Sketching as a Tool for Numerical Linear Algebra

Size: px
Start display at page:

Download "Sketching as a Tool for Numerical Linear Algebra"

Transcription

1 Sketching as a Tool for Numerical Linear Algebra (Part 2) David P. Woodruff presented by Sepehr Assadi o(n) Big Data Reading Group University of Pennsylvania February, 2015 Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 1 / 21

2 Goal New survey by David Woodruff: Sketching as a Tool for Numerical Linear Algebra Topics: Subspace Embeddings Least Squares Regression Least Absolute Deviation Regression Low Rank Approximation Graph Sparsification Sketching Lower Bounds Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 2 / 21

3 Goal New survey by David Woodruff: Sketching as a Tool for Numerical Linear Algebra Topics: Subspace Embeddings Least Squares Regression Least Absolute Deviation Regression Low Rank Approximation Graph Sparsification Sketching Lower Bounds Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 3 / 21

4 Introduction You have Big data! Computationally expensive to deal with Excessive storage requirement Hard to communicate... Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 4 / 21

5 Introduction You have Big data! Computationally expensive to deal with Excessive storage requirement Hard to communicate... Summarize your data Sampling A representative subset of the data Sketching An aggregate summary of the whole data Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 5 / 21

6 Model Input: matrix A R n d vector b R n. Output: function F(A, b,...) e.g. least square regression Different goals: Faster algorithms Streaming Distributed Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 6 / 21

7 Linear Sketching Input: matrix A R n d Let r n and S R r n be a random matrix Let S A be the sketch Compute F(S A) instead of F(A) Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 7 / 21

8 Linear Sketching (cont.) Pros: Compute on a r d matrix instead of n d Smaller representation and faster computation Linearity: S (A + B) = S A + S B We can compose linear sketches! Cons: F(S A) is an approximation of F(A) Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 8 / 21

9 Approximate l 2 -regression Input: matrix A R n d (full column rank) vector b R n parameter 0 < ε < 1 Output ˆx R d : Aˆx b 2 (1 + ε) arg min x Ax b 2 Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 9 / 21

10 Subspace Embedding Definition (l 2 -subspace embedding) A (1 ± ε) l 2 -subspace embedding for a matrix A R n d is a matrix S for which for all x R n SAx 2 2 = (1 ± ε) Ax 2 2 Actually subspace embedding for column space of A Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 10 / 21

11 Previous Session Oblivious l 2 -subspace embedding The distribution from which S is chosen is oblivious to A One very common tool: Johnson-Lindenstrauss transform (JLT) Immediately approximate l2 -regression problem Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 11 / 21

12 Today Non-oblivious l 2 -subspace embedding The distribution from which S is chosen depends on A One very common tool: Leverage Score Sampling Can still be used to approximate l2 -regression problem Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 12 / 21

13 Leverage Scores Thin Singular Value Decomposition (SVD) of A: An d = U n d Σ d d V d d U is an orthonormal basis of column space of A Leverage Score of i-th row of A: l i = 2 U(i) Properties: Independent of the basis (property of the column space) Forms a probability distribution (by simple normalization) Let H = A(A T A) 1 A T, then l 2 i = H i,i Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 13 / 21

14 Leverage Score Sampling Definition (SampleRescale(n, s, p)) We define the procedure S = SampleRescale(n, s, p), if S s n = D Ω, where each row of Ω is a random basis vector in R n chosen according to the probability distribution p, and D is a diagonal matrix where D i,i = 1/ p j s if e j is chosen for i-th row of Ω. Leverage Score Sampling (p = LS-Sampling(A, β)): p = (p1,..., p n ) is a probability distribution satisfying p i β l 2 i /d, where l i is the i-th leverage score of A n d Compute S = SampleRescale(n, s, p) Return S A Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 14 / 21

15 Subspace Embedding via LS-Sampling Theorem Let s = Θ( d log d ), S = SampleRescale(n, s, p) for βε 2 p = LS-Sampling(A, β), and U be an orthonormal matrix of the column space of A; then with probability 0.99, simultaneously for all i [d], 1 ε σ 2 (S U) 1 + ε It immediately implies subspace embedding Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 15 / 21

16 Subspace Embedding via LS-Sampling (cont.) Theorem Let s = Θ( d log d ), S = SampleRescale(n, s, p) for βε 2 p = LS-Sampling(A, β), and U be an orthonormal matrix of the column space of A; then with probability 0.99, simultaneously for all i [d], 1 ε σ 2 (S U) 1 + ε Proof. Matrix Chernoff: Suppose X 1,..., X s are independent copies of symmetric matrix X R d d with E[X] = 0, and X γ, and E[X T X] s 2 and let W = 1 si=1 X s i ; then Pr( W > ε) 2d exp ( sε 2 /(2s 2 + 2γε/3) ) Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 16 / 21

17 Linear Regression via LS-Sampling Theorem Let s = Θ( d log d ), S = SampleRescale(n, s, p) for βε 2 p = LS-Sampling(A, β), and ˆx = arg min x SAx Sb, then with probability 0.99, Aˆx b 2 (1 + ε) arg min x Ax b 2 Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 17 / 21

18 Linear Regression via LS-Sampling (cont.) Theorem (Approximate Matrix Multiplication) For an orthonormal matrix C n m, an arbitrary vector d n 1, and probabilities p = (p 1,..., p n ) such that: p k β C(k) C F let S = SampleRescale(n, s, p); then, with probability 0.99: (SC) T (Sd) C T d 1 F O( sβ ) C F d F Warning: this statement is neither general nor precise! see [DKM06] 2 Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 18 / 21

19 Linear Regression via LS-Sampling (cont.) Theorem Let s = Θ( d log d ), S = SampleRescale(n, s, p) for βε 2 p = LS-Sampling(A, β), and ˆx = arg min x SAx Sb, then with probability 0.99, Proof. On the board. Aˆx b 2 (1 + ε) arg min x Ax b 2 Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 19 / 21

20 Approximating Leverage Scores Computing leverage scores is as hard as solving the regression problem! Can we approximate them? For β = 1/2, in time O(nd log n + d 3 ) [DMIMW12] Improved to O(nnz(A) log n + d 3 ) [CW13] Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 20 / 21

21 Questions? Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 21 / 21

22 Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input sparsity time. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages ACM, Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i: Approximating matrix multiplication. SIAM Journal on Computing, 36(1): , Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast approximation of matrix coherence and statistical leverage. The Journal of Machine Learning Research, 13(1): , Sepehr Assadi (Penn) Sketching for Numerical Linear Algebra Big Data Reading Group 21 / 21

Sketching as a Tool for Numerical Linear Algebra

Sketching as a Tool for Numerical Linear Algebra Sketching as a Tool for Numerical Linear Algebra David P. Woodruff presented by Sepehr Assadi o(n) Big Data Reading Group University of Pennsylvania February, 2015 Sepehr Assadi (Penn) Sketching for Numerical

More information

to be more efficient on enormous scale, in a stream, or in distributed settings.

to be more efficient on enormous scale, in a stream, or in distributed settings. 16 Matrix Sketching The singular value decomposition (SVD) can be interpreted as finding the most dominant directions in an (n d) matrix A (or n points in R d ). Typically n > d. It is typically easy to

More information

Relative-Error CUR Matrix Decompositions

Relative-Error CUR Matrix Decompositions RandNLA Reading Group University of California, Berkeley Tuesday, April 7, 2015. Motivation study [low-rank] matrix approximations that are explicitly expressed in terms of a small numbers of columns and/or

More information

Randomized Numerical Linear Algebra: Review and Progresses

Randomized Numerical Linear Algebra: Review and Progresses ized ized SVD ized : Review and Progresses Zhihua Department of Computer Science and Engineering Shanghai Jiao Tong University The 12th China Workshop on Machine Learning and Applications Xi an, November

More information

Sketched Ridge Regression:

Sketched Ridge Regression: Sketched Ridge Regression: Optimization and Statistical Perspectives Shusen Wang UC Berkeley Alex Gittens RPI Michael Mahoney UC Berkeley Overview Ridge Regression min w f w = 1 n Xw y + γ w Over-determined:

More information

A Fast Algorithm For Computing The A-optimal Sampling Distributions In A Big Data Linear Regression

A Fast Algorithm For Computing The A-optimal Sampling Distributions In A Big Data Linear Regression A Fast Algorithm For Computing The A-optimal Sampling Distributions In A Big Data Linear Regression Hanxiang Peng and Fei Tan Indiana University Purdue University Indianapolis Department of Mathematical

More information

CS 229r: Algorithms for Big Data Fall Lecture 17 10/28

CS 229r: Algorithms for Big Data Fall Lecture 17 10/28 CS 229r: Algorithms for Big Data Fall 2015 Prof. Jelani Nelson Lecture 17 10/28 Scribe: Morris Yau 1 Overview In the last lecture we defined subspace embeddings a subspace embedding is a linear transformation

More information

Lecture 9: Matrix approximation continued

Lecture 9: Matrix approximation continued 0368-348-01-Algorithms in Data Mining Fall 013 Lecturer: Edo Liberty Lecture 9: Matrix approximation continued Warning: This note may contain typos and other inaccuracies which are usually discussed during

More information

Efficiently Implementing Sparsity in Learning

Efficiently Implementing Sparsity in Learning Efficiently Implementing Sparsity in Learning M. Magdon-Ismail Rensselaer Polytechnic Institute (Joint Work) December 9, 2013. Out-of-Sample is What Counts NO YES A pattern exists We don t know it We have

More information

25.2 Last Time: Matrix Multiplication in Streaming Model

25.2 Last Time: Matrix Multiplication in Streaming Model EE 381V: Large Scale Learning Fall 01 Lecture 5 April 18 Lecturer: Caramanis & Sanghavi Scribe: Kai-Yang Chiang 5.1 Review of Streaming Model Streaming model is a new model for presenting massive data.

More information

arxiv: v3 [cs.ds] 21 Mar 2013

arxiv: v3 [cs.ds] 21 Mar 2013 Low-distortion Subspace Embeddings in Input-sparsity Time and Applications to Robust Linear Regression Xiangrui Meng Michael W. Mahoney arxiv:1210.3135v3 [cs.ds] 21 Mar 2013 Abstract Low-distortion subspace

More information

Lecture 18 Nov 3rd, 2015

Lecture 18 Nov 3rd, 2015 CS 229r: Algorithms for Big Data Fall 2015 Prof. Jelani Nelson Lecture 18 Nov 3rd, 2015 Scribe: Jefferson Lee 1 Overview Low-rank approximation, Compression Sensing 2 Last Time We looked at three different

More information

Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares

Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares Rong Zhu Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China. rongzhu@amss.ac.cn Abstract

More information

Lecture 9: Low Rank Approximation

Lecture 9: Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Fall 2018 Lecture 9: Low Rank Approximation Lecturer: Shayan Oveis Gharan February 8th Scribe: Jun Qi Disclaimer: These notes have not been subjected to the

More information

Approximate Spectral Clustering via Randomized Sketching

Approximate Spectral Clustering via Randomized Sketching Approximate Spectral Clustering via Randomized Sketching Christos Boutsidis Yahoo! Labs, New York Joint work with Alex Gittens (Ebay), Anju Kambadur (IBM) The big picture: sketch and solve Tradeoff: Speed

More information

Multidimensional data analysis in biomedicine and epidemiology

Multidimensional data analysis in biomedicine and epidemiology in biomedicine and epidemiology Katja Ickstadt and Leo N. Geppert Faculty of Statistics, TU Dortmund, Germany Stakeholder Workshop 12 13 December 2017, PTB Berlin Supported by Deutsche Forschungsgemeinschaft

More information

arxiv: v2 [stat.ml] 29 Nov 2018

arxiv: v2 [stat.ml] 29 Nov 2018 Randomized Iterative Algorithms for Fisher Discriminant Analysis Agniva Chowdhury Jiasen Yang Petros Drineas arxiv:1809.03045v2 [stat.ml] 29 Nov 2018 Abstract Fisher discriminant analysis FDA is a widely

More information

The Fast Cauchy Transform and Faster Robust Linear Regression

The Fast Cauchy Transform and Faster Robust Linear Regression The Fast Cauchy Transform and Faster Robust Linear Regression Kenneth L Clarkson Petros Drineas Malik Magdon-Ismail Michael W Mahoney Xiangrui Meng David P Woodruff Abstract We provide fast algorithms

More information

dimensionality reduction for k-means and low rank approximation

dimensionality reduction for k-means and low rank approximation dimensionality reduction for k-means and low rank approximation Michael Cohen, Sam Elder, Cameron Musco, Christopher Musco, Mădălina Persu Massachusetts Institute of Technology 0 overview Simple techniques

More information

Randomized Algorithms for Matrix Computations

Randomized Algorithms for Matrix Computations Randomized Algorithms for Matrix Computations Ilse Ipsen Students: John Holodnak, Kevin Penner, Thomas Wentworth Research supported in part by NSF CISE CCF, DARPA XData Randomized Algorithms Solve a deterministic

More information

arxiv: v2 [cs.ds] 1 May 2013

arxiv: v2 [cs.ds] 1 May 2013 Dimension Independent Matrix Square using MapReduce arxiv:1304.1467v2 [cs.ds] 1 May 2013 Reza Bosagh Zadeh Institute for Computational and Mathematical Engineering rezab@stanford.edu Gunnar Carlsson Mathematics

More information

sublinear time low-rank approximation of positive semidefinite matrices Cameron Musco (MIT) and David P. Woodru (CMU)

sublinear time low-rank approximation of positive semidefinite matrices Cameron Musco (MIT) and David P. Woodru (CMU) sublinear time low-rank approximation of positive semidefinite matrices Cameron Musco (MIT) and David P. Woodru (CMU) 0 overview Our Contributions: 1 overview Our Contributions: A near optimal low-rank

More information

Tighter Low-rank Approximation via Sampling the Leveraged Element

Tighter Low-rank Approximation via Sampling the Leveraged Element Tighter Low-rank Approximation via Sampling the Leveraged Element Srinadh Bhojanapalli The University of Texas at Austin bsrinadh@utexas.edu Prateek Jain Microsoft Research, India prajain@microsoft.com

More information

Sketching as a Tool for Numerical Linear Algebra All Lectures. David Woodruff IBM Almaden

Sketching as a Tool for Numerical Linear Algebra All Lectures. David Woodruff IBM Almaden Sketching as a Tool for Numerical Linear Algebra All Lectures David Woodruff IBM Almaden Massive data sets Examples Internet traffic logs Financial data etc. Algorithms Want nearly linear time or less

More information

Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving. 22 Element-wise Sampling of Graphs and Linear Equation Solving

Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving. 22 Element-wise Sampling of Graphs and Linear Equation Solving Stat260/CS294: Randomized Algorithms for Matrices and Data Lecture 24-12/02/2013 Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving Lecturer: Michael Mahoney Scribe: Michael Mahoney

More information

Randomized algorithms for the approximation of matrices

Randomized algorithms for the approximation of matrices Randomized algorithms for the approximation of matrices Luis Rademacher The Ohio State University Computer Science and Engineering (joint work with Amit Deshpande, Santosh Vempala, Grant Wang) Two topics

More information

Sketching as a Tool for Numerical Linear Algebra

Sketching as a Tool for Numerical Linear Algebra Foundations and Trends R in Theoretical Computer Science Vol. 10, No. 1-2 (2014) 1 157 c 2014 D. P. Woodruff DOI: 10.1561/0400000060 Sketching as a Tool for Numerical Linear Algebra David P. Woodruff IBM

More information

CS60021: Scalable Data Mining. Dimensionality Reduction

CS60021: Scalable Data Mining. Dimensionality Reduction J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Dimensionality Reduction Sourangshu Bhattacharya Assumption: Data lies on or near a

More information

Foundations of Computer Vision

Foundations of Computer Vision Foundations of Computer Vision Wesley. E. Snyder North Carolina State University Hairong Qi University of Tennessee, Knoxville Last Edited February 8, 2017 1 3.2. A BRIEF REVIEW OF LINEAR ALGEBRA Apply

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

RandNLA: Randomization in Numerical Linear Algebra

RandNLA: Randomization in Numerical Linear Algebra RandNLA: Randomization in Numerical Linear Algebra Petros Drineas Department of Computer Science Rensselaer Polytechnic Institute To access my web page: drineas Why RandNLA? Randomization and sampling

More information

MANY scientific computations, signal processing, data analysis and machine learning applications lead to large dimensional

MANY scientific computations, signal processing, data analysis and machine learning applications lead to large dimensional Low rank approximation and decomposition of large matrices using error correcting codes Shashanka Ubaru, Arya Mazumdar, and Yousef Saad 1 arxiv:1512.09156v3 [cs.it] 15 Jun 2017 Abstract Low rank approximation

More information

Lecture 12: Randomized Least-squares Approximation in Practice, Cont. 12 Randomized Least-squares Approximation in Practice, Cont.

Lecture 12: Randomized Least-squares Approximation in Practice, Cont. 12 Randomized Least-squares Approximation in Practice, Cont. Stat60/CS94: Randomized Algorithms for Matrices and Data Lecture 1-10/14/013 Lecture 1: Randomized Least-squares Approximation in Practice, Cont. Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning:

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 22 1 / 21 Overview

More information

Fast Dimension Reduction

Fast Dimension Reduction Fast Dimension Reduction MMDS 2008 Nir Ailon Google Research NY Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes (with Edo Liberty) The Fast Johnson Lindenstrauss Transform (with Bernard

More information

A Tutorial on Matrix Approximation by Row Sampling

A Tutorial on Matrix Approximation by Row Sampling A Tutorial on Matrix Approximation by Row Sampling Rasmus Kyng June 11, 018 Contents 1 Fast Linear Algebra Talk 1.1 Matrix Concentration................................... 1. Algorithms for ɛ-approximation

More information

Recovering any low-rank matrix, provably

Recovering any low-rank matrix, provably Recovering any low-rank matrix, provably Rachel Ward University of Texas at Austin October, 2014 Joint work with Yudong Chen (U.C. Berkeley), Srinadh Bhojanapalli and Sujay Sanghavi (U.T. Austin) Matrix

More information

Supremum of simple stochastic processes

Supremum of simple stochastic processes Subspace embeddings Daniel Hsu COMS 4772 1 Supremum of simple stochastic processes 2 Recap: JL lemma JL lemma. For any ε (0, 1/2), point set S R d of cardinality 16 ln n S = n, and k N such that k, there

More information

Column Selection via Adaptive Sampling

Column Selection via Adaptive Sampling Column Selection via Adaptive Sampling Saurabh Paul Global Risk Sciences, Paypal Inc. saupaul@paypal.com Malik Magdon-Ismail CS Dept., Rensselaer Polytechnic Institute magdon@cs.rpi.edu Petros Drineas

More information

Approximate Principal Components Analysis of Large Data Sets

Approximate Principal Components Analysis of Large Data Sets Approximate Principal Components Analysis of Large Data Sets Daniel J. McDonald Department of Statistics Indiana University mypage.iu.edu/ dajmcdon April 27, 2016 Approximation-Regularization for Analysis

More information

Sketching as a Tool for Numerical Linear Algebra All Lectures. David Woodruff IBM Almaden

Sketching as a Tool for Numerical Linear Algebra All Lectures. David Woodruff IBM Almaden Sketching as a Tool for Numerical Linear Algebra All Lectures David Woodruff IBM Almaden Massive data sets Examples Internet traffic logs Financial data etc. Algorithms Want nearly linear time or less

More information

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices

Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Applications of Randomized Methods for Decomposing and Simulating from Large Covariance Matrices Vahid Dehdari and Clayton V. Deutsch Geostatistical modeling involves many variables and many locations.

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 9 1 / 23 Overview

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

randomized block krylov methods for stronger and faster approximate svd

randomized block krylov methods for stronger and faster approximate svd randomized block krylov methods for stronger and faster approximate svd Cameron Musco and Christopher Musco December 2, 25 Massachusetts Institute of Technology, EECS singular value decomposition n d left

More information

RandNLA: Randomized Numerical Linear Algebra

RandNLA: Randomized Numerical Linear Algebra RandNLA: Randomized Numerical Linear Algebra Petros Drineas Rensselaer Polytechnic Institute Computer Science Department To access my web page: drineas RandNLA: sketch a matrix by row/ column sampling

More information

Empirical Performance of Approximate Algorithms for Low Rank Approximation

Empirical Performance of Approximate Algorithms for Low Rank Approximation Empirical Performance of Approximate Algorithms for Low Rank Approximation Dimitris Konomis (dkonomis@cs.cmu.edu) Machine Learning Department (MLD) School of Computer Science (SCS) Carnegie Mellon University

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Numerical Linear Algebra Background Cho-Jui Hsieh UC Davis May 15, 2018 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Pseudoinverse and Adjoint Operators

Pseudoinverse and Adjoint Operators ECE 275AB Lecture 5 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 5 ECE 275A Pseudoinverse and Adjoint Operators ECE 275AB Lecture 5 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p.

More information

Fast Approximation of Matrix Coherence and Statistical Leverage

Fast Approximation of Matrix Coherence and Statistical Leverage Journal of Machine Learning Research 13 (01) 3475-3506 Submitted 7/1; Published 1/1 Fast Approximation of Matrix Coherence and Statistical Leverage Petros Drineas Malik Magdon-Ismail Department of Computer

More information

A fast randomized algorithm for overdetermined linear least-squares regression

A fast randomized algorithm for overdetermined linear least-squares regression A fast randomized algorithm for overdetermined linear least-squares regression Vladimir Rokhlin and Mark Tygert Technical Report YALEU/DCS/TR-1403 April 28, 2008 Abstract We introduce a randomized algorithm

More information

Randomized Algorithms in Linear Algebra and Applications in Data Analysis

Randomized Algorithms in Linear Algebra and Applications in Data Analysis Randomized Algorithms in Linear Algebra and Applications in Data Analysis Petros Drineas Rensselaer Polytechnic Institute Computer Science Department To access my web page: drineas Why linear algebra?

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

Least squares problems Linear Algebra with Computer Science Application

Least squares problems Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application April 8, 018 1 Least Squares Problems 11 Least Squares Problems What do you do when Ax = b has no solution? Inconsistent systems arise often in applications

More information

Subspace Embedding and Linear Regression with Orlicz Norm

Subspace Embedding and Linear Regression with Orlicz Norm Alexandr Andoni 1 Chengyu Lin 1 Ying Sheng 1 Peilin Zhong 1 Ruiqi Zhong 1 Abstract We consider a generalization of the classic linear regression problem to the case when the loss is an Orlicz norm. An

More information

Pseudoinverse & Moore-Penrose Conditions

Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 7 ECE 275A Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego

More information

Subspace Embeddings for the Polynomial Kernel

Subspace Embeddings for the Polynomial Kernel Subspace Embeddings for the Polynomial Kernel Haim Avron IBM T.J. Watson Research Center Yorktown Heights, NY 10598 haimav@us.ibm.com Huy L. Nguy ên Simons Institute, UC Berkeley Berkeley, CA 94720 hlnguyen@cs.princeton.edu

More information

Principal components analysis COMS 4771

Principal components analysis COMS 4771 Principal components analysis COMS 4771 1. Representation learning Useful representations of data Representation learning: Given: raw feature vectors x 1, x 2,..., x n R d. Goal: learn a useful feature

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 5: Numerical Linear Algebra Cho-Jui Hsieh UC Davis April 20, 2017 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Sketching Structured Matrices for Faster Nonlinear Regression

Sketching Structured Matrices for Faster Nonlinear Regression Sketching Structured Matrices for Faster Nonlinear Regression Haim Avron Vikas Sindhwani IBM T.J. Watson Research Center Yorktown Heights, NY 10598 {haimav,vsindhw}@us.ibm.com David P. Woodruff IBM Almaden

More information

An Iterative, Sketching-based Framework for Ridge Regression

An Iterative, Sketching-based Framework for Ridge Regression Agniva Chowdhury Jiasen Yang Petros Drineas Abstract Ridge regression is a variant of regularized least squares regression that is particularly suitable in settings where the number of predictor variables

More information

Low-Rank PSD Approximation in Input-Sparsity Time

Low-Rank PSD Approximation in Input-Sparsity Time Low-Rank PSD Approximation in Input-Sparsity Time Kenneth L. Clarkson IBM Research Almaden klclarks@us.ibm.com David P. Woodruff IBM Research Almaden dpwoodru@us.ibm.com Abstract We give algorithms for

More information

Theoretical and empirical aspects of SPSD sketches

Theoretical and empirical aspects of SPSD sketches 53 Chapter 6 Theoretical and empirical aspects of SPSD sketches 6. Introduction In this chapter we consider the accuracy of randomized low-rank approximations of symmetric positive-semidefinite matrices

More information

Random Methods for Linear Algebra

Random Methods for Linear Algebra Gittens gittens@acm.caltech.edu Applied and Computational Mathematics California Institue of Technology October 2, 2009 Outline The Johnson-Lindenstrauss Transform 1 The Johnson-Lindenstrauss Transform

More information

Fast Relative-Error Approximation Algorithm for Ridge Regression

Fast Relative-Error Approximation Algorithm for Ridge Regression Fast Relative-Error Approximation Algorithm for Ridge Regression Shouyuan Chen 1 Yang Liu 21 Michael R. Lyu 31 Irwin King 31 Shengyu Zhang 21 3: Shenzhen Key Laboratory of Rich Media Big Data Analytics

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Convergence Rates of Kernel Quadrature Rules

Convergence Rates of Kernel Quadrature Rules Convergence Rates of Kernel Quadrature Rules Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE NIPS workshop on probabilistic integration - Dec. 2015 Outline Introduction

More information

A Statistical Perspective on Algorithmic Leveraging

A Statistical Perspective on Algorithmic Leveraging Ping Ma PINGMA@UGA.EDU Department of Statistics, University of Georgia, Athens, GA 30602 Michael W. Mahoney MMAHONEY@ICSI.BERKELEY.EDU International Computer Science Institute and Dept. of Statistics,

More information

arxiv: v2 [cs.ds] 17 Feb 2016

arxiv: v2 [cs.ds] 17 Feb 2016 Efficient Algorithm for Sparse Matrices Mina Ghashami University of Utah ghashami@cs.utah.edu Edo Liberty Yahoo Labs edo.liberty@yahoo.com Jeff M. Phillips University of Utah jeffp@cs.utah.edu arxiv:1602.00412v2

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Random Projections for Support Vector Machines

Random Projections for Support Vector Machines Saurabh Paul Christos Boutsidis Malik Magdon-Ismail Petros Drineas Computer Science Dept. Mathematical Sciences Dept. Computer Science Dept. Computer Science Dept. Rensselaer Polytechnic Inst. IBM Research

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Seeing the Forest from the Trees in Two Looks: Matrix Sketching by Cascaded Bilateral Sampling

Seeing the Forest from the Trees in Two Looks: Matrix Sketching by Cascaded Bilateral Sampling Seeing the orest from the Trees in Two Looks: Matrix Sketching by Cascaded Bilateral Sampling arxiv:67.7395v3 [cs.lg] 27 Jul 26 Kai Zhang, Chuanren Liu 2, Jie Zhang 3, Hui Xiong 4, Eric Xing 5, Jieping

More information

THE FAST CAUCHY TRANSFORM AND FASTER ROBUST LINEAR REGRESSION

THE FAST CAUCHY TRANSFORM AND FASTER ROBUST LINEAR REGRESSION SIAM J COMPUT Vol 45, No 3, pp 763 80 c 206 Society for Industrial and Applied Mathematics THE FAST CAUCHY TRANSFORM AND FASTER ROBUST LINEAR REGRESSION KENNETH L CLARKSON, PETROS DRINEAS, MALIK MAGDON-ISMAIL,

More information

Randomly Sampling from Orthonormal Matrices: Coherence and Leverage Scores

Randomly Sampling from Orthonormal Matrices: Coherence and Leverage Scores Randomly Sampling from Orthonormal Matrices: Coherence and Leverage Scores Ilse Ipsen Joint work with Thomas Wentworth (thanks to Petros & Joel) North Carolina State University Raleigh, NC, USA Research

More information

Dimensionality Reduction Notes 3

Dimensionality Reduction Notes 3 Dimensionality Reduction Notes 3 Jelani Nelson minilek@seas.harvard.edu August 13, 2015 1 Gordon s theorem Let T be a finite subset of some normed vector space with norm X. We say that a sequence T 0 T

More information

Information-Theoretic Methods in Data Science

Information-Theoretic Methods in Data Science Information-Theoretic Methods in Data Science Information-theoretic bounds on sketching Mert Pilanci Department of Electrical Engineering Stanford University Contents Information-theoretic bounds on sketching

More information

Improved Distributed Principal Component Analysis

Improved Distributed Principal Component Analysis Improved Distributed Principal Component Analysis Maria-Florina Balcan School of Computer Science Carnegie Mellon University ninamf@cscmuedu Yingyu Liang Department of Computer Science Princeton University

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2017) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

18.06 Professor Johnson Quiz 1 October 3, 2007

18.06 Professor Johnson Quiz 1 October 3, 2007 18.6 Professor Johnson Quiz 1 October 3, 7 SOLUTIONS 1 3 pts.) A given circuit network directed graph) which has an m n incidence matrix A rows = edges, columns = nodes) and a conductance matrix C [diagonal

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

COMPRESSED AND PENALIZED LINEAR

COMPRESSED AND PENALIZED LINEAR COMPRESSED AND PENALIZED LINEAR REGRESSION Daniel J. McDonald Indiana University, Bloomington mypage.iu.edu/ dajmcdon 2 June 2017 1 OBLIGATORY DATA IS BIG SLIDE Modern statistical applications genomics,

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

Introduction The framework Bias and variance Approximate computation of leverage Empirical evaluation Discussion of sampling approach in big data

Introduction The framework Bias and variance Approximate computation of leverage Empirical evaluation Discussion of sampling approach in big data Discussion of sampling approach in big data Big data discussion group at MSCS of UIC Outline 1 Introduction 2 The framework 3 Bias and variance 4 Approximate computation of leverage 5 Empirical evaluation

More information

Simple and Deterministic Matrix Sketches

Simple and Deterministic Matrix Sketches Simple and Deterministic Matrix Sketches Edo Liberty + ongoing work with: Mina Ghashami, Jeff Philips and David Woodruff. Edo Liberty: Simple and Deterministic Matrix Sketches 1 / 41 Data Matrices Often

More information

Near-Optimal Coresets for Least-Squares Regression

Near-Optimal Coresets for Least-Squares Regression 6880 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 59, NO 10, OCTOBER 2013 Near-Optimal Coresets for Least-Squares Regression Christos Boutsidis, Petros Drineas, Malik Magdon-Ismail Abstract We study the

More information

Fast Approximate Matrix Multiplication by Solving Linear Systems

Fast Approximate Matrix Multiplication by Solving Linear Systems Electronic Colloquium on Computational Complexity, Report No. 117 (2014) Fast Approximate Matrix Multiplication by Solving Linear Systems Shiva Manne 1 and Manjish Pal 2 1 Birla Institute of Technology,

More information

Normed & Inner Product Vector Spaces

Normed & Inner Product Vector Spaces Normed & Inner Product Vector Spaces ECE 174 Introduction to Linear & Nonlinear Optimization Ken Kreutz-Delgado ECE Department, UC San Diego Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 1 / 27 Normed

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Single Pass PCA of Matrix Products

Single Pass PCA of Matrix Products Single Pass PCA of Matrix Products Shanshan Wu The University of Texas at Austin shanshan@utexas.edu Sujay Sanghavi The University of Texas at Austin sanghavi@mail.utexas.edu Srinadh Bhojanapalli Toyota

More information

Random Projections for Linear Support Vector Machines

Random Projections for Linear Support Vector Machines Random Projections for Linear Support Vector Machines SAURABH PAUL, Rensselaer Polytechnic Institute CHRISTOS BOUTSIDIS, Yahoo! Labs, New York, NY MALIK MAGDON-ISMAIL and PETROS DRINEAS, Rensselaer Polytechnic

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Sparse Features for PCA-Like Linear Regression

Sparse Features for PCA-Like Linear Regression Sparse Features for PCA-Like Linear Regression Christos Boutsidis Mathematical Sciences Department IBM T J Watson Research Center Yorktown Heights, New York cboutsi@usibmcom Petros Drineas Computer Science

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 A cautionary tale Notes for 2016-10-05 You have been dropped on a desert island with a laptop with a magic battery of infinite life, a MATLAB license, and a complete lack of knowledge of basic geometry.

More information

Review of similarity transformation and Singular Value Decomposition

Review of similarity transformation and Singular Value Decomposition Review of similarity transformation and Singular Value Decomposition Nasser M Abbasi Applied Mathematics Department, California State University, Fullerton July 8 7 page compiled on June 9, 5 at 9:5pm

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information