COMPRESSED AND PENALIZED LINEAR

Size: px
Start display at page:

Download "COMPRESSED AND PENALIZED LINEAR"

Transcription

1 COMPRESSED AND PENALIZED LINEAR REGRESSION Daniel J. McDonald Indiana University, Bloomington mypage.iu.edu/ dajmcdon 2 June

2 OBLIGATORY DATA IS BIG SLIDE Modern statistical applications genomics, neural image analysis, text analysis, weather prediction have large numbers of covariates p Also frequently have lots of observations n. Need algorithms which can handle these kinds of data sets, with good statistical properties 2

3 LESSON OF THE TALK Many statistical methods use (perhaps implicitly) a singular value decomposition (SVD) to solve an optimization problem. The SVD is computationally expensive. We want to understand the statistical properties of some approximations which speed up computation and save storage. Spoiler: sometimes approximations actually improve the statistical properties 3

4 CORE TECHNIQUES Suppose we have a matrix X R n p and vector Y R n LEAST SQUARES: l 2 REGULARIZATION: β = argmin Xβ Y 2 2 β β(λ) = argmin Xβ Y λ β 2 2 β 4

5 CORE TECHNIQUES If X fits into RAM, there exist excellent algorithms in LAPACK that are Double precision Very stable cubic complexity, O(np 2 + p 3 ), with small constants require extensive random access to matrix There is a lot of interest in finding and analyzing techniques that extend these approaches to large(r) problems 5

6 OUT-OF-CORE TECHNIQUES If X is too large to manipulate in RAM, there are other approaches (Stochastic) gradient descent Conjugate gradient Rank-one QR updates Krylov subspace methods 6

7 OUT-OF-CORE TECHNIQUES Many techniques focus on randomized compression This is sometimes known as sketching or preconditioning Rokhlin, Tygert, (2008) A fast randomized algorithm for overdetermined linear least-squares regression. Drineas, Mahoney, et al., (2011) Faster least squares approximation. Woodruff, (2014) Sketching as a Tool for Numerical Linear Algebra. Wang, Lee, Mahdavi, Kolar, Srebro, (2016) Sketching meets random projection in the dual. Ma, Mahoney, and Yu, (2015), A statistical perspective on algorithmic leveraging. Pilanci and Wainwright, ( ). Multiple papers. Others. 7

8 COMPRESSION BASIC IDEA: Choose some matrix Q R q n. Use QX (and) QY instead in the optimization. Finding QX for arbitrary Q and X takes O(qnp) computations. This can be expensive. To get this approach to work, we need some structure on Q 8

9 THE Q MATRIX Gaussian: Well behaved distribution and eas(ier) theory. Dense matrix Fast Johnson-Lindenstrauss Methods Randomized Hadamard (or Fourier) transformation: Allows for O(np log(p)) computations. Q = πτ for π a permutation of I and τ = [I q 0]: QX means read q (random) rows Sparse Bernoulli: i.i.d. Q ij 1 with probability 1/(2s) 0 with probability 1 1/s 1 with probability 1/(2s) This means QX takes O ( qnp) s computations on average. 9

10 TYPICAL RESULTS The general philosophy: Find an approximation algorithm that is as close as possible to the solution of the original problem. For OLS, typical results would be to produce an β such that X β Y 2 (1 + ɛ) Xβ Y 2 2 2, X( β β ) 2 ɛ Xβ 2 2 2, β 2 β ɛ β 2 2 2, Here, β should be easier to compute than β = argmin Xβ Y 2 2 β 10

11 COLLABORATOR & GRANT SUPPORT Collaborator: Darren Homrighausen Department of Statistics Southern Methodist University Grant Support: NSF, Institute for New Economic Thinking 11

12 An alternate perspective

13 Form a loss function l : Θ Θ R + RISK The quality of an estimator is given by its risk [ ] R( θ) = E l( θ, θ) We could use l 2 estimation risk: R( θ) = E θ θ or excess l 2 prediction risk R( θ) = E Y X θ 2 = E Y Xθ + Xθ X θ 2 constant + E X(θ θ)

14 RISK DECOMPOSITION For an approximation θ of θ, E θ θ 2 = E θ θ + θ E θ + E θ θ EApprox. error 2 + Variance + Bias 2 Previous analyses focus only on the approximation error (with expectation over the algorithm, not the data). 13

15 BIAS-VARIANCE TRADEOFF MSE Var Bias 2 model complexity Typical result compares to the zero-bias estimator which is assumed to have small variance. We examine E θ θ 2 where the expectation is over everything 2 random. Closest similar analysis is Ma, Mahoney, and Yu (JMLR, 2015). 14

16 COMPRESSED REGRESSION Let Q R q n Call the fully compressed least squares estimator β F C = argmin Q(Xβ Y ) 2 2 β A common way to solve least squares problems that are: Very large or Poorly conditioned The numerical/theoretical properties generally depend on Q, q, X 15

17 1. Full compression: FAMILY OF 4 β F C = argmin Q(Xβ Y ) 2 2 β 2. Partial compression: 1 = argmin QY QXβ 2 2 2Y Q QXβ β = (X Q QX) 1 X Q QY β P C = argmin Y QXβ 2 2 2Y Xβ β = (X Q QX) 1 X Y 1 Also called "Hessian Sketching". 16

18 Write: B = [ β F C β P C ] W = XB 3. Linear combination compression: α lin = argmin W α Y 2 2 α β lin = B α lin 4. Convex combination compression: α con = argmin W α Y α α=1 WE ALSO COMBINE THESE β con = B α con These are simple to calculate given FC and PC. 17

19 WHY THESE? Turns out that FC is (approximately) unbiased, and therefore worse than OLS (has high variance) On the other hand, PC is biased and empirics demonstrate low variance Combination should give better statistical properties We do everything with an l 2 penalty 18

20 Evidence from simulations

21 SIMULATION SETUP Draw X i MVN(0, (1 ρ)i p + ρ11 ) We use ρ = {0.2, 0.8}. Draw β N(0, τ 2 I p ) Draw Y i = X i β + ɛ i with ɛ i N(0, σ 2 ). 19

22 BAYES ESTIMATOR For this model, the optimal estimator (in MSE) is β B = (X X + λ I p ) 1 X Y In particular, with λ = σ2 nτ 2 This is the posterior mode of the Bayes estimator under conjugate normal prior It is also the ridge regression estimator for a particular λ 20

23 GOLDILOCKS With p < n 1 If λ is too big, we will tend to shrink all coefficients to 0. This problem is too hard. 2 If λ is too small, OLS will be very close to the optimal estimator. This problem is too easy. 3 Need τ 2, σ 2 just right. Take τ 2 = π/2. This implies E[ β i ] = 1 (convenient) Take n = Big but computable. Take σ = 50 log(λ ) 1.14 (reasonable) Take p {50, 100, 250, 500} 21

24 ρ = 0.8, p = 50, q/n = log10(estimation risk) log(λ) convex linear FC PC ols bayes 22

25 ρ = 0.2, p = 500, q/n = log10(estimation risk) log(λ) convex linear FC PC ols bayes 23

26 1.00 q: 500 q: 1000 q: % best method rho: 0.2 rho: p convex linear FC PC ols ridge 24

27 SECOND VERSE... In that case, ridge was optimal. We did it again with β i 1. 25

28 ρ = 0.8, p = 50, q/n = log10(estimation risk) log(λ) convex linear FC PC ols ridge 26

29 ρ = 0.2, p = 500, q/n = log10(estimation risk) log(λ) convex linear FC PC ols ridge 27

30 1.00 q: 500 q: 1000 q: % best method rho: 0.2 rho: p convex linear FC PC ols ridge 28

31 SELECTING TUNING PARAMETERS We use GCV with the degrees of freedom: X β(λ) Y GCV(λ) = (1 df/n) 2 df is easy for full or partial compression. For the other cases, we do a dumb approximation: weighted average using α. Easy to calculate for a range of λ without extra computations. Also calculate the divergence to derive Stein s Unbiased Risk Estimate. After tedious algebra, it had odd behavior in practice (can be huge, or negative!?!)

32 λgcv λtest log(testgcv testmin) compression convex linear FC PC 0.0 p convex linear FC PC n = 5000, p = 50, ρ = 0.8, β N(0, π/2) 30

33 Theoretical results (sketch)

34 STANDARD RIDGE RESULTS Theorem ( bias 2 β ) ridge (λ) X = λ 2 β V (D 2 + λi p ) 2 V β. ( tr V[ β ) p ridge (λ) X] = σ 2 d 2 i (d 2 i=1 i +. λ)2 31

35 WHAT S THE TRICK? Similar results are hard for compressed regression. All the estimators depend (at least) on We derived properties of Q Q (X Q QX + λi p ) 1 [ ] s E q Q Q = I n [ ( )] s V vec q Q Q = (s 3) + diag(vec (I n )) + 1 q q I n q K nn So the technique is to do a Taylor expansion around s q Q Q = I n. 32

36 MAIN RESULT Theorem bias 2 [ βf C X] = λ 2 β V (D2 + λi p) 2 V β + o p(1) p tr(v[ βf C X]) = σ 2 d 2 i (d 2 + op(1) i + λ)2 i=1 + (s 3) + q + β M (I H) 2 Mβ q tr ( diag(vec (I n))m M (I H)Mβ β M (I H) ) tr(mm ) + 1 q tr ( (I H)Mβ β M (I H)M M ). Note: M = (X X + λi p ) 1 X and H = XM (hat matrix for ridge regression) 33

37 Applications

38 RNA-SEQ short-read RNA sequence data using a (Poisson) linear model to predict read counts based on the surrounding nucleotides 8 different tissues data is publicly available, preprocessing already done 34

39 RESULTS Test error averaged over 10 replications. On each replication, tuning parameters were chosen with GCV. At the best tuning parameter, the test error was computed and then these were averaged. For each dataset, we randomly chose 75% of the data as training on each replication. 35

40 b1 b2 b3 g1 g2 w1 w2 w log(method error ols error) q: convex linear FC PC ridge 36

41 TAKE-AWAY MESSAGE q = results in data reductions between 74% and 93% q = gives reductions between 48% and 84% ridge and ordinary least squares give equivalent test set performance (differing by less than.001%) This is an easy problem. Full compression is the worst. Skip galaxies 37

42 C URRENT APPLICATION This image and the next are from the Sloan Digital Sky Survey 38

43 SDSS Repeatedly photograph regions of the sky Collect information on piles of objects Around 200 million galaxy spectra at the moment Each spectra contains around 5000 wavelengths Want to predict the redshift from the spectra 39

44 A FEW GALAXIES flux λ(a ) 40

45 SAME GALAXIES AFTER SMOOTHING 5 4 flux λ(a ) 41

46 5000 REDSHIFTS redshift 42

47 q: 1000 q: log(method error ols error) convex linear FC PC ridge 43

48 Conclusions

49 CONCLUSIONS Lots of people are looking at approximations to standard statistical methods (OLS, PCA, etc.) They characterize the approximation error We have been looking at whether we can actually benefit from the approximation Today looked at compressed regression 44

50 ONGOING AND FUTURE WORK We want to generalize our results here to other penalties Also generalized linear models We re also looking at how compression interacts with PCA Combine compression and random projection Connections to sufficient dimension reduction? Iterative versions? 45

Approximate Principal Components Analysis of Large Data Sets

Approximate Principal Components Analysis of Large Data Sets Approximate Principal Components Analysis of Large Data Sets Daniel J. McDonald Department of Statistics Indiana University mypage.iu.edu/ dajmcdon April 27, 2016 Approximation-Regularization for Analysis

More information

Sketched Ridge Regression:

Sketched Ridge Regression: Sketched Ridge Regression: Optimization and Statistical Perspectives Shusen Wang UC Berkeley Alex Gittens RPI Michael Mahoney UC Berkeley Overview Ridge Regression min w f w = 1 n Xw y + γ w Over-determined:

More information

Introduction The framework Bias and variance Approximate computation of leverage Empirical evaluation Discussion of sampling approach in big data

Introduction The framework Bias and variance Approximate computation of leverage Empirical evaluation Discussion of sampling approach in big data Discussion of sampling approach in big data Big data discussion group at MSCS of UIC Outline 1 Introduction 2 The framework 3 Bias and variance 4 Approximate computation of leverage 5 Empirical evaluation

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION SEAN GERRISH AND CHONG WANG 1. WAYS OF ORGANIZING MODELS In probabilistic modeling, there are several ways of organizing models:

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

Approximate Principal Components Analysis of Large Data Sets

Approximate Principal Components Analysis of Large Data Sets Approximate Principal Components Analysis of Large Data Sets Daniel J. McDonald Department of Statistics Indiana University mypage.iu.edu/ dajmcdon October 28, 2015 Motivation OBLIGATORY DATA IS BIG SLIDE

More information

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss arxiv:1811.04545v1 [stat.co] 12 Nov 2018 Cheng Wang School of Mathematical Sciences, Shanghai Jiao

More information

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Jonathan Taylor - p. 1/15 Today s class Bias-Variance tradeoff. Penalized regression. Cross-validation. - p. 2/15 Bias-variance

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

A fast randomized algorithm for overdetermined linear least-squares regression

A fast randomized algorithm for overdetermined linear least-squares regression A fast randomized algorithm for overdetermined linear least-squares regression Vladimir Rokhlin and Mark Tygert Technical Report YALEU/DCS/TR-1403 April 28, 2008 Abstract We introduce a randomized algorithm

More information

Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares

Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares Rong Zhu Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China. rongzhu@amss.ac.cn Abstract

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation Patrick Breheny February 8 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/27 Introduction Basic idea Standardization Large-scale testing is, of course, a big area and we could keep talking

More information

DATA MINING AND MACHINE LEARNING. Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Linear models for regression Regularized

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Sketching as a Tool for Numerical Linear Algebra

Sketching as a Tool for Numerical Linear Algebra Sketching as a Tool for Numerical Linear Algebra (Part 2) David P. Woodruff presented by Sepehr Assadi o(n) Big Data Reading Group University of Pennsylvania February, 2015 Sepehr Assadi (Penn) Sketching

More information

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for

More information

Degrees of Freedom in Regression Ensembles

Degrees of Freedom in Regression Ensembles Degrees of Freedom in Regression Ensembles Henry WJ Reeve Gavin Brown University of Manchester - School of Computer Science Kilburn Building, University of Manchester, Oxford Rd, Manchester M13 9PL Abstract.

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

arxiv: v1 [stat.me] 23 Jun 2013

arxiv: v1 [stat.me] 23 Jun 2013 A Statistical Perspective on Algorithmic Leveraging Ping Ma Michael W. Mahoney Bin Yu arxiv:1306.5362v1 [stat.me] 23 Jun 2013 Abstract One popular method for dealing with large-scale data sets is sampling.

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

CS 229r: Algorithms for Big Data Fall Lecture 17 10/28

CS 229r: Algorithms for Big Data Fall Lecture 17 10/28 CS 229r: Algorithms for Big Data Fall 2015 Prof. Jelani Nelson Lecture 17 10/28 Scribe: Morris Yau 1 Overview In the last lecture we defined subspace embeddings a subspace embedding is a linear transformation

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Stochastic Gradient Descent. CS 584: Big Data Analytics

Stochastic Gradient Descent. CS 584: Big Data Analytics Stochastic Gradient Descent CS 584: Big Data Analytics Gradient Descent Recap Simplest and extremely popular Main Idea: take a step proportional to the negative of the gradient Easy to implement Each iteration

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017 CPSC 340: Machine Learning and Data Mining More PCA Fall 2017 Admin Assignment 4: Due Friday of next week. No class Monday due to holiday. There will be tutorials next week on MAP/PCA (except Monday).

More information

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that Linear Regression For (X, Y ) a pair of random variables with values in R p R we assume that E(Y X) = β 0 + with β R p+1. p X j β j = (1, X T )β j=1 This model of the conditional expectation is linear

More information

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning)

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Linear Regression Regression Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Example: Height, Gender, Weight Shoe Size Audio features

More information

Functional SVD for Big Data

Functional SVD for Big Data Functional SVD for Big Data Pan Chao April 23, 2014 Pan Chao Functional SVD for Big Data April 23, 2014 1 / 24 Outline 1 One-Way Functional SVD a) Interpretation b) Robustness c) CV/GCV 2 Two-Way Problem

More information

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning)

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Linear Regression Regression Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Example: Height, Gender, Weight Shoe Size Audio features

More information

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning Lecture 3: More on regularization. Bayesian vs maximum likelihood learning L2 and L1 regularization for linear estimators A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Bias and variance (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 49 Our plan today We saw in last lecture that model scoring methods seem to be trading off two different

More information

A Statistical Perspective on Algorithmic Leveraging

A Statistical Perspective on Algorithmic Leveraging Journal of Machine Learning Research 16 (2015) 861-911 Submitted 1/14; Revised 10/14; Published 4/15 A Statistical Perspective on Algorithmic Leveraging Ping Ma Department of Statistics University of Georgia

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725 Consider Last time: proximal Newton method min x g(x) + h(x) where g, h convex, g twice differentiable, and h simple. Proximal

More information

Regression Shrinkage and Selection via the Lasso

Regression Shrinkage and Selection via the Lasso Regression Shrinkage and Selection via the Lasso ROBERT TIBSHIRANI, 1996 Presenter: Guiyun Feng April 27 () 1 / 20 Motivation Estimation in Linear Models: y = β T x + ɛ. data (x i, y i ), i = 1, 2,...,

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Data-Intensive Statistical Challenges in Astrophysics

Data-Intensive Statistical Challenges in Astrophysics Data-Intensive Statistical Challenges in Astrophysics Collaborators: T. Budavari, C-W Yip (JHU), M. Mahoney (Stanford), I. Csabai, L. Dobos (Hungary) Alex Szalay The Johns Hopkins University The Age of

More information

Divide-and-combine Strategies in Statistical Modeling for Massive Data

Divide-and-combine Strategies in Statistical Modeling for Massive Data Divide-and-combine Strategies in Statistical Modeling for Massive Data Liqun Yu Washington University in St. Louis March 30, 2017 Liqun Yu (WUSTL) D&C Statistical Modeling for Massive Data March 30, 2017

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Stochastic Analogues to Deterministic Optimizers

Stochastic Analogues to Deterministic Optimizers Stochastic Analogues to Deterministic Optimizers ISMP 2018 Bordeaux, France Vivak Patel Presented by: Mihai Anitescu July 6, 2018 1 Apology I apologize for not being here to give this talk myself. I injured

More information

Advances in Extreme Learning Machines

Advances in Extreme Learning Machines Advances in Extreme Learning Machines Mark van Heeswijk April 17, 2015 Outline Context Extreme Learning Machines Part I: Ensemble Models of ELM Part II: Variable Selection and ELM Part III: Trade-offs

More information

Less is More: Computational Regularization by Subsampling

Less is More: Computational Regularization by Subsampling Less is More: Computational Regularization by Subsampling Lorenzo Rosasco University of Genova - Istituto Italiano di Tecnologia Massachusetts Institute of Technology lcsl.mit.edu joint work with Alessandro

More information

Generalized Elastic Net Regression

Generalized Elastic Net Regression Abstract Generalized Elastic Net Regression Geoffroy MOURET Jean-Jules BRAULT Vahid PARTOVINIA This work presents a variation of the elastic net penalization method. We propose applying a combined l 1

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

4 Bias-Variance for Ridge Regression (24 points)

4 Bias-Variance for Ridge Regression (24 points) 2 count = 0 3 for x in self.x_test_ridge: 4 5 prediction = np.matmul(self.w_ridge,x) 6 ###ADD THE COMPUTED MEAN BACK TO THE PREDICTED VECTOR### 7 prediction = self.ss_y.inverse_transform(prediction) 8

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Stochastic optimization in Hilbert spaces

Stochastic optimization in Hilbert spaces Stochastic optimization in Hilbert spaces Aymeric Dieuleveut Aymeric Dieuleveut Stochastic optimization Hilbert spaces 1 / 48 Outline Learning vs Statistics Aymeric Dieuleveut Stochastic optimization Hilbert

More information

First Efficient Convergence for Streaming k-pca: a Global, Gap-Free, and Near-Optimal Rate

First Efficient Convergence for Streaming k-pca: a Global, Gap-Free, and Near-Optimal Rate 58th Annual IEEE Symposium on Foundations of Computer Science First Efficient Convergence for Streaming k-pca: a Global, Gap-Free, and Near-Optimal Rate Zeyuan Allen-Zhu Microsoft Research zeyuan@csail.mit.edu

More information

Linear Regression 9/23/17. Simple linear regression. Advertising sales: Variance changes based on # of TVs. Advertising sales: Normal error?

Linear Regression 9/23/17. Simple linear regression. Advertising sales: Variance changes based on # of TVs. Advertising sales: Normal error? Simple linear regression Linear Regression Nicole Beckage y " = β % + β ' x " + ε so y* " = β+ % + β+ ' x " Method to assess and evaluate the correlation between two (continuous) variables. The slope of

More information

4 Bias-Variance for Ridge Regression (24 points)

4 Bias-Variance for Ridge Regression (24 points) Implement Ridge Regression with λ = 0.00001. Plot the Squared Euclidean test error for the following values of k (the dimensions you reduce to): k = {0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500,

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

Estimators based on non-convex programs: Statistical and computational guarantees

Estimators based on non-convex programs: Statistical and computational guarantees Estimators based on non-convex programs: Statistical and computational guarantees Martin Wainwright UC Berkeley Statistics and EECS Based on joint work with: Po-Ling Loh (UC Berkeley) Martin Wainwright

More information

A fast randomized algorithm for approximating an SVD of a matrix

A fast randomized algorithm for approximating an SVD of a matrix A fast randomized algorithm for approximating an SVD of a matrix Joint work with Franco Woolfe, Edo Liberty, and Vladimir Rokhlin Mark Tygert Program in Applied Mathematics Yale University Place July 17,

More information

Fast Linear Algorithms for Machine Learning

Fast Linear Algorithms for Machine Learning University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 1-1-2015 Fast Linear Algorithms for Machine Learning Yichao Lu University of Pennsylvania, luyichao1123@gmail.com Follow

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

CSC321 Lecture 7: Optimization

CSC321 Lecture 7: Optimization CSC321 Lecture 7: Optimization Roger Grosse Roger Grosse CSC321 Lecture 7: Optimization 1 / 25 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

Computational and Statistical Aspects of Statistical Machine Learning. John Lafferty Department of Statistics Retreat Gleacher Center

Computational and Statistical Aspects of Statistical Machine Learning. John Lafferty Department of Statistics Retreat Gleacher Center Computational and Statistical Aspects of Statistical Machine Learning John Lafferty Department of Statistics Retreat Gleacher Center Outline Modern nonparametric inference for high dimensional data Nonparametric

More information

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization Stochastic Gradient Descent Ryan Tibshirani Convex Optimization 10-725 Last time: proximal gradient descent Consider the problem min x g(x) + h(x) with g, h convex, g differentiable, and h simple in so

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

Machine learning, shrinkage estimation, and economic theory

Machine learning, shrinkage estimation, and economic theory Machine learning, shrinkage estimation, and economic theory Maximilian Kasy December 14, 2018 1 / 43 Introduction Recent years saw a boom of machine learning methods. Impressive advances in domains such

More information

CSC321 Lecture 8: Optimization

CSC321 Lecture 8: Optimization CSC321 Lecture 8: Optimization Roger Grosse Roger Grosse CSC321 Lecture 8: Optimization 1 / 26 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information

A Statistical Perspective on Algorithmic Leveraging

A Statistical Perspective on Algorithmic Leveraging Ping Ma PINGMA@UGA.EDU Department of Statistics, University of Georgia, Athens, GA 30602 Michael W. Mahoney MMAHONEY@ICSI.BERKELEY.EDU International Computer Science Institute and Dept. of Statistics,

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

A Short Introduction to the Lasso Methodology

A Short Introduction to the Lasso Methodology A Short Introduction to the Lasso Methodology Michael Gutmann sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology March 9, 2016 Michael

More information

Accelerating SVRG via second-order information

Accelerating SVRG via second-order information Accelerating via second-order information Ritesh Kolte Department of Electrical Engineering rkolte@stanford.edu Murat Erdogdu Department of Statistics erdogdu@stanford.edu Ayfer Özgür Department of Electrical

More information

sparse and low-rank tensor recovery Cubic-Sketching

sparse and low-rank tensor recovery Cubic-Sketching Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Adaptive Piecewise Polynomial Estimation via Trend Filtering

Adaptive Piecewise Polynomial Estimation via Trend Filtering Adaptive Piecewise Polynomial Estimation via Trend Filtering Liubo Li, ShanShan Tu The Ohio State University li.2201@osu.edu, tu.162@osu.edu October 1, 2015 Liubo Li, ShanShan Tu (OSU) Trend Filtering

More information

Approximate Kernel PCA with Random Features

Approximate Kernel PCA with Random Features Approximate Kernel PCA with Random Features (Computational vs. Statistical Tradeoff) Bharath K. Sriperumbudur Department of Statistics, Pennsylvania State University Journées de Statistique Paris May 28,

More information

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection Instructor: Herke van Hoof (herke.vanhoof@cs.mcgill.ca) Based on slides by:, Jackie Chi Kit Cheung Class web page:

More information

The lasso, persistence, and cross-validation

The lasso, persistence, and cross-validation The lasso, persistence, and cross-validation Daniel J. McDonald Department of Statistics Indiana University http://www.stat.cmu.edu/ danielmc Joint work with: Darren Homrighausen Colorado State University

More information

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning Mark Schmidt University of British Columbia, May 2016 www.cs.ubc.ca/~schmidtm/svan16 Some images from this lecture are

More information

Risk estimation for high-dimensional lasso regression

Risk estimation for high-dimensional lasso regression Risk estimation for high-dimensional lasso regression arxiv:161522v1 [stat.me] 4 Feb 216 Darren Homrighausen Department of Statistics Colorado State University darrenho@stat.colostate.edu Daniel J. McDonald

More information

Regression I: Mean Squared Error and Measuring Quality of Fit

Regression I: Mean Squared Error and Measuring Quality of Fit Regression I: Mean Squared Error and Measuring Quality of Fit -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD 1 The Setup Suppose there is a scientific problem we are interested in solving

More information

Less is More: Computational Regularization by Subsampling

Less is More: Computational Regularization by Subsampling Less is More: Computational Regularization by Subsampling Lorenzo Rosasco University of Genova - Istituto Italiano di Tecnologia Massachusetts Institute of Technology lcsl.mit.edu joint work with Alessandro

More information

Lecture 1: Supervised Learning

Lecture 1: Supervised Learning Lecture 1: Supervised Learning Tuo Zhao Schools of ISYE and CSE, Georgia Tech ISYE6740/CSE6740/CS7641: Computational Data Analysis/Machine from Portland, Learning Oregon: pervised learning (Supervised)

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 7/8 - High-dimensional modeling part 1 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Classification

More information

Minwise hashing for large-scale regression and classification with sparse data

Minwise hashing for large-scale regression and classification with sparse data Minwise hashing for large-scale regression and classification with sparse data Nicolai Meinshausen (Seminar für Statistik, ETH Zürich) joint work with Rajen Shah (Statslab, University of Cambridge) Simons

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Model complexity scores (v3) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 34 Estimating prediction error 2 / 34 Estimating prediction error We saw how we can estimate

More information

Quick Introduction to Nonnegative Matrix Factorization

Quick Introduction to Nonnegative Matrix Factorization Quick Introduction to Nonnegative Matrix Factorization Norm Matloff University of California at Davis 1 The Goal Given an u v matrix A with nonnegative elements, we wish to find nonnegative, rank-k matrices

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

Sample questions for Fundamentals of Machine Learning 2018

Sample questions for Fundamentals of Machine Learning 2018 Sample questions for Fundamentals of Machine Learning 2018 Teacher: Mohammad Emtiyaz Khan A few important informations: In the final exam, no electronic devices are allowed except a calculator. Make sure

More information

Comparison of Modern Stochastic Optimization Algorithms

Comparison of Modern Stochastic Optimization Algorithms Comparison of Modern Stochastic Optimization Algorithms George Papamakarios December 214 Abstract Gradient-based optimization methods are popular in machine learning applications. In large-scale problems,

More information

Spectral Regularization

Spectral Regularization Spectral Regularization Lorenzo Rosasco 9.520 Class 07 February 27, 2008 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information