University,

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.

More information

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Chapter 8 Structural Design and Analysis 1 Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Normal Stress Stress is a state when a material is loaded. For normal forces

More information

SECTION 7 DESIGN OF COMPRESSION MEMBERS

SECTION 7 DESIGN OF COMPRESSION MEMBERS SECTION 7 DESIGN OF COMPRESSION MEMBERS 1 INTRODUCTION TO COLUMN BUCKLING Introduction Elastic buckling of an ideal column Strength curve for an ideal column Strength of practical column Concepts of effective

More information

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS The 3 rd International Conerence on DIAGNOSIS AND PREDICTION IN MECHANICAL ENGINEERING SYSTEMS DIPRE 12 SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF Valeriu DULGHERU, Viorel BOSTAN, Marin GUŢU Technical

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Only for Reference Page 1 of 18

Only for Reference  Page 1 of 18 Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAALLI - 6113. QUESTION WITH ANSWERS DEARTMENT : CIVIL SEMESTER: V SUB.CODE/ NAME: CE 5 / Strength of Materials UNIT 3 COULMNS ART - A ( marks) 1. Define columns

More information

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Circle your lecturer s name and your class meeting time. Gonzalez Krousgrill

More information

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding (1997) (Rev.1 1997) (Rev.1.1 Mar 1998 /Corr.1) (Rev. Sept 000) (Rev.3 eb 001) (Rev.4 Nov 001) (Rev.5 July 003) (Rev.6 July 004) (Rev.7 eb 006) (Corr.1 Oct 009) (Rev.8 May 010) (Rev.9 Apr 014) Evaluation

More information

ON AN ESTIMATION OF THE DAMPING PROPERTIES OF WOVEN FABRIC COMPOSITES

ON AN ESTIMATION OF THE DAMPING PROPERTIES OF WOVEN FABRIC COMPOSITES ON AN ESTIMATION OF THE DAMPING PROPERTIES OF WOVEN FABRIC COMPOSITES Masaru Zao 1, Tetsusei Kurashii 1, Yasumasa Naanishi 2 and Kin ya Matsumoto 2 1 Department o Management o Industry and Technology,

More information

Finite element modeling incorporating nonlinearity of material behavior based on the fib Model Code 2010

Finite element modeling incorporating nonlinearity of material behavior based on the fib Model Code 2010 Peer-reviewed & Open access journal www.academicpublishingplatorms.com The primary version o the journal is the on-line version Finite element modeling incorporating non-linearity o material behavior based

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information