Buckling of Double-walled Carbon Nanotubes

Size: px
Start display at page:

Download "Buckling of Double-walled Carbon Nanotubes"

Transcription

1 Buckling o Double-walled Carbon anotubes Y. H. Teo Engineering Science Programme ational University o Singapore Kent idge Singapore 960 Abstract This paper is concerned with the buckling o double-walled carbon nanotubes (DCTs) under aial load. The DCTs are modelled as two cylindrical shells one shell nested in the other and inkler springs are introduced to connect them in order to simulate the van der aals orces between the two nanotubes. By using the Donnell thin shell theory we derive the governing equations or the buckling o the aorementioned double-shell model under aial compression. The equations are solved together with the boundary conditions and the critical buckling strains or cylindrical shells with dierent diameters and lengths. The critical strains are compared with the results obtained rom molecular dynamic simulations and were ound to be not so good in agreement. Better shell models have to be ound or predicting more accurate results. Introduction Carbon nanotubes (CTs) were discovered in the year o 99 Since their discovery they have attracted the attention o researchers in many ields o science and technology. Eperimental and theoretical studies have also intensiied in recent years as numerous studies have shown that carbon nanotubes possess superior mechanical properties e.g. high stinessto-weight and strength-to-weight ratios Young s modulus value as large as ~ TPa (ishio et al. 005) and hold substantial promise as superstrong ibres and composite. Such mechanical strength is suitable or the nanoscale systems such as probes or scanning probe microscopy (SPM) nanotweezers or nanomanipulations and nano-oscillators or mass detection. Presently there eist several techniques to analyse the compressive ailure o singlewalled carbon nanotubes (SCTs) and multiwalled carbon nanotubes (MCTs) such as eperimental approach which involves methods such as the transmission electron microscopy (TEM) and atomic orce microscopy (AFM) molecular mechanics (MM) molecular

2 dynamics (MD) and continuum mechanics (CM) techniques. Unortunately eperiments on CTs are etremely diicult and epensive to conduct whereas MD simulations are currently limited to very small length and time scales and cannot deal with the large-sized atomic system due to the limitations o current computing power. As or CM technique the computational eort is much less vigorous the results obtained is comparable computed with MD simulations (Yakobson et al. 996). In this paper a simple double-cylindrical shell model based on Donnell s shell theory is presented or the analysis o DCTs buckling under aial load. In this model the inner and outer nanotubes are treated as thin cylindrical shells and the van der aals interations are taken into account by connecting the shells together using lateral (inkler) springs. The buckling equations are derived based on this shell model and solved together with the boundary conditions or the critical buckling strains. The mathematical sotware MATAB was used to compute the buckling results and compared with the results obtained rom MD simulations to eamine the validity o the proposed shell model or the aial buckling analysis on CTs. Elastic Cylindrical Shell Model Based on Donnell s thin shell theory (Donnell 976) we obtain the ollowing equations or the equilibrium o membrane orces in the cylindrical shell: 0 and 0 () where and are the aial circumerential and torsional membrane orces respectively. In order or Eq. () to be true there must eist a unction A() such that A and A (3) Similarly or Eq. () to be true there must also eist a unction B() such that B and B (56) ow we introduce a stress unction φ() into both unctions A() and B() such that we have

3 ϕ ( ) ( A and B( ( ϕ (78) The stress unction is introduced into unctions A() and B() so that the membrane orces and can be represented by ϕ y ( ( ϕ and ( ϕ (9 0 ) The membrane strains are given by ( ) ( ) ε v ε v and γ ( ( v) ϕ ( 3 ) where E is the Young s modulus h is the thickness o the nanotube and v is the Poisson s ratio. By substituting the membrane orces o Eqs. (9) and (0) into Eqs. () and (3) the membrane strains can be rewritten as ε ϕ y ( ϕ( v ( ) ( ) and ϕ ϕ ε v (a 3a) y According to the Donnell thin shell theory the compatibility condition o a thin shell yields ε ε γ ( 0 (5) where () is the radial displacement o the middle surace o the shell along the normal direction and is the radius o the nanotube. By substituting Eqs. (a) (3a) and () into Eq. (5) we obtain ϕ (6) The governing equation or single-walled carbon nanotube (SCT) or aial compression is given by D P (7)

4 3 where D is the leural stiness o the shell and P denotes the normal pressure ( υ ) as shown in Figure. ow we substitute Eq. (0) into Eq. (7) and it becomes ( ) D ϕ P (8) By using Eq. (7) to eliminate the stress unction φ() in Eq. (8) we obtain a single equation in terms o () i.e. 8 D 0 P (9) Van der aals Force between adjacent nanotubes ennard-jones model can be used to describe the van der aals orce between any two carbon atoms. According to Girialco (99) the van der aals orce eerted on any atom on a tube can be estimated by adding up all orces between the atom and all atoms on the other tube. Figure shows the double-cylindrical shell model or a double-walled carbon nanotube under aial compression. Figure : A double-shell model or a DCT under aial compression

5 The data given by Girialco can be used to estimate the van der aals orce eerted on any point o the tube. At any point between the inner and outer tube the pointwise pressure can be assumed to be a unction o the normal distance between the inner and outer tubes at that point. Furthermore due to the act that the interaction orces between the tubes are equal and opposite the pressure p and p eerted on the corresponding points on the inner tube and outer tube respectively should be related by p ( p ( (0) where is the radii o the inner tube whereas is the radii o the outer tube. The pressure caused by the van der aals orces at any point () on the inner tube could be assumed to be a unction o the distance between the outer tube at that point denoted by δ() namely ( G[ δ ( ] p () where G(δ) is a nonlinear unction o the intertube spacing δ as given by u (000 00). Ater buckling the pressure caused by the van der aals orces at any point ()on the inner tube is assumed to be linearly proportional to the jump o the buckling delection between the inner and outer tubes and is shown as p ( c[ w ( w ( ] () ote that the equilibrium distance between a carbon atom and a lat monolayer is around 0.3nm (Girialco and ad 956) the van der aals orce between the inner and outer tubes us zero i the interlayer spacing is 0.3nm. in this case any increase (or decrease) in the interlayer spacing at a point will cause an attractive (or repulsive) van der aals interaction at that point and then c as deined below should be a positive number. According to the data given in Saito (00) one can ind J / m c d 9 / m 3 (3) 0 where d. 0 m. By using Eqs. (0) and () one can show that the pressure eerted on the inner and outer tubes o the carbon nanotube is such as p ( c[ w ( w ( ] and p ( c [ w ( w ( ] ()

6 Critical buckling condition ow we are able to study the elastic buckling o a double-walled carbon nanotube under aial load. By substituting Eqs. () and () into Eq. (9) we obtain the governing equation o buckling or each o the walls i.e. ( ) 8 c D (5) ( ) 8 c D (6) Buckling on the hand leads to a periodic low-amplitude rippling o the shell wall. et us assume the buckling modes are as ollows: sin sin n m π (7) sin sin n m π (8) where and are real constants m and n are respectively the wave numbers in the aial and circumerential directions. The epressions indicate that the carbon nanotubes have the buckling modes with sinusoidal wave pattern both in the aial and circumerential directions. By substituting Eqs. (7) and (8) into Eqs. (5) and (6) respectively we get ( ) c D ω ω (9) ( ) c D ω ω (30) where n mπ n mπ and mπ ω.

7 Equations (9) and (30) may be written in a matri orm i.e. D c ω ω G c D c c ω ω 0 (3) The critical buckling strain is obtained by solving the characteristic equation det G 0 or the lowest value o aial strain ε o the double-walled carbon nanotube with respect to the wave numbers m and n. umerical results and discussion DCT with dierent parameters such as inner tube radii outer tube radii and the length o the nanotube are used in the computation o the critical strain ε /(). Mechanical properties such as Young s modulus E Pa and Poisson s ratio υ 0.9 are ied at constant values throughout the computation with the thickness h m. The computations o the critical strain ε are done with cylindrical shell (CS) model with the mode wave number m n as well as molecular dynamic (MD) simulations being perormed and the results are presented in Table. Table : Comparison o critical strain between CS model and MD model Case Inner tube diameter (0-0 m) Outer tube diameter (0-0 m) ength (0-0 m) Critical strain (MD) Critical strain (CS) Dierence (%)

8 It can be seen rom the results in Table the dierence between molecular dynamic simulations and cylindrical shell model ranges rom approimately 8% to 5%. This shows that results computed by using the cylindrical shell model with small length-to-diameter ratios are not that comparable to the MD simulation results. Hence a more reined shell theory say the non-local shell or beam theory which allows or the small length scale eect should be eplored or better prediction o the critical buckling strains. eerences Donnell. H. (976) Beam Plates and Shells McGraw-Hill ew Your. Girialco. A. and ad. A. (956) Energy o cohesion compressibility and the potential energy unctions o graphite system J. Chem Phys. 5 pp Girialco. A. (99) Interaction potential or C 60 molecules J. Phys. Chem. 95 pp isio M. Akita S. and akayama Y. (005) Buckling test under aial compression or multiwall carbon nanotubes Jap. J. Appl. Phys. pp u C. Q. (000b) Eective bending stiness o carbon nanotubes Phys. ev. B 6 pp u C. Q. (000a) Eect o Van der aals orces on aial buckling o a double-walled carbon nanotube J. Appl. Phys. 87 pp u C. Q. (00) Aially compressed buckling o a double-walled carbon nanotube embedded in an elastic medium J. Mech. Phys. Solids. 9 pp Saito. Matsuo. Kimura T. Dresselhaus G. and Dresselhaus M. S. 00 Anomalous potential barrier o double-wall carbon nanotube Chem. Phys. ett. 38 pp Yakobson B. I. Brabee C. J. and Bernhole J. (996) anomechanics o carbon tubes: instability beyond linear response Phys. ev. ett. 76 pp. 5-5.

Torsional Buckling of Double-Walled Carbon Nanotubes

Torsional Buckling of Double-Walled Carbon Nanotubes Torsional Buckling of Double-Walled Carbon Nanotubes S. H. Soong Engineering Science Programme, National University of Singapore Kent Ridge, Singapore 119260 ABSTRACT This paper is concerned with the torsional

More information

VIBRATION CHARACTERISTICS OF EMBEDDED DOUBLE WALLED CARBON NANOTUBES SUBJECTED TO AN AXIAL PRESSURE

VIBRATION CHARACTERISTICS OF EMBEDDED DOUBLE WALLED CARBON NANOTUBES SUBJECTED TO AN AXIAL PRESSURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS VIBRATION CHARACTERISTICS OF EMBEDDED DOUBLE WALLED CARBON NANOTUBES SUBJECTED TO AN AXIAL PRESSURE X. W. Lei 1, T. Natsuki 2, J. X. Shi 1, Q. Q. Ni

More information

Simulating the buckling deflection of carbon nanotube-made detectors used in medical detections by applying a continuum mechanics model

Simulating the buckling deflection of carbon nanotube-made detectors used in medical detections by applying a continuum mechanics model ie Science Journal 3;() Simulating the buckling delection o carbon nanotube-made detectors used in medical detections by applying a continuum mechanics model Alireza Vahdati *, Mehdi Vahdati,, R. A. Mahdavinejad

More information

Mathematical modelling for a C60 carbon nanotube oscillator

Mathematical modelling for a C60 carbon nanotube oscillator University o Wollongong Research Online Faculty o Inormatics - Papers (Archive) Faculty o Engineering and Inormation Sciences 006 Mathematical modelling or a C60 caron nanotue oscillator Barry J. Cox University

More information

Longitudinal buckling of slender pressurised tubes

Longitudinal buckling of slender pressurised tubes Fluid Structure Interaction VII 133 Longitudinal buckling of slender pressurised tubes S. Syngellakis Wesse Institute of Technology, UK Abstract This paper is concerned with Euler buckling of long slender

More information

Radial Breathing Mode Frequency of Multi-Walled Carbon Nanotube Via Multiple-Elastic Thin Shell Theory

Radial Breathing Mode Frequency of Multi-Walled Carbon Nanotube Via Multiple-Elastic Thin Shell Theory Int. J. anosci. anotechnol. Vol. 7 o. 3 Sep. 011 pp. 137-14 adial Breathing Mode Frequency of Multi-Walled Carbon anotube Via Multiple-Elastic Thin Shell Theory S. Basir Jafari 1. Malekfar 1* and S. E.

More information

Acoustic forcing of flexural waves and acoustic fields for a thin plate in a fluid

Acoustic forcing of flexural waves and acoustic fields for a thin plate in a fluid Acoustic orcing o leural waves and acoustic ields or a thin plate in a luid Darryl MCMAHON Maritime Division, Deence Science and Technology Organisation, HMAS Stirling, WA Australia ABSTACT Consistency

More information

Thermal Elastic Buckling of plates made of carbon nanotube reinforced polymer composite materials

Thermal Elastic Buckling of plates made of carbon nanotube reinforced polymer composite materials THE 9 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Thermal Elastic Buckling o plates made o carbon nanotube reinorced polymer composite materials J. Naar Dastgerdi,, S. Marzban 3, G. Marquis, Applied

More information

Bond strength model for interfaces between nearsurface mounted (NSM) CFRP strips and concrete

Bond strength model for interfaces between nearsurface mounted (NSM) CFRP strips and concrete University o Wollongong Research Online Faculty o Engineering and Inormation Sciences - Papers: Part A Faculty o Engineering and Inormation Sciences 2014 Bond strength model or interaces between nearsurace

More information

Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams?

Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams? NASA/CR-2001-211013 ICASE Report No. 2001-16 Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams? Vasyl Michael Harik ICASE, Hampton,

More information

3.5 Analysis of Members under Flexure (Part IV)

3.5 Analysis of Members under Flexure (Part IV) 3.5 Analysis o Members under Flexure (Part IV) This section covers the ollowing topics. Analysis o a Flanged Section 3.5.1 Analysis o a Flanged Section Introduction A beam can have langes or lexural eiciency.

More information

Comparison Between Different Finite Element Methods for Foreseeing the Elastic Properties of Carbon nanotube Reinforced Epoxy Resin Composite

Comparison Between Different Finite Element Methods for Foreseeing the Elastic Properties of Carbon nanotube Reinforced Epoxy Resin Composite Comparison Between Dierent Finite lement Methods or Foreseeing the lastic Properties o Carbon nanotube Reinorced poy Resin Composite Abdolhosein.Fereidoon, smaeel.saeedi, and Babak.Ahmadimoghadam Abstract

More information

S. Srinivasan, Technip Offshore, Inc., Houston, TX

S. Srinivasan, Technip Offshore, Inc., Houston, TX 9 th ASCE Specialty Conerence on Probabilistic Mechanics and Structural Reliability PROBABILISTIC FAILURE PREDICTION OF FILAMENT-WOUND GLASS-FIBER Abstract REINFORCED COMPOSITE TUBES UNDER BIAXIAL LOADING

More information

Buckling of double-walled carbon nanotubes modeled by solid shell elements

Buckling of double-walled carbon nanotubes modeled by solid shell elements Buckling of double-walled carbon nanotubes modeled by solid shell elements C. M. Wang and Y. Q. MaY. Y. ZhangK. K. Ang Citation: Journal of Applied Physics 99, 11317 (2006); doi: 10.1063/1.2202108 View

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numerical Methods or Engineering Design and Optimization Xin Li Department o ECE Carnegie Mellon University Pittsburgh, PA 53 Slide Overview Linear Regression Ordinary least-squares regression Minima

More information

Supporting Information for: Flexible Energy Conversion

Supporting Information for: Flexible Energy Conversion Supporting Inormation or: Piezoelectric Nanoribbons Printed onto Rubber or Flexible Energy Conversion Yi Qi, Noah T. Jaeris, Kenneth Lyons, Jr., Christine M. Lee, Habib Ahmad, Michael C. McAlpine *, Department

More information

SSNEMS Internal Report

SSNEMS Internal Report E.3. Nanotube Reinforced Piezoelectric Polymeric Composites Subjected to Electro-Thermo- Mechanical Loadings Understanding the stress transfer between nanotube reinforcements and surrounding matrix is

More information

Finite Element Modeling of Residual Thermal Stresses in Fiber-Reinforced Composites Using Different Representative Volume Elements

Finite Element Modeling of Residual Thermal Stresses in Fiber-Reinforced Composites Using Different Representative Volume Elements Proceedings o the World Congress on Engineering 21 Vol II WCE 21, June 3 - July 2, 21, London, U.K. Finite Element Modeling o Residual Thermal Stresses in Fiber-Reinorced Composites Using Dierent Representative

More information

6.1 The Linear Elastic Model

6.1 The Linear Elastic Model Linear lasticit The simplest constitutive law or solid materials is the linear elastic law, which assumes a linear relationship between stress and engineering strain. This assumption turns out to be an

More information

Thermal Buckling of Multi-Walled Carbon Nanotubes by Nonlocal Elasticity

Thermal Buckling of Multi-Walled Carbon Nanotubes by Nonlocal Elasticity Renfu Li Post-Doctoral Fellow George A. Kardomateas Professor of Aerospace Engineering Fellow ASME Georgia Institute of Technology, Atlanta, Georgia 3033-050 Thermal Buckling of Multi-Walled Carbon Nanotubes

More information

Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate

Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate Outline Introduction Representative Volume Element (RVE) Periodic Boundary Conditions on RVE Homogenization Method Analytical

More information

Vibration and instability analysis of viscoelastic singlewalled carbon nanotubes conveying viscous fluid embedded in a viscoelastic medium

Vibration and instability analysis of viscoelastic singlewalled carbon nanotubes conveying viscous fluid embedded in a viscoelastic medium Vibration and instability analysis of viscoelastic singlewalled carbon nanotubes conveying viscous fluid embedded in a viscoelastic medium Farzaneh Samadi, Anooshiravan Farshidianfar * Department of Mechanical

More information

EFFECTIVE SIMULATION APPROACH FOR STUDY OF CARBON NANOTUBE MECHANICAL PROPERTIES

EFFECTIVE SIMULATION APPROACH FOR STUDY OF CARBON NANOTUBE MECHANICAL PROPERTIES Oct 14 th 16 th 015, Brno, Czech Republic, EU EFFECTIVE SIMULATION APPROACH FOR STUDY OF CARBON NANOTUBE MECHANICAL PROPERTIES SVATOŠ Vojtěch *1,, NEUŽIL Pavel 1,, HRSTKA Miroslav 3, HUBÁLEK Jaromír 1,

More information

FREE VIBRATION ANALYSIS OF DOUBLE-WALLED CARBON NANOTUBES EMBEDDED IN AN ELASTIC MEDIUM USING DTM (DIFFERENTIAL TRANSFORMATION METHOD)

FREE VIBRATION ANALYSIS OF DOUBLE-WALLED CARBON NANOTUBES EMBEDDED IN AN ELASTIC MEDIUM USING DTM (DIFFERENTIAL TRANSFORMATION METHOD) Journal of Engineering Science and Technology Vol. 1, No. 10 (017) 700-710 School of Engineering, Taylor s University FREE VIBRATION ANALYSIS OF DOUBLE-WALLED CARBON NANOTUBES EMBEDDED IN AN ELASTIC MEDIUM

More information

Part I: Thin Converging Lens

Part I: Thin Converging Lens Laboratory 1 PHY431 Fall 011 Part I: Thin Converging Lens This eperiment is a classic eercise in geometric optics. The goal is to measure the radius o curvature and ocal length o a single converging lens

More information

Transverse vibration and instability of fluid conveying triple-walled carbon nanotubes based on strain-inertia gradient theory

Transverse vibration and instability of fluid conveying triple-walled carbon nanotubes based on strain-inertia gradient theory Journal o Theoretical and Applied Vibration and Acoustics () 6-7 (05) Journal o Theoretical and Applied Vibration and Acoustics I S A V journal homepage: http://tava.isav.ir Transverse vibration and instability

More information

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

STRESS TRANSFER EFFICIENCY IN CARBON NANOTUBE BASED ROPES

STRESS TRANSFER EFFICIENCY IN CARBON NANOTUBE BASED ROPES 6 TH INTRNATIONAL CONFRNC ON COMPOSIT MATRIALS STRSS TRANSFR FFICINCY IN CARBON NANOTUB BASD ROPS Luis Zalamea* and R. Byron Pipes** [R. Byron Pipes]: bpipes@purdue.edu **Schools o Materials ngineering,

More information

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

More information

774. Tribological adhesion of particles in acoustic field

774. Tribological adhesion of particles in acoustic field 774. Tribological adhesion o particles in acoustic ield Vladas Vekteris 1 Vytautas Striška Vadim Mokšin 3 Darius Ozarovskis 4 Rolandas Zaremba 5 Vilnius Gediminas Technical University Department o Machine

More information

Prediction of Young s Modulus of Graphene Sheets by the Finite Element Method

Prediction of Young s Modulus of Graphene Sheets by the Finite Element Method American Journal of Mechanical Engineering, 15, Vol. 3, No. 6, 5-9 Available online at http://pubs.sciepub.com/ajme/3/6/14 Science and Education Publishing DOI:1.1691/ajme-3-6-14 Prediction of Young s

More information

Comb Resonator Design (2)

Comb Resonator Design (2) Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

More information

Life Prediction Under Multiaxial Fatigue

Life Prediction Under Multiaxial Fatigue Lie Prediction Under Multiaxial Fatigue D. Ramesh and M.M. Mayuram Department o Mechanical Engineering Indian Institute o Technology, Madras Chennai-600 036 (India) e-mail: mayuram@iitm.ac.in ABSTRACT

More information

two structural analysis (statics & mechanics) Structural Requirements Structure Requirements Structure Requirements serviceability efficiency

two structural analysis (statics & mechanics) Structural Requirements Structure Requirements Structure Requirements serviceability efficiency LIED RCHITECTURL STRUCTURES: STRUCTURL NLYSIS ND SYSTEMS DR. NNE NICHOLS SRING 018 lecture two structural analysis (statics & mechanics) nalysis 1 pplied rchitectural Structures 009abn Structural Requirements

More information

Stability Analysis of a Geometrically Imperfect Structure using a Random Field Model

Stability Analysis of a Geometrically Imperfect Structure using a Random Field Model Stabilit Analsis of a Geometricall Imperfect Structure using a Random Field Model JAN VALEŠ, ZDENĚK KALA Department of Structural Mechanics Brno Universit of Technolog, Facult of Civil Engineering Veveří

More information

AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS

AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS AXIALLY LOADED FRP CONFINED REINFORCED CONCRETE CROSS-SECTIONS Bernát Csuka Budapest University o Technology and Economics Department o Mechanics Materials and Structures Supervisor: László P. Kollár 1.

More information

Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet

Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet Copyright 05 Tech Science Press CMC, vol.8, no., pp.03-7, 05 Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet G. Q. Xie, J. P. Wang, Q. L. Zhang Abstract: Small-scale effect on the

More information

dw 2 3(w) x 4 x 4 =L x 3 x 1 =0 x 2 El #1 El #2 El #3 Potential energy of element 3: Total potential energy Potential energy of element 1:

dw 2 3(w) x 4 x 4 =L x 3 x 1 =0 x 2 El #1 El #2 El #3 Potential energy of element 3: Total potential energy Potential energy of element 1: MAE 44 & CIV 44 Introduction to Finite Elements Reading assignment: ecture notes, ogan. Summary: Pro. Suvranu De Finite element ormulation or D elasticity using the Rayleigh-Ritz Principle Stiness matri

More information

Bayesian Technique for Reducing Uncertainty in Fatigue Failure Model

Bayesian Technique for Reducing Uncertainty in Fatigue Failure Model 9IDM- Bayesian Technique or Reducing Uncertainty in Fatigue Failure Model Sriram Pattabhiraman and Nam H. Kim University o Florida, Gainesville, FL, 36 Copyright 8 SAE International ABSTRACT In this paper,

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

Nonlocal material properties of single walled carbon nanotubes

Nonlocal material properties of single walled carbon nanotubes Nonlocal material properties of single walled carbon nanotubes J. V. Araújo dos Santos * and C. M. Mota Soares IDMEC, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal Av. Rovisco Pais,

More information

Bending instability characteristics of double-walled carbon nanotubes

Bending instability characteristics of double-walled carbon nanotubes PHYSICAL REVIEW B 71, 045403 (005) Bending instability characteristics of double-walled carbon nanotubes Quan Wang, 1 Ting Hu, Guanhua Chen, 3 and Qing Jiang, * 1 Department of Mechanical, Materials and

More information

Relating axial motion of optical elements to focal shift

Relating axial motion of optical elements to focal shift Relating aial motion o optical elements to ocal shit Katie Schwertz and J. H. Burge College o Optical Sciences, University o Arizona, Tucson AZ 857, USA katie.schwertz@gmail.com ABSTRACT In this paper,

More information

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS EEMENTS OF RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SRING 2016 Mechanics o Materials MECHNICS MTERIS lecture our mechanics o materials www.carttalk.com Mechanics o Materials 1 S2009abn

More information

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014 Universit of Pretoria Department of Mechanical & Aeronautical Engineering MOW 7, nd Semester 04 Semester Test Date: August, 04 Total: 00 Internal eaminer: Duration: hours Mr. Riaan Meeser Instructions:

More information

XI. NANOMECHANICS OF GRAPHENE

XI. NANOMECHANICS OF GRAPHENE XI. NANOMECHANICS OF GRAPHENE Carbon is an element of extraordinary properties. The carbon-carbon bond possesses large magnitude cohesive strength through its covalent bonds. Elemental carbon appears in

More information

Local buckling of carbon nanotubes under bending

Local buckling of carbon nanotubes under bending APPLIED PHYSICS LETTERS 91, 093128 2007 Local buckling of carbon nanotubes under bending Q. Wang a Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba R3T

More information

Free Vibrations of Carbon Nanotubes with Defects

Free Vibrations of Carbon Nanotubes with Defects Mechanics and Mechanical Engineering Vol. 17, No. 2 (2013) 157 166 c Lodz University of Technology Free Vibrations of Carbon Nanotubes with Defects Aleksander Muc Aleksander Banaś Ma lgorzata Chwa l Institute

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information

Module 2 Stresses in machine elements

Module 2 Stresses in machine elements Module 2 Stresses in machine elements Lesson 3 Strain analysis Instructional Objectives At the end of this lesson, the student should learn Normal and shear strains. 3-D strain matri. Constitutive equation;

More information

TFY4102 Exam Fall 2015

TFY4102 Exam Fall 2015 FY40 Eam Fall 05 Short answer (4 points each) ) Bernoulli's equation relating luid low and pressure is based on a) conservation o momentum b) conservation o energy c) conservation o mass along the low

More information

Analysis of Friction-Induced Vibration Leading to Eek Noise in a Dry Friction Clutch. Abstract

Analysis of Friction-Induced Vibration Leading to Eek Noise in a Dry Friction Clutch. Abstract The 22 International Congress and Exposition on Noise Control Engineering Dearborn, MI, USA. August 19-21, 22 Analysis o Friction-Induced Vibration Leading to Eek Noise in a Dry Friction Clutch P. Wickramarachi

More information

DYNAMIC STABILITY OF EMBEDDED SINGLE WALLED CARBON NANOTUBES INCLUDING THERMAL EFFECTS *

DYNAMIC STABILITY OF EMBEDDED SINGLE WALLED CARBON NANOTUBES INCLUDING THERMAL EFFECTS * IJST, Transactions of Mechanical Engineering, Vol. 39, No. M1 +, pp 153-161 Printed in The Islamic Republic of Iran, 2015 Shiraz University DYNAMIC STABILITY OF EMBEDDED SINGLE WALLED CARBON NANOTUBES

More information

NONCLASSICAL MODELS IN THE SHELL THEORY WITH APPLICATIONS TO MULTILAYERED NANOTUBES

NONCLASSICAL MODELS IN THE SHELL THEORY WITH APPLICATIONS TO MULTILAYERED NANOTUBES COMPDYN 0 3 rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis M. Fragiadakis V. Plevris eds. Corfu Greece 5-8 May 0 NONCLASSICAL

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Relating axial motion of optical elements to focal shift

Relating axial motion of optical elements to focal shift Relating aial motion o optical elements to ocal shit Katie Schwertz and J. H. Burge College o Optical Sciences, University o Arizona, Tucson AZ 857, USA katie.schwertz@gmail.com ABSTRACT In this paper,

More information

Critical Strain of Carbon Nanotubes: An Atomic-Scale Finite Element Study

Critical Strain of Carbon Nanotubes: An Atomic-Scale Finite Element Study X. Guo A. Y. T. Leung 1 e-mail: bcaleung@cityu.edu.hk Department of Building and Construction, City University of Hong Kong, Hong Kong, China H. Jiang Department of Mechanical and Aerospace Engineering,

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

Supporting Information

Supporting Information Supporting Information Failure Processes in Embedded Monolayer Graphene under Axial Compression Charalampos Androulidakis, Emmanuel N. Koukaras, Otakar Frank, Georgia Tsoukleri, Dimitris Sfyris, John Parthenios,

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

Vibration Characteristics of Multiwalled Carbon Nanotubes Embedded in Elastic Media by a Nonlocal Elastic Shell Model

Vibration Characteristics of Multiwalled Carbon Nanotubes Embedded in Elastic Media by a Nonlocal Elastic Shell Model Renfu Li Post-Doctoral Fellow George A. Kardomateas Professor of Aerospace Engineering Fellow ASME Georgia Institute of Technology, Atlanta, GA 3033-0150 Vibration Characteristics of Multiwalled Carbon

More information

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center July 4-6 2012 London U.K. Buoyancy Driven Heat Transer o Water-Based CuO Nanoluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center Ahmet Cihan Kamil Kahveci and Çiğdem Susantez

More information

THE GENERAL ELASTICITY PROBLEM IN SOLIDS

THE GENERAL ELASTICITY PROBLEM IN SOLIDS Chapter 10 TH GNRAL LASTICITY PROBLM IN SOLIDS In Chapters 3-5 and 8-9, we have developed equilibrium, kinematic and constitutive equations for a general three-dimensional elastic deformable solid bod.

More information

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID Rita Choudhury et al. / International Journal o Engineering Science and Technology (IJEST) HYDROAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID RITA CHOUDHURY Department

More information

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure ISSN : 48-96, Vol. 6, Issue 8, ( Part -4 August 06, pp.3-38 RESEARCH ARTICLE Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure Dr.Ragbe.M.Abdusslam Eng. Khaled.S.Bagar ABSTRACT

More information

Gecko and many insects (Fig. 1) have evolved fibrillar structures

Gecko and many insects (Fig. 1) have evolved fibrillar structures Shape insensitive optimal adhesion o nanoscale ibrillar structures Huajian Gao* and Haimin Yao Max Planck Institute or Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart, Germany Edited by Jan D.

More information

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment 7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that

More information

The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix

The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix JOURNAL OF MATERIALS SCIENCE 39 (2 004)4481 4486 The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix K. Q. XIAO, L. C. ZHANG School of Aerospace, Mechanical and Mechatronic

More information

MICROMECHANICAL FAILURE ANALYSIS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES UNDER IN-PLANE AND TRANSVERSE SHEAR

MICROMECHANICAL FAILURE ANALYSIS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES UNDER IN-PLANE AND TRANSVERSE SHEAR THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MICROMECHANICAL FAILURE ANALYSIS OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES UNDER IN-PLANE AND TRANSVERSE SHEAR Lei Yang*, Ying Yan, Zhiguo

More information

Module 2 Selection of Materials and Shapes. IIT, Bombay

Module 2 Selection of Materials and Shapes. IIT, Bombay Module Selection o Materials and Shapes Lecture Selection o Materials - I Instructional objectives By the end o this lecture, the student will learn (a) what is a material index and how does it help in

More information

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS The 3 rd International Conerence on DIAGNOSIS AND PREDICTION IN MECHANICAL ENGINEERING SYSTEMS DIPRE 12 SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF Valeriu DULGHERU, Viorel BOSTAN, Marin GUŢU Technical

More information

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma Chapter 4 Imaging Lecture 21 d (110) Imaging Imaging in the TEM Diraction Contrast in TEM Image HRTEM (High Resolution Transmission Electron Microscopy) Imaging or phase contrast imaging STEM imaging a

More information

ANALYSIS OF FAILURE ASSESSMENT FOR SPHERICAL PRESSURE VESSELS

ANALYSIS OF FAILURE ASSESSMENT FOR SPHERICAL PRESSURE VESSELS (ISSN 78 664) VOLUME-5, ISSUE-, March 6 ANALYSIS OF FAILURE ASSESSMENT FOR SPHERICAL PRESSURE VESSELS Sumit Goel, Anil Kumar, Abhishek Kr. Goel M.Tech. Scholar, Department o Mechanical Engineering, Subharti

More information

Molecular Dynamics Simulation of Fracture of Graphene

Molecular Dynamics Simulation of Fracture of Graphene Molecular Dynamics Simulation of Fracture of Graphene Dewapriya M. A. N. 1, Rajapakse R. K. N. D. 1,*, Srikantha Phani A. 2 1 School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

Plastic mechanism analysis of CHS stub columns strengthened using CFRP

Plastic mechanism analysis of CHS stub columns strengthened using CFRP Plastic mechanism analis o CHS stub columns strengthened using CFRP M. Elchalakani School o rchitectural, Civil and Mechanical Engineering, Victoria University, Melbourne, ustralia M.R. Bambach Department

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

x 1 To help us here we invoke MacLaurin, 1 + t = 1 + t/2 + O(t 2 ) for small t, and write

x 1 To help us here we invoke MacLaurin, 1 + t = 1 + t/2 + O(t 2 ) for small t, and write On the Deormation o an Elastic Fiber We consider the case illustrated in Figure. The bold solid line is a iber in its reerence state. When we subject its two ends to the two orces, (, ) and (, ) the respective

More information

A finite deformation membrane based on inter-atomic potentials for single atomic layer films Application to the mechanics of carbon nanotubes

A finite deformation membrane based on inter-atomic potentials for single atomic layer films Application to the mechanics of carbon nanotubes A finite deformation membrane based on inter-atomic potentials for single atomic layer films Application to the mechanics of carbon nanotubes Marino Arroyo and Ted Belytschko Department of Mechanical Engineering

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding (1997) (Rev.1 1997) (Rev.1.1 Mar 1998 /Corr.1) (Rev. Sept 000) (Rev.3 eb 001) (Rev.4 Nov 001) (Rev.5 July 003) (Rev.6 July 004) (Rev.7 eb 006) (Corr.1 Oct 009) (Rev.8 May 010) (Rev.9 Apr 014) Evaluation

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

Survey of Wave Types and Characteristics

Survey of Wave Types and Characteristics Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Surve of Wave Tpes and Characteristics Xiuu Gao April 1 st, 2006 Abstract Mechanical waves are waves which propagate

More information

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents Mechanical Testing of Composites and their Constituents American Society for Testing and Materials (ASTM) Standards Tests done to determine intrinsic material properties such as modulus and strength for

More information

Nonlinear Mechanics of Monolayer Graphene Rui Huang

Nonlinear Mechanics of Monolayer Graphene Rui Huang Nonlinear Mechanics of Monolayer Graphene Rui Huang Center for Mechanics of Solids, Structures and Materials Department of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

More information

Strain and Stress Measurements with a Two-Dimensional Detector

Strain and Stress Measurements with a Two-Dimensional Detector Copyright ISSN (C) 97-, JCPDS-International Advances in X-ray Centre Analysis, or Volume Diraction 4 Data 999 5 Strain and Stress Measurements with a Two-Dimensional Detector Baoping Bob He and Kingsley

More information

Material properties and vibration isolation Technical information

Material properties and vibration isolation Technical information Material properties and vibration isolation Technical inormation General inormation on Sylomer Sylomer is a special PUR elastomer manuactured by Getzner, which eatures a cellular, compact orm and is used

More information

Parametric Instability and Snap-Through of Partially Fluid- Filled Cylindrical Shells

Parametric Instability and Snap-Through of Partially Fluid- Filled Cylindrical Shells Available online at www.sciencedirect.com Procedia Engineering 14 (011) 598 605 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Parametric Instability and Snap-Through

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/310/5753/1480/dc1 Supporting Online Material for Electrowetting in Carbon Nanotubes J. Y. Chen, A. Kutana, C. P. Collier,* K. P. Giapis* *To whom correspondence should

More information

Design Guidelines A Scandinavian Approach

Design Guidelines A Scandinavian Approach Design Guidelines A Scandinavian Approach Pro. Björn Täljsten Luleå University o Technology SWEDEN Presented by Tech. Lic Anders Carolin 1 Pro. B. Täljsten Departmento Civiland Mining Engineering Division

More information

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is:

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is: Problem 10.4 A prismatic bar with length L 6m and a circular cross section with diameter D 0.0 m is subjected to 0-kN compressive forces at its ends. The length and diameter of the deformed bar are measured

More information

Active Control and Dynamical Analysis of two Coupled Parametrically Excited Van Der Pol Oscillators

Active Control and Dynamical Analysis of two Coupled Parametrically Excited Van Der Pol Oscillators International Reereed Journal o Engineering and Science (IRJES) ISSN (Online) 39-83X, (Print) 39-8 Volume 6, Issue 7 (July 07), PP.08-0 Active Control and Dynamical Analysis o two Coupled Parametrically

More information

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3 The 14 th World Conerence on Earthquake Engineering COMPARISON OF FRP-RETROFITTING STRATEGIES IN CHINESE AND ITALIAN CODES J. W. DAI 1, Y.R. WANG 2, B. JIN 1, 3, D.F.ZU 4, Silvia Alessandri 5, Giorgio

More information

8.3 Design of Base Plate for Thickness

8.3 Design of Base Plate for Thickness 8.3 Design o Base Plate or Thickness 8.3.1 Design o base plate or thickness (Elastic Design) Upto this point, the chie concern has been about the concrete oundation, and methods o design have been proposed

More information

Fatigue verification of high loaded bolts of a rocket combustion chamber.

Fatigue verification of high loaded bolts of a rocket combustion chamber. Fatigue veriication o high loaded bolts o a rocket combustion chamber. Marcus Lehmann 1 & Dieter Hummel 1 1 Airbus Deence and Space, Munich Zusammenassung Rocket engines withstand intense thermal and structural

More information

UNCERTAINTY EVALUATION OF SINUSOIDAL FORCE MEASUREMENT

UNCERTAINTY EVALUATION OF SINUSOIDAL FORCE MEASUREMENT XXI IMEKO World Congress Measurement in Research and Industry August 30 eptember 4, 05, Prague, Czech Republic UNCERTAINTY EVALUATION OF INUOIDAL FORCE MEAUREMENT Christian chlegel, Gabriela Kiekenap,Rol

More information

Applicability of the Continuum-shell Theories to the Mechanics of Carbon Nanotubes

Applicability of the Continuum-shell Theories to the Mechanics of Carbon Nanotubes NASA/CR-2002-211460 ICASE Report No. 2002-7 Applicability of the Continuum-shell Theories to the Mechanics of Carbon Nanotubes V.M. Harik ICASE, Hampton, Virginia T.S. Gates and M.P. Nemeth NASA Langley

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:

More information

Internal thermal noise in the LIGO test masses: A direct approach

Internal thermal noise in the LIGO test masses: A direct approach PHYSICAL EVIEW D VOLUME 57, NUMBE 2 15 JANUAY 1998 Internal thermal noise in the LIGO test masses: A direct approach Yu. Levin Theoretical Astrophysics, Caliornia Institute o Technology, Pasadena, Caliornia

More information