ANTHROPOMETRY (İnsan Vücudunu Ölçme Bilimi)

Size: px
Start display at page:

Download "ANTHROPOMETRY (İnsan Vücudunu Ölçme Bilimi)"

Transcription

1 ANTHROPOMETRY (İnsan Vücudunu Ölçme Bilimi) Dr. Kurtuluş Erinç Akdoğan

2 INTRODUCTION Anthropometry is the major branch of anthropology (insan bilimi) that studies the physical measurements of the human body to determine differences in individuals and groups. A wide variety of physical measurements are required to describe and differentiate the characteristics of race, sex, age, and body type. In the past, the major emphasis of these studies has been evolutionary and historical. More recently Anthropometry is needed for technological developments, especially man-machine interfaces workspace design, cockpits, pressure suits, armor, and so on. Human movement analysis requires kinetic measures masses, moments of inertia, and their locations

3 Kinetic measurements Linear using mass Force = mass x acceleration F = MA Angular using moment of inertia Torque or moment of force = moment of inertia x angular acceleration T or M = I

4 Segment Dimensions The most basic body dimension is the length of the segments between each joint. Lengths vary with body build, sex, and racial origin. These segment proportions serve as a good approximation It is preferred to measure directly from the individual.

5

6 Density, Mass, and Inertial Properties Kinematic and kinetic analyses require data on mass distribution, mass centers, and moments of inertia Measured directly Cadaver Segment volume Segment density Measured indirectly Density via MRI

7 Whole-Body Density The human body consists of many types of tissue, each with a different density. Specific gravity weight of tissue/weight of water of same volume Cortical bone: 1.8 muscle tissue: 1.0 fat :1.0 Average density is a function of body build, called somatotype. d: body density c: ponderal index h: height (m) w: weight (kg) Calculate the whole-body density of an adult whose height is 1.78m and who weighs 77.3kg

8 Segment Densities Each body segment has a unique combination of bone, muscle, fat, and other tissue The density within a given segment is not uniform. Because of the higher proportion of bone, the density of distal segments is greater than that of proximal segments Individual segments increase their densities as the average body density increases.

9 Segment Mass and Center of Mass

10 The total mass M of the segment is: If the density d is assumed to be uniform over the segment, then

11 Calculate the coordinates of the center of mass of the foot and the thigh given the following coordinates: ankle (84.9, 11.0), metatarsal (101.1, 1.3), greater trochanter (7.1, 9.8), lateral femoral condyle (86.4, 54.9) The foot center of mass is 0.5 of the distance from the lateral malleolus (ankle) to the metatarsal marker. Thus, the center of mass of the foot is: The thigh center of mass is from the proximal end of the segment. Thus, the center of mass of the thigh is:

12 Calculate the coordinates of the center of mass of the thigh given the following coordinates: greater trochanter (7.1, 9.8), lateral femoral condyle (86.4, 54.9)

13 Y (7.1, 9.8) (length) 0.433(Y) center of mass 0.567(Y) 0.567(length) 54.9 (86.4, 54.9) (X) (X) X

14 Calculate the coordinates of the center of mass of the foot given the following coordinates: ankle (84.9, 11.0), metatarsal (101.1, 1.3),

15 Y (7.1, 9.8) (length) 0.4 (Y) center of mass 0.5 (Y) 0.5 (length) 1.3 (86.4, 54.9) (X) (X) X

16 Center of Mass of a Multisegment System step 1: determine the proportion of mass that each segment is of the entire multisegment system step : multiply each segmental proportion times the x coordinate of the center of mass of that segment step 3: multiply each segmental proportion times the y coordinate of the center of mass of that segment step 4: add each of the x products step 5: add each of the y products step 6: the sums from steps 4 and 5 are the x and y coordinates of the center of mass of the multisegment system

17 Example (not in book): Calculate the center of mass of the right lower extremity (foot, shank, and thigh) for frame 33 of the subject in Appendix A (use Table A.3(a-c)) - step 1: determine the proportion of mass that each segment is of the entire multisegment system mass of subject = 56.7kg Lower Extremity Mass mass of foot = (56.7kg) = 0.815kg = mass of shank =0.0465(56.7kg) =.63655kg = mass of thigh = 0.100(56.7kg) = 5.67kg = total mass of lower extremity = 9.187kg Segmental Proportions of Lower Extremity Mass foot proportion = 0.81/9.187 = shank proportion =.6355/9.187 = thigh proportion = 5.67/9.187 = total mass proportion = 9.187/9.187 = step : multiply each segmental proportion times the x coordinate of the center of mass of that segment - step 3: multiply each segmental proportion times the y coordinate of the center of mass of that segment - step 4: add each of the x products - step 5: add each of the y products - step 6: the sums from steps 4 and 5 are the x and y coordinates of the center of mass of the multisegment system

18 sample table Segment Proportion of total mass x value of center of mass x product y value of center of mass y product Segment 1 1 x 1 x 1 y 1 y 1 Segment x x y y Segment 3 3 x 3 x 3 y 3 y 3 Segment n n x n x n y n y n = 1.00 = x value of the center of mass * = y value of the center of mass * * Note that the calculated center of mass will be relative to the Cartesian coordinate system that was used for the center of masses used for the individual segments.

19 Segment Proportion of total mass x value of center of mass x product y value of center of mass y product Foot Shank Thigh = 1.0 = = 0.59

20 Mass Moment of Inertia What is inertia? According to Newton s first law of motion, inertia is an object s tendency to resist a change in velocity. The measure of an object s inertia is its mass. The more mass an object has the more inertia it has. F=ma, F = force, m = mass, a = acceleration What is moment of inertia? The angular counterpart to mass is moment of inertia. It is a quantity that indicates the resistance of an object to a change in angular motion. The magnitude of an object s moment of inertia is determined by its mass and the distribution of its mass with respect to its axis of rotation. T=Iα, T=torque, I=moment of inertia and α=angular acceleration

21 Moment of Inertia T=Iα, T=torque, I=moment of inertia and α=angular acceleration I of an object depends upon the point about which it rotates I is minimum for rotations about an object s center of mass I n i1 m r i i m r 1 1 m r m n-1 r n-1 m r n n

22 Hypothetical object made up of 5 point masses y vertical axis through center of mass horizontal axis through center of mass x 0.1m m 1 m m 3 m 4 m 5 0.1m 0.1m 0.1m 0.1m 0.1m x y m 1 = m = m 3 = m 4 = m 5 = 0.5 kg

23 Calculate the moment of inertia about y-y y vertical axis through center of mass horizontal axis through center of mass x 0.1m m 1 m m 3 m 4 m 5 0.1m 0.1m 0.1m 0.1m 0.1m x y I y-y 5 i1 mir i m1r 1 mr m3r 3 m4r 4 m5r 5 I y-y = (0.5kg)(0.1m) + (0.5kg)(0.m) + (0.5kg)(0.3m) + (0.5kg)(0.4m) + (0.5kg)(0.5m) = 0.75kgm

24 Calculate the moment of inertia about x-x y vertical axis through center of mass horizontal axis through center of mass x 0.1m m 1 m m 3 m 4 m 5 0.1m 0.1m 0.1m 0.1m 0.1m x y I x-x 5 i1 mir i m1r 1 mr m3r 3 m4r 4 m5r 5 I x-x = (0.5kg)(0.1m) + (0.5kg)(0.1m) + (0.5kg)(0.1m) + (0.5kg)(0.1m) + (0.5kg)(0.1m) = 0.05kgm

25 Calculate the moment of inertia about vertical axis through center of mass y vertical axis through center of mass horizontal axis through center of mass x 0.1m m 1 m m 3 m 4 m 5 0.1m 0.1m 0.1m 0.1m 0.1m x y I cg 5 i1 mir i m1r 1 mr m3r 3 m4r 4 m5r 5 I cg = (0.5kg)(0.m) + (0.5kg)(0.1m) + (0.5kg)(0.0m) + (0.5kg)(0.1m) + (0.5kg)(0.m) = 0.05kgm

26 Moment of Inertia of Segments of the Human Body Segments of body made up of different tissues that are not evenly distributed or of uniform shape Moment of inertia of body segments determined experimentally Moment of inertia of body segments unique to individual segments and axes of rotation Calculation of moment of inertial of a body segment is based on the segment s radius of gyration

27 Radius of Gyration Radius of gyration of a body segment is provided measured data Using radius of gyration, moment of inertia of an segment about a given axis rotation can be calculated. Radius of gyration denotes the segment s mass distribution about an axis of rotation and is the distance from the axis of rotation to a point at which the mass can be assumed to be concentrated without changing the inertial characteristics of the segment I 0 = the moment of inertia about the center of mass m = mass of object and ρ 0 = radius of gyration for rotation about Body Segment

28 Parallel Axis Theorem Moment of inertia can be calculated about any parallel axis, given the: moment of inertia about one axis, mass of the segment, and perpendicular distance between the parallel axes In vivo measures of the moment of inertia can only be taken about a joint center. The moment of inertia of a body segment about the axis at COM is body segment joint center

29 Parallel Axis Theorem Most body segments do not rotate about their mass center but rather about the joint at either end. The relationship between this moment of inertia and that about the center of mass is given by the parallel-axis theorem. x can be any distance in either direction from the center of mass as long as it lies along the same axis as I 0 was calculated on.

30 Radius of Gyration/Segment Length in meters (about a transverse axis) Segment Center of Gravity Proximal End Distal End Shank

31 Moment of inertia varies on the basis of axis of rotation: Proximal end Center of mass Distal end

32 Example: a) A prosthetic shank has a mass of 3kg and a center of mass at 0cm from the knee joint. The radius of gyration is 14.1cm. Calculate the moment of inertia about the knee joint. 4 cm 0 cm 6 cm I 0 about the center of mass of the shank = m 0 = 3kg(0.141meters) = 0.06kg meters Using the parallel axis theorem :I k = I 0 + mx = 0.06kg meters + 3kg (0.meters) = 0.18kg meters b) Calculate the moment of inertia for the prosthetic leg about the hip. Using the parallel axis theorem:i h = I 0 + mx = 0.06kg meters + 3kg (0.6meters) = 1.1kg meters Note that I h 0 I 0

33 Calculate the moment of inertial of shank about its center of gravity and proximal and distal ends Given: mass of shank = 3.6kg, length of shank = 0.4 meters Center of Gravity I cm = I o = m(ρ cm l) = 3.6kg[(0.30)(0.4m)] = 0.055kgm Proximal I prox = m(ρ prox l) = 3.6kg[(0.58)(0.4m)] = 0.161kgm Distal

34 Use of Anthropometric Tables and Kinematic Data

35 Calculation of Segment Masses and Centers of Mass

36 Calculation of Segment Masses and Centers of Mass

37 Calculation of Total-Body Center of Mass For an n-segment body system, the center of mass in the X direction is

38 Calculation of Total-Body Center of Mass

39 Calculate the total-body center of mass at a given frame 15. The time for one stride was 68 frames. Thus, the data from frame 15 become the data for the right lower limb and the right half of HAT, and the data one-half stride (34 frames) later become those for the left side of the body. All coordinates from frame 49 must now be shifted back in the x direction by a step length. An examination of the x coordinates of the heel during two successive periods of stance showed the stride length to be = cm. Therefore, the step length is 70.7 cm = m. Table shows the coordinates of the body segments for both left and right halves of the body for frame 15. The mass fractions for each segment are as follows: foot = , leg = , thigh = 0.10, 1/ HAT = The mass of HAT dominates the body center of mass, but the energy changes in the lower limbs will be seen to be dominant as far as walking is concerned

BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT

BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT Third Edition DAVID Α. WINTER University of Waterloo Waterloo, Ontario, Canada WILEY JOHN WILEY & SONS, INC. CONTENTS Preface to the Third Edition xv 1

More information

τ = F d Angular Kinetics Components of Torque (review from Systems FBD lecture Muscles Create Torques Torque is a Vector Work versus Torque

τ = F d Angular Kinetics Components of Torque (review from Systems FBD lecture Muscles Create Torques Torque is a Vector Work versus Torque Components of Torque (review from Systems FBD lecture Angular Kinetics Hamill & Knutzen (Ch 11) Hay (Ch. 6), Hay & Ried (Ch. 12), Kreighbaum & Barthels (Module I & J) or Hall (Ch. 13 & 14) axis of rotation

More information

Mechanical energy transfer by internal force during the swing phase of running

Mechanical energy transfer by internal force during the swing phase of running Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 772 777 9 th Conference of the International Sports Engineering Association (ISEA) Mechanical energy transfer by internal force

More information

Anthropometry Formulas

Anthropometry Formulas Anthropometry Formulas W. Rose KAAP47/67 Segment Dimensions FF = mmmm, dddd dddd = FF mm ττ = IIII, dddd dddd = ττ II Length of body segments is often obtainable by direct measurement. If not, the segment

More information

Angular Kinetics. Learning Objectives: Learning Objectives: Properties of Torques (review from Models and Anthropometry) T = F d

Angular Kinetics. Learning Objectives: Learning Objectives: Properties of Torques (review from Models and Anthropometry) T = F d Angular Kinetics Readings: Chapter 11 [course text] Hay, Chapter 6 [on reserve] Hall, Chapter 13 & 14 [on reserve] Kreighbaum & Barthels, Modules I & J [on reserve] 1 Learning Objectives: By the end of

More information

Biomechanical Modelling of Musculoskeletal Systems

Biomechanical Modelling of Musculoskeletal Systems Biomechanical Modelling of Musculoskeletal Systems Lecture 6 Presented by Phillip Tran AMME4981/9981 Semester 1, 2016 The University of Sydney Slide 1 The Musculoskeletal System The University of Sydney

More information

Models and Anthropometry

Models and Anthropometry Learning Objectives Models and Anthropometry Readings: some of Chapter 8 [in text] some of Chapter 11 [in text] By the end of this lecture, you should be able to: Describe common anthropometric measurements

More information

Lab #7 - Joint Kinetics and Internal Forces

Lab #7 - Joint Kinetics and Internal Forces Purpose: Lab #7 - Joint Kinetics and Internal Forces The objective of this lab is to understand how to calculate net joint forces (NJFs) and net joint moments (NJMs) from force data. Upon completion of

More information

Angular Motion Maximum Hand, Foot, or Equipment Linear Speed

Angular Motion Maximum Hand, Foot, or Equipment Linear Speed Motion Maximum Hand, Foot, or Equipment Linear Speed Biomechanical Model: Mo3on Maximum Hand, Foot, or Equipment Linear Speed Hand, Foot, or Equipment Linear Speed Sum of Joint Linear Speeds Principle

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics 9.1 The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics 9.1 The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination

More information

of Rigid Segments Global or Laboratory Coordinate System 36 } Research Methods in Biomechanics

of Rigid Segments Global or Laboratory Coordinate System 36 } Research Methods in Biomechanics 36 } Research Methods in Biomechanics Camera 5 Camera 6 Camera 4 Direction of motion Calibrated 3-D space Camera 1 Camera 3 Computer Camera 2 Figure 2.1 Typical multicamera setup for a 3-D kinematic analysis.

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

Section 6: 6: Kinematics Kinematics 6-1

Section 6: 6: Kinematics Kinematics 6-1 6-1 Section 6: Kinematics Biomechanics - angular kinematics Same as linear kinematics, but There is one vector along the moment arm. There is one vector perpendicular to the moment arm. MA F RMA F RD F

More information

Kinematics, Kinetics, Amputee Gait (part 1)

Kinematics, Kinetics, Amputee Gait (part 1) Kinematics, Kinetics, Amputee Gait (part 1) MCE 493/593 & ECE 492/592 Prosthesis Design and Control October 16, 2014 Antonie J. (Ton) van den Bogert Mechanical Engineering Cleveland State University 1

More information

Biomechanics+Exam+3+Review+

Biomechanics+Exam+3+Review+ Biomechanics+Exam+3+Review+ Chapter(13(+(Equilibrium(and(Human(Movement( Center(of(Gravity((CG)(or(Center(of(Mass( The point around which the mass and weight of a body are balanced in all direction or

More information

Multi-body power analysis of kicking motion based on a double pendulum

Multi-body power analysis of kicking motion based on a double pendulum Available online at wwwsciencedirectcom Procedia Engineering 34 (22 ) 28 223 9 th Conference of the International Sports Engineering Association (ISEA) Multi-body power analysis of kicking motion based

More information

Kinesiology 201 Solutions Kinematics

Kinesiology 201 Solutions Kinematics Kinesiology 201 Solutions Kinematics Tony Leyland School of Kinesiology Simon Fraser University 1. a) Vertical ocity = 10 sin20 = 3.42 m/s Horizontal ocity = 10 cos20 = 9.4 m/s B Vertical A-B (start to

More information

The Biomechanics Behind Kicking a Soccer Ball

The Biomechanics Behind Kicking a Soccer Ball VANIER COLLEGE The Biomechanics Behind Kicking a Soccer Ball The Energy Demands of the Body Raymond You Linear Algebra II Ivan T. Ivanov 5/19/2013 1 What is Inertia? Inertia is defined as an object s resistance

More information

Three-Dimensional Biomechanical Analysis of Human Movement

Three-Dimensional Biomechanical Analysis of Human Movement Three-Dimensional Biomechanical Analysis of Human Movement Anthropometric Measurements Motion Data Acquisition Force Platform Body Mass & Height Biomechanical Model Moments of Inertia and Locations of

More information

Chapter 3. Inertia. Force. Free Body Diagram. Net Force. Mass. quantity of matter composing a body represented by m. units are kg

Chapter 3. Inertia. Force. Free Body Diagram. Net Force. Mass. quantity of matter composing a body represented by m. units are kg Chapter 3 Mass quantity of matter composing a body represented by m Kinetic Concepts for Analyzing Human Motion units are kg Inertia tendency to resist change in state of motion proportional to mass has

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.1 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

Biomechanics Module Notes

Biomechanics Module Notes Biomechanics Module Notes Biomechanics: the study of mechanics as it relates to the functional and anatomical analysis of biological systems o Study of movements in both qualitative and quantitative Qualitative:

More information

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be 1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be equal to the initial mass of the starting rocket. Now

More information

Center of Mass of Human s Body Segments

Center of Mass of Human s Body Segments Mechanics and Mechanical Engineering Vol. 21, No. 3 2017 485 497 c Lodz University of Technology Center of Mass of Human s Body Segments Melvin Adolphe Joseph Clerval Zbyszko Kirchof Robin Lacombe Delpech

More information

FORCES AND ENERGY CHANGES IN THE LEG DURING WALKING

FORCES AND ENERGY CHANGES IN THE LEG DURING WALKING FORCES AND ENERGY CHANGES IN THE LEG DURING WALKING HERBERT ELFTMAN From the Department of Zoology, Columbia University, New York City Received for publication October 15, 1938 The study of locomotion

More information

HPER K530 Mechanical Analysis of Human Performance Fall, 2003 MID-TERM

HPER K530 Mechanical Analysis of Human Performance Fall, 2003 MID-TERM HPER K530 Mechanical Analysis of Human Performance Fall, 2003 Dapena MID-TERM Equations: S = S 0 + v t S = S 0 + v 0 t + 1/2 a t 2 v = v 0 + a t v 2 = v 2 0 + 2 a (S-S 0 ) e = h b /h d F CP = m v 2 / r

More information

Notes on Torque. We ve seen that if we define torque as rfsinθ, and the N 2. i i

Notes on Torque. We ve seen that if we define torque as rfsinθ, and the N 2. i i Notes on Torque We ve seen that if we define torque as rfsinθ, and the moment of inertia as N, we end up with an equation mr i= 1 that looks just like Newton s Second Law There is a crucial difference,

More information

Physics 1A Lecture 10B

Physics 1A Lecture 10B Physics 1A Lecture 10B "Sometimes the world puts a spin on life. When our equilibrium returns to us, we understand more because we've seen the whole picture. --Davis Barton Cross Products Another way to

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 12 Last Lecture Newton s Law of gravitation F grav = GMm R 2 G = 6.67"10 #11 Nm 2 /kg 2 Kepler s Laws of Planetary motion 1. Ellipses with sun at focus 2. Sweep

More information

Chapter 15+ Revisit Oscillations and Simple Harmonic Motion

Chapter 15+ Revisit Oscillations and Simple Harmonic Motion Chapter 15+ Revisit Oscillations and Simple Harmonic Motion Revisit: Oscillations Simple harmonic motion To-Do: Pendulum oscillations Derive the parallel axis theorem for moments of inertia and apply it

More information

KINESIOLOGY PT617 HOMEWORK Mechanical Principles : Free Body Diagrams and Equilibrium

KINESIOLOGY PT617 HOMEWORK Mechanical Principles : Free Body Diagrams and Equilibrium KINESIOLOGY PT617 HOMEWORK Mechanical Principles : Free Body Diagrams and Equilibrium 1) A man is standing still on his right leg, as shown in the figure. The person experiences only a normal reaction

More information

Scalar product Work Kinetic energy Work energy theorem Potential energy Conservation of energy Power Collisions

Scalar product Work Kinetic energy Work energy theorem Potential energy Conservation of energy Power Collisions BLOOM PUBLIC SCHOOL Vasant Kunj, New Delhi Lesson Plan Class: XI Subject: Physics Month: August No of Periods: 11 Chapter No. 6: Work, energy and power TTT: 5 WT: 6 Chapter : Work, energy and power Scalar

More information

Sub:Strength of Material (22306)

Sub:Strength of Material (22306) Sub:Strength of Material (22306) UNIT 1. Moment of Inertia 1.1 Concept of Moment of Inertia (Ml). Effect of MI in case of beam and column. 1.2 MI about axes passing through centroid. Parallel and Perpendicular

More information

Contribution of Inertia on Venous Flow in the Lower Limb During Stationary Gait

Contribution of Inertia on Venous Flow in the Lower Limb During Stationary Gait ORIGINAL RESEARCH Venous Flow in the Lower Limb 115 JOURNAL OF APPLIED BIOMECHANICS, 2004, 20, 115-128 2004 Human Kinetics Publishers, Inc. Contribution of Inertia on Venous Flow in the Lower Limb During

More information

Rigid bodies - general theory

Rigid bodies - general theory Rigid bodies - general theory Kinetic Energy: based on FW-26 Consider a system on N particles with all their relative separations fixed: it has 3 translational and 3 rotational degrees of freedom. Motion

More information

Part 1 of 1. (useful for homework)

Part 1 of 1. (useful for homework) Chapter 9 Part 1 of 1 Example Problems & Solutions Example Problems & Solutions (useful for homework) 1 1. You are installing a spark plug in your car, and the manual specifies that it be tightened to

More information

PART I ORTHOPAEDIC BIOMATERIALS AND THEIR PROPERTIES

PART I ORTHOPAEDIC BIOMATERIALS AND THEIR PROPERTIES PT I OTHOPEDIC BIOMTEILS ND THEI POPETIES cetabular Cup: Polyethylene (polymer) emoral Head: Ceramic Bone Cement: Polymer emoral Stem: Metal emur: Composite emur + Stem: Composite Just as there are three

More information

Lecture 3. Rotational motion and Oscillation 06 September 2018

Lecture 3. Rotational motion and Oscillation 06 September 2018 Lecture 3. Rotational motion and Oscillation 06 September 2018 Wannapong Triampo, Ph.D. Angular Position, Velocity and Acceleration: Life Science applications Recall last t ime. Rigid Body - An object

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

WEEK 1 Dynamics of Machinery

WEEK 1 Dynamics of Machinery WEEK 1 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J. Uicker, G.R.Pennock ve J.E. Shigley, 2003 Makine Dinamiği, Prof. Dr. Eres SÖYLEMEZ, 2013 Uygulamalı Makine Dinamiği, Jeremy

More information

Chapter 8 Rotational Motion and Dynamics Reading Notes

Chapter 8 Rotational Motion and Dynamics Reading Notes Name: Chapter 8 Rotational Motion and Dynamics Reading Notes Section 8-1: Angular quantities A circle can be split into pieces called degrees. There are 360 degrees in a circle. A circle can be split into

More information

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with:

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: TOPIC : Rotational motion Date : Marks : 120 mks Time : ½ hr 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: a) zero velocity b) constantt velocity c)

More information

CHAPTER 4: Linear motion and angular motion. Practice questions - text book pages 91 to 95 QUESTIONS AND ANSWERS. Answers

CHAPTER 4: Linear motion and angular motion. Practice questions - text book pages 91 to 95 QUESTIONS AND ANSWERS. Answers CHAPTER 4: Linear motion and angular motion Practice questions - text book pages 91 to 95 1) Which of the following pairs of quantities is not a vector/scalar pair? a. /mass. b. reaction force/centre of

More information

The main force acting on the body is the gravitational force!

The main force acting on the body is the gravitational force! The main force acting on the body is the gravitational force! (W= weight!) W = m g Stability of the body against the gravitational force is maintained by the bone structure of the skeleton! Gravitational

More information

Moment of Inertia & Newton s Laws for Translation & Rotation

Moment of Inertia & Newton s Laws for Translation & Rotation Moment of Inertia & Newton s Laws for Translation & Rotation In this training set, you will apply Newton s 2 nd Law for rotational motion: Στ = Σr i F i = Iα I is the moment of inertia of an object: I

More information

Resistance to Acceleration. More regarding moment of inertia. More regarding Moment of Inertia. Applications: Applications:

Resistance to Acceleration. More regarding moment of inertia. More regarding Moment of Inertia. Applications: Applications: Angular Kinetics of Human Movement Angular analogues to of Newton s Laws of Motion 1. An rotating object will continue to rotate unless acted upon by an external torque 2. An external torque will cause

More information

Illustrative exercises for the lectures

Illustrative exercises for the lectures Biomechanics, LTH, 2013 Biomechanics Illustrative exercises for the lectures Ingrid Svensson 2013 1 1. To practise the use of free-body diagram, consider the problem of analyzing the stress in man s back

More information

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8 AP Physics Rotational Motion Introduction: Which moves with greater speed on a merry-go-round - a horse near the center or one near the outside? Your answer probably depends on whether you are considering

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

MOI (SEM. II) EXAMINATION.

MOI (SEM. II) EXAMINATION. Problems Based On Centroid And MOI (SEM. II) EXAMINATION. 2006-07 1- Find the centroid of a uniform wire bent in form of a quadrant of the arc of a circle of radius R. 2- State the parallel axis theorem.

More information

Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb ENGINEERING MECHANICS

Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb ENGINEERING MECHANICS 3 Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Question Paper Consists

More information

Lecture 6 Physics 106 Spring 2006

Lecture 6 Physics 106 Spring 2006 Lecture 6 Physics 106 Spring 2006 Angular Momentum Rolling Angular Momentum: Definition: Angular Momentum for rotation System of particles: Torque: l = r m v sinφ l = I ω [kg m 2 /s] http://web.njit.edu/~sirenko/

More information

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 9: Vector Cross Product Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Examples of the rotation of a rigid object about a fixed axis Force/torque

More information

General Theoretical Concepts Related to Multibody Dynamics

General Theoretical Concepts Related to Multibody Dynamics General Theoretical Concepts Related to Multibody Dynamics Before Getting Started Material draws on two main sources Ed Haug s book, available online: http://sbel.wisc.edu/courses/me751/2010/bookhaugpointers.htm

More information

Physics 201 Quiz 1. Jan 14, 2013

Physics 201 Quiz 1. Jan 14, 2013 Physics 201 Quiz 1 Jan 14, 2013 1. A VW Beetle goes from 0 to 60.0 mph with an acceleration of 2.35 m/s 2. (a) How much time does it take for the Beetle to reach this speed? (b) A top-fuel dragster can

More information

2010 F=ma Solutions. that is

2010 F=ma Solutions. that is 2010 F=ma Solutions 1. The slope of a position vs time graph gives the velocity of the object So you can see that the position from B to D gives the steepest slope, so the speed is the greatest in that

More information

Newton s Laws of Motion and Gravitation

Newton s Laws of Motion and Gravitation Newton s Laws of Motion and Gravitation Introduction: In Newton s first law we have discussed the equilibrium condition for a particle and seen that when the resultant force acting on the particle is zero,

More information

Solutions to Exam #1

Solutions to Exam #1 SBCC 2017Summer2 P 101 Solutions to Exam 01 2017Jul11A Page 1 of 9 Solutions to Exam #1 1. Which of the following natural sciences most directly involves and applies physics? a) Botany (plant biology)

More information

UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS

UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS APPENDIX B UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS All units used are SI (Système International d Unités). The system is based on seven well-defined base units

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity,

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

DEVELOPMENT OF JUMP ASSIST SYSTEM USING PNEUMATIC RUBBER MUSCLE

DEVELOPMENT OF JUMP ASSIST SYSTEM USING PNEUMATIC RUBBER MUSCLE DEVELOPMENT OF JUMP ASSIST SYSTEM USING PNEUMATIC RUBBER MUSCLE Kotaro TADANO*, Hiroshi ARAYA**, Kenji KAWASHIMA*, Chongo YOUN *, Toshiharu KAGAWA* * Precision and Intelligence Laboratory, Tokyo Institute

More information

Chapter 8. Rotational Kinematics

Chapter 8. Rotational Kinematics Chapter 8 Rotational Kinematics 8.3 The Equations of Rotational Kinematics 8.4 Angular Variables and Tangential Variables The relationship between the (tangential) arc length, s, at some radius, r, and

More information

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la The Language of Physics Angular displacement The angle that a body rotates through while in rotational motion (p. 241). Angular velocity The change in the angular displacement of a rotating body about

More information

ME 176 Final Exam, Fall 1997

ME 176 Final Exam, Fall 1997 Tuesday, December 16, 5:00 8:00 PM, 1997. Answer all questions for a maximum of 100 points. Please write all answers in the space provided. If you need additional space, write on the back sides. Indicate

More information

BIODYNAMICS: A LAGRANGIAN APPROACH

BIODYNAMICS: A LAGRANGIAN APPROACH Source: STANDARD HANDBOOK OF BIOMEDICAL ENGINEERING AND DESIGN CHAPTER 7 BIODYNAMICS: A LAGRANGIAN APPROACH Donald R. Peterson Biodynamics Laboratory at the Ergonomic Technology Center, University of Connecticut

More information

( )( ) ( )( ) Fall 2017 PHYS 131 Week 9 Recitation: Chapter 9: 5, 10, 12, 13, 31, 34

( )( ) ( )( ) Fall 2017 PHYS 131 Week 9 Recitation: Chapter 9: 5, 10, 12, 13, 31, 34 Fall 07 PHYS 3 Chapter 9: 5, 0,, 3, 3, 34 5. ssm The drawing shows a jet engine suspended beneath the wing of an airplane. The weight W of the engine is 0 00 N and acts as shown in the drawing. In flight

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy 10-1 Angular Position, Velocity, and Acceleration 10-1 Angular Position, Velocity, and Acceleration Degrees and revolutions: 10-1 Angular Position, Velocity,

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Euler-Lagrange formulation) Dimitar Dimitrov Örebro University June 16, 2012 Main points covered Euler-Lagrange formulation manipulator inertia matrix

More information

b) 2/3 MR 2 c) 3/4MR 2 d) 2/5MR 2

b) 2/3 MR 2 c) 3/4MR 2 d) 2/5MR 2 Rotational Motion 1) The diameter of a flywheel increases by 1%. What will be percentage increase in moment of inertia about axis of symmetry a) 2% b) 4% c) 1% d) 0.5% 2) Two rings of the same radius and

More information

III. Work and Energy

III. Work and Energy Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

More information

Chapter 9 TORQUE & Rotational Kinematics

Chapter 9 TORQUE & Rotational Kinematics Chapter 9 TORQUE & Rotational Kinematics This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case. This car is in dynamic equilibrium

More information

2A/2B BIOMECHANICS 2 nd ed.

2A/2B BIOMECHANICS 2 nd ed. 2A/2B BIOMECHANICS 2 nd ed. www.flickr.com/photos/keithallison/4062960920/ 1 CONTENT Introduction to Biomechanics What is it? Benefits of Biomechanics Types of motion in Physical Activity Linear Angular

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

ANGULAR KINETICS (Part 1 Statics) Readings: McGinnis (2005), Chapter 5.

ANGULAR KINETICS (Part 1 Statics) Readings: McGinnis (2005), Chapter 5. NGUL KINTICS (Part 1 Statics) eadings: McGinnis (2005), Chapter 5. 1 Moment of Force or Torque: What causes a change in the state of linear motion of an object? Net force ( F = ma) What causes a change

More information

MODELING SINGLE LINK MOTION AND MUSCLE BEHAVIOR WITH A MODIFIED PENDULUM EQUATION

MODELING SINGLE LINK MOTION AND MUSCLE BEHAVIOR WITH A MODIFIED PENDULUM EQUATION MODELING SINGLE LINK MOTION AND MUSCLE BEHAVIOR WITH A MODIFIED PENDULUM EQUATION By ALLISON SUTHERLIN A SENIOR RESEARCH PAPER PRESENTED TO THE DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE OF STETSON

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

SOME ASPECTS OF HEEL STRIKE IMPACT DYNAMICS IN THE STABILITY OF BIPEDAL LOCOMOTION

SOME ASPECTS OF HEEL STRIKE IMPACT DYNAMICS IN THE STABILITY OF BIPEDAL LOCOMOTION SOME ASPECTS OF HEEL STRIKE IMPACT DYNAMICS IN THE STABILITY OF BIPEDAL LOCOMOTION Javier Ros Department of Mechanical Engineering Public University of Navarre Pamplona, 31006, Navarre, Spain E-mail: jros@unavarra.es

More information

WHF009. Moment of Inertia and Blade Energy Calculations

WHF009. Moment of Inertia and Blade Energy Calculations WHF009 Moment of Inertia and Blade Energy Calculations www.worldhovercraftfederation.org World Hovercraft Federation 02 January 2013 Whilst every effort is made to ensure the accuracy of the information

More information

Abstract. Final Degree Project - Olga Pätkau

Abstract. Final Degree Project - Olga Pätkau Abstract I Abstract In this thesis, two different control strategies are applied to the forward dynamic simulation of multibody systems in order to track a given reference motion. For this purpose, two

More information

LABORATORY 11. Kinetics. Objectives. Background. Equipment

LABORATORY 11. Kinetics. Objectives. Background. Equipment LABORATORY 11 Kinetics Objectives 1. State Newton's laws as they apply to both linear and angular motion. 2. Explain the cause and effect relationship between the forces responsible for linear motion and

More information

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. 007 The McGraw-Hill Companies, nc. All rights reserved. Eighth E CHAPTER 9 VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 24: Ch.17, Sec.1-3

CEE 271: Applied Mechanics II, Dynamics Lecture 24: Ch.17, Sec.1-3 1 / 38 CEE 271: Applied Mechanics II, Dynamics Lecture 24: Ch.17, Sec.1-3 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, Nov. 13, 2012 2 / 38 MOMENT OF

More information

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Effects of Hip and Ankle Moments on Running Stability: Simulation of a Simplified Model

Effects of Hip and Ankle Moments on Running Stability: Simulation of a Simplified Model Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Fall 214 Effects of Hip and Ankle Moments on Running Stability: Simulation of a Simplified Model Rubin C. Cholera Purdue University

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4 1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium Chapter 8 Static Equilibrium... 8. Introduction Static Equilibrium... 8. Lever Law... 3 Example 8. Lever Law... 5 8.3 Generalized Lever Law... 6 8.4 Worked Examples... 8 Example

More information