Multidimensional data analysis in biomedicine and epidemiology

Size: px
Start display at page:

Download "Multidimensional data analysis in biomedicine and epidemiology"

Transcription

1 in biomedicine and epidemiology Katja Ickstadt and Leo N. Geppert Faculty of Statistics, TU Dortmund, Germany Stakeholder Workshop December 2017, PTB Berlin Supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876, project C4

2 Challenges Overview of typical tasks in multidimensional data analysis in biomedicine and epidemiology, aims of employed methods, and related model complexity. Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

3 Challenges: Data Main Challenge: Molecular data Different data types (e.g., genomic, epigenomic, proteomic data) Measured on different platforms (arrays, chips) Different biological units (e.g., gene, methylation site, protein) Preprocessing involving advanced (statistical) modelling and algorithms Avoid Garbage in, garbage out Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

4 Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

5 Challenges: Data Published high-level functional information from databases, e.g., Kyoto Encyclopedia of Genes and Genomes pathways ( or gene ontology terms ( Clinical variables including, e.g., Magnetic Resonance Imaging (MRI) data Epidemiological, e.g., environmental variables Several studies (similar questions) Goal: Analyse all data available for a specific question jointly in an integrative analysis Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

6 Challenges: Analysis Large number of observations n and small to moderate number of variables p Small n, large p Large n, large p Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

7 Analysis for large n, small p Large n ( or more observations; second by second data), small to moderate p (up to 100) Data arising in streams (e.g., online monitoring of patients) Image data with short acquisition time (e.g., MRI images) Huge data sets (e.g., Meta studies with RNA-seq data, MRI data) High model complexity (e.g., network structure, spatio-temporal dependencies) Goal: Solving the problem for reduced n by keeping the main information and introducing a controllable error Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

8 Setting Large number of observations n, small to moderate number of variables p (n p) Data set might be too large to load into memory (e.g., data stream) Aim: Conduct Bayesian (or frequentist) linear regression y = X β + u with u N ( 0, σu 2 ) In the Bayesian case, β is a random vector with prior distribution p(β) Computationally demanding Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

9 Johnson-Lindenstrauss theorem Idea of random projections is based on the Johnson-Lindenstrauss theorem (JLT) [Johnson & Lindenstrauss, 1984] JLT states that for every vector v R n there exists a random matrix Π R k n, such that: (1 ε) v 2 2 Πv 2 2 (1 + ε) v 2 2 The matrix Π is a random projection of ν and also called a ε-subspace embedding Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

10 Role of the ε-subspace embedding ε-subspace embeddings can be used to reduce the number of observations from n to k while retaining most of the algebraic structure Analysis is then carried out on the embedded data set Π [X, Y ] [ΠX, ΠY ] p post (β X, Y ) ε p post (β ΠX, ΠY ) Trade-off between goodness of approximation and data reduction can be adjusted using ε Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

11 How do we find an ε-subspace embedding Π? We compare three subspace embeddings: the Rademacher Matrix (RAD) [Sarlós (2006)], target dimension O ( d ε 2 ), running time O (ndk) the Subsampled Randomized Hadamard Transform (SRHT) [Ailon & Liberty (2009)] ( target dimension O d log(d) ε ), running time O (nd log k) 2 and the Clarkson Woodruff embedding (CW) [Clarkson & Woodruff ( (2013)] d target dimension O 2 ε ), running time O (nnz(x )) = O(nd) 2 Theoretical guarantees based on Wasserstein distance hold for all three embedding methods Choose approximation parameter ε or target dimension k Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

12 2000 running times in minutes n sketch original RAD SRHT CW Figure: Total running times in minutes for data sets with n {50 000, }, d = 50, σ = 5 and approximation parameter ε = 0.1. For the embedded data sets, the total running time consists of the time for reading, embedding and analysing the data set. For the original data set, the embedding time is 0 since this step is not applied Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

13 Summary & Outlook Projections can be used for Bayesian (and frequentist) linear regression Results of analyses are close to the original model, some additional variation is introduced Running time is reduced by a substantial amount, reduction grows with increasing n Generalisations to hierarchical models, likelihoods based on p-norms with p [1, 2] and some generalised linear models Implementation available in our R package RaProR [RaProR, Geppert et al. (2015)], which internally calls C++ code, category Software Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

14 Analysis for small n, large p Small n, large p Clinical or epidemiologocal studies wirh small n but many variables (e.g., GWAS studies, RNA-seq data, more than one molecular data type) Interactions between variables within or across data sets, pathway or network structures between variables Goal: Combining variable selection with other tasks like regression or prediction (e.g., firstly using leverage scores or principal component analysis and, secondly, a regression method) Bayesian methods well suited for this situation (modelling all sources of uncertainty, incorporating information for variable selection and shrinkage), but computationally challenging Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

15 Leverage Scores Sampling approaches (instead of random projections) In a regression context, leverage scores are a measure of importance of observations, given as the diagonal elements of the hat matrix H = X (X X ) 1 X In our context, leverage scores as a measure of importance of variables H = [X, Y ] ([X, Y ][X, Y ] ) 1 [X, Y ] Cross-leverage scores in general: entries of H not on the main diagonal Here: influence of variable X i on Y, C i = h i,(p+1) Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

16 Example: Idea and Simulation of SNPs Single Nucleotide Polymorphisms (SNPs) represent mutations at a single locus They are coded by the three values {0, 1, 2}, S = 2 and S 0 stand for cases where more mutations stand for diseased and S = 0 and S 2 for non-diseased patients Simulate SNP data sets with increasing number of variables p Only first 12 SNPs influence Y (including higher-level interactions) Reduce number of possibly relevant variables before conducting analysis Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

17 Multidimensional data analysis (b) n = S=0 S=1 S=2 S 0 S 1 S 2 CLS Density Density S=0 S=1 S=2 S 0 S 1 S 2 LS 100 (a) n = Usefulness N = 100 Bandwidth = N = 100 Bandwidth = Distribution of leverage scores is similar for influential and non-influential SNPs Distribution of cross-leverage scores is different for influential and non-influential SNPs, useful for sampling approach Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

18 Logic Regression Analysis using logistic regression possible, but more suitable tool for SNP data: logic regression Y = β i L i with logic independent variables L i being 0 or 1 E.g., L 2 = (S 4 0) (S 5 = 0) or L 2 = (X 7 X 9 X 10 ) using dummy variables Logic regression particularly suited for modelling and interpreting higher-order interactions Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

19 Results Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

20 Summary & Outlook Reducing all variables to most important main effects and interactions yields good results Cross-leverage scores are well-suited for reduction Logic regression is well-suited for (high-order) interactions Such a two-stage procedure recommended for small n, large p External knowledge can be incorporated in a Bayesian analysis through prior weights in the sampling procedure or informative prior distributions in the subsequent analysis Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

21 Analysis for large n, large p Large n, large p MRI image data with p and n are of the order of 10 5 and 10 6, respectively represents a large-scale nonlinear regression task, and the model can be written as Y N(m(θ), σ 2 I ) where Y is an n 1 vector, θ is p 1, I denotes the n n identity matrix, and m(θ) stands for the underlying nonlinear physical model Underlying situation in EMPIR application Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

22 Suggested Approach High-dimensional Bayesian regression with (spatial) Markov Random Field (MRF) priors Dimension reduction for high number of variables p using Bayesian Principal Component Regression or sampling methods For large number of observations n employ Random Projections or Merge & Reduce Approaches To model MRF prior, introduce sparcity (combination with dimension reduction methods possible) or utilise approximate posterior inference Develop appropriate software Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

23 Literature I LN Geppert, K. Ickstadt, A. Munteanu, J. Quedenfeld, C. Sohler Random Projections for Bayesian Regression Statistics and Computing (2017) H. Schwender and K. Ickstadt Identification of SNP interactions using logic regression Biostatistics (2008) K. Ickstadt, M. Schäfer, M. Zucknick Toward Integrative Bayesian Analysis in Molecular Biology Annual Review of Statistics and Its Application (2018) Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

24 Literature II LN Geppert, K. Ickstadt, A. Munteanu, J. Quedenfeld, C. Sohler RaProR: Calculate Sketches using Random Projections to Reduce Large Data Sets, Version WB Johnson, J. Lindenstrauss Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics (1984) T. Sarlós Improved approximation algorithms for large matrices via random projections In: Proceedings of FOCS (2006) Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

25 Literature III N. Ailon, E. Liberty Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes Discrete & Computational Geometry (2009) KL Clarkson, DP Woodruff Low rank approximation and regression in input sparsity time STOC 13. Proceedings of the forty-fifth annual ACM symposium on Theory of Computingr Katja Ickstadt (Statistics, TU Dortmund) Multidimensional data analysis / 24

Sketching as a Tool for Numerical Linear Algebra

Sketching as a Tool for Numerical Linear Algebra Sketching as a Tool for Numerical Linear Algebra David P. Woodruff presented by Sepehr Assadi o(n) Big Data Reading Group University of Pennsylvania February, 2015 Sepehr Assadi (Penn) Sketching for Numerical

More information

Technical Report. Random projections for Bayesian regression. Leo Geppert, Katja Ickstadt, Alexander Munteanu and Christian Sohler 04/2014

Technical Report. Random projections for Bayesian regression. Leo Geppert, Katja Ickstadt, Alexander Munteanu and Christian Sohler 04/2014 Random projections for Bayesian regression Technical Report Leo Geppert, Katja Ickstadt, Alexander Munteanu and Christian Sohler 04/2014 technische universität dortmund Part of the work on this technical

More information

Sketching as a Tool for Numerical Linear Algebra

Sketching as a Tool for Numerical Linear Algebra Sketching as a Tool for Numerical Linear Algebra (Part 2) David P. Woodruff presented by Sepehr Assadi o(n) Big Data Reading Group University of Pennsylvania February, 2015 Sepehr Assadi (Penn) Sketching

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Minimization of Boolean Expressions Using Matrix Algebra

Minimization of Boolean Expressions Using Matrix Algebra Minimization of Boolean Expressions Using Matrix Algebra Holger Schwender Collaborative Research Center SFB 475 University of Dortmund holger.schwender@udo.edu Abstract The more variables a logic expression

More information

Coresets for Bayesian Logistic Regression

Coresets for Bayesian Logistic Regression Coresets for Bayesian Logistic Regression Tamara Broderick ITT Career Development Assistant Professor, MIT With: Jonathan H. Huggins, Trevor Campbell 1 Bayesian inference Bayesian inference Complex, modular

More information

Fast Dimension Reduction

Fast Dimension Reduction Fast Dimension Reduction MMDS 2008 Nir Ailon Google Research NY Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes (with Edo Liberty) The Fast Johnson Lindenstrauss Transform (with Bernard

More information

Sketched Ridge Regression:

Sketched Ridge Regression: Sketched Ridge Regression: Optimization and Statistical Perspectives Shusen Wang UC Berkeley Alex Gittens RPI Michael Mahoney UC Berkeley Overview Ridge Regression min w f w = 1 n Xw y + γ w Over-determined:

More information

Model-Free Knockoffs: High-Dimensional Variable Selection that Controls the False Discovery Rate

Model-Free Knockoffs: High-Dimensional Variable Selection that Controls the False Discovery Rate Model-Free Knockoffs: High-Dimensional Variable Selection that Controls the False Discovery Rate Lucas Janson, Stanford Department of Statistics WADAPT Workshop, NIPS, December 2016 Collaborators: Emmanuel

More information

Faster Johnson-Lindenstrauss style reductions

Faster Johnson-Lindenstrauss style reductions Faster Johnson-Lindenstrauss style reductions Aditya Menon August 23, 2007 Outline 1 Introduction Dimensionality reduction The Johnson-Lindenstrauss Lemma Speeding up computation 2 The Fast Johnson-Lindenstrauss

More information

A fast randomized algorithm for overdetermined linear least-squares regression

A fast randomized algorithm for overdetermined linear least-squares regression A fast randomized algorithm for overdetermined linear least-squares regression Vladimir Rokhlin and Mark Tygert Technical Report YALEU/DCS/TR-1403 April 28, 2008 Abstract We introduce a randomized algorithm

More information

Expression Data Exploration: Association, Patterns, Factors & Regression Modelling

Expression Data Exploration: Association, Patterns, Factors & Regression Modelling Expression Data Exploration: Association, Patterns, Factors & Regression Modelling Exploring gene expression data Scale factors, median chip correlation on gene subsets for crude data quality investigation

More information

Tighter Low-rank Approximation via Sampling the Leveraged Element

Tighter Low-rank Approximation via Sampling the Leveraged Element Tighter Low-rank Approximation via Sampling the Leveraged Element Srinadh Bhojanapalli The University of Texas at Austin bsrinadh@utexas.edu Prateek Jain Microsoft Research, India prajain@microsoft.com

More information

Fast Random Projections using Lean Walsh Transforms Yale University Technical report #1390

Fast Random Projections using Lean Walsh Transforms Yale University Technical report #1390 Fast Random Projections using Lean Walsh Transforms Yale University Technical report #1390 Edo Liberty Nir Ailon Amit Singer Abstract We present a k d random projection matrix that is applicable to vectors

More information

Proteomics and Variable Selection

Proteomics and Variable Selection Proteomics and Variable Selection p. 1/55 Proteomics and Variable Selection Alex Lewin With thanks to Paul Kirk for some graphs Department of Epidemiology and Biostatistics, School of Public Health, Imperial

More information

MANY scientific computations, signal processing, data analysis and machine learning applications lead to large dimensional

MANY scientific computations, signal processing, data analysis and machine learning applications lead to large dimensional Low rank approximation and decomposition of large matrices using error correcting codes Shashanka Ubaru, Arya Mazumdar, and Yousef Saad 1 arxiv:1512.09156v3 [cs.it] 15 Jun 2017 Abstract Low rank approximation

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

RandNLA: Randomized Numerical Linear Algebra

RandNLA: Randomized Numerical Linear Algebra RandNLA: Randomized Numerical Linear Algebra Petros Drineas Rensselaer Polytechnic Institute Computer Science Department To access my web page: drineas RandNLA: sketch a matrix by row/ column sampling

More information

RandNLA: Randomization in Numerical Linear Algebra

RandNLA: Randomization in Numerical Linear Algebra RandNLA: Randomization in Numerical Linear Algebra Petros Drineas Department of Computer Science Rensselaer Polytechnic Institute To access my web page: drineas Why RandNLA? Randomization and sampling

More information

Mixture models for analysing transcriptome and ChIP-chip data

Mixture models for analysing transcriptome and ChIP-chip data Mixture models for analysing transcriptome and ChIP-chip data Marie-Laure Martin-Magniette French National Institute for agricultural research (INRA) Unit of Applied Mathematics and Informatics at AgroParisTech,

More information

Accelerated Dense Random Projections

Accelerated Dense Random Projections 1 Advisor: Steven Zucker 1 Yale University, Department of Computer Science. Dimensionality reduction (1 ε) xi x j 2 Ψ(xi ) Ψ(x j ) 2 (1 + ε) xi x j 2 ( n 2) distances are ε preserved Target dimension k

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

Randomized algorithms for the approximation of matrices

Randomized algorithms for the approximation of matrices Randomized algorithms for the approximation of matrices Luis Rademacher The Ohio State University Computer Science and Engineering (joint work with Amit Deshpande, Santosh Vempala, Grant Wang) Two topics

More information

arxiv: v1 [cs.ds] 8 Aug 2014

arxiv: v1 [cs.ds] 8 Aug 2014 Asymptotically exact streaming algorithms Marc Heinrich, Alexander Munteanu, and Christian Sohler Département d Informatique, École Normale Supérieure, Paris, France marc.heinrich@ens.fr Department of

More information

to be more efficient on enormous scale, in a stream, or in distributed settings.

to be more efficient on enormous scale, in a stream, or in distributed settings. 16 Matrix Sketching The singular value decomposition (SVD) can be interpreted as finding the most dominant directions in an (n d) matrix A (or n points in R d ). Typically n > d. It is typically easy to

More information

Partial factor modeling: predictor-dependent shrinkage for linear regression

Partial factor modeling: predictor-dependent shrinkage for linear regression modeling: predictor-dependent shrinkage for linear Richard Hahn, Carlos Carvalho and Sayan Mukherjee JASA 2013 Review by Esther Salazar Duke University December, 2013 Factor framework The factor framework

More information

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform

Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Some Useful Background for Talk on the Fast Johnson-Lindenstrauss Transform Nir Ailon May 22, 2007 This writeup includes very basic background material for the talk on the Fast Johnson Lindenstrauss Transform

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Fast Random Projections

Fast Random Projections Fast Random Projections Edo Liberty 1 September 18, 2007 1 Yale University, New Haven CT, supported by AFOSR and NGA (www.edoliberty.com) Advised by Steven Zucker. About This talk will survey a few random

More information

arxiv: v3 [cs.ds] 21 Mar 2013

arxiv: v3 [cs.ds] 21 Mar 2013 Low-distortion Subspace Embeddings in Input-sparsity Time and Applications to Robust Linear Regression Xiangrui Meng Michael W. Mahoney arxiv:1210.3135v3 [cs.ds] 21 Mar 2013 Abstract Low-distortion subspace

More information

A Fast Algorithm For Computing The A-optimal Sampling Distributions In A Big Data Linear Regression

A Fast Algorithm For Computing The A-optimal Sampling Distributions In A Big Data Linear Regression A Fast Algorithm For Computing The A-optimal Sampling Distributions In A Big Data Linear Regression Hanxiang Peng and Fei Tan Indiana University Purdue University Indianapolis Department of Mathematical

More information

Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares

Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares Gradient-based Sampling: An Adaptive Importance Sampling for Least-squares Rong Zhu Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China. rongzhu@amss.ac.cn Abstract

More information

Introduction The framework Bias and variance Approximate computation of leverage Empirical evaluation Discussion of sampling approach in big data

Introduction The framework Bias and variance Approximate computation of leverage Empirical evaluation Discussion of sampling approach in big data Discussion of sampling approach in big data Big data discussion group at MSCS of UIC Outline 1 Introduction 2 The framework 3 Bias and variance 4 Approximate computation of leverage 5 Empirical evaluation

More information

The Fast Cauchy Transform and Faster Robust Linear Regression

The Fast Cauchy Transform and Faster Robust Linear Regression The Fast Cauchy Transform and Faster Robust Linear Regression Kenneth L Clarkson Petros Drineas Malik Magdon-Ismail Michael W Mahoney Xiangrui Meng David P Woodruff Abstract We provide fast algorithms

More information

Computational Biology Course Descriptions 12-14

Computational Biology Course Descriptions 12-14 Computational Biology Course Descriptions 12-14 Course Number and Title INTRODUCTORY COURSES BIO 311C: Introductory Biology I BIO 311D: Introductory Biology II BIO 325: Genetics CH 301: Principles of Chemistry

More information

CS 229r: Algorithms for Big Data Fall Lecture 17 10/28

CS 229r: Algorithms for Big Data Fall Lecture 17 10/28 CS 229r: Algorithms for Big Data Fall 2015 Prof. Jelani Nelson Lecture 17 10/28 Scribe: Morris Yau 1 Overview In the last lecture we defined subspace embeddings a subspace embedding is a linear transformation

More information

Yale university technical report #1402.

Yale university technical report #1402. The Mailman algorithm: a note on matrix vector multiplication Yale university technical report #1402. Edo Liberty Computer Science Yale University New Haven, CT Steven W. Zucker Computer Science and Appled

More information

Advances in Extreme Learning Machines

Advances in Extreme Learning Machines Advances in Extreme Learning Machines Mark van Heeswijk April 17, 2015 Outline Context Extreme Learning Machines Part I: Ensemble Models of ELM Part II: Variable Selection and ELM Part III: Trade-offs

More information

Dense Fast Random Projections and Lean Walsh Transforms

Dense Fast Random Projections and Lean Walsh Transforms Dense Fast Random Projections and Lean Walsh Transforms Edo Liberty, Nir Ailon, and Amit Singer Abstract. Random projection methods give distributions over k d matrices such that if a matrix Ψ (chosen

More information

Random Projections for Support Vector Machines

Random Projections for Support Vector Machines Saurabh Paul Christos Boutsidis Malik Magdon-Ismail Petros Drineas Computer Science Dept. Mathematical Sciences Dept. Computer Science Dept. Computer Science Dept. Rensselaer Polytechnic Inst. IBM Research

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Mixtures and Hidden Markov Models for analyzing genomic data

Mixtures and Hidden Markov Models for analyzing genomic data Mixtures and Hidden Markov Models for analyzing genomic data Marie-Laure Martin-Magniette UMR AgroParisTech/INRA Mathématique et Informatique Appliquées, Paris UMR INRA/UEVE ERL CNRS Unité de Recherche

More information

Comparison of the Empirical Bayes and the Significance Analysis of Microarrays

Comparison of the Empirical Bayes and the Significance Analysis of Microarrays Comparison of the Empirical Bayes and the Significance Analysis of Microarrays Holger Schwender, Andreas Krause, and Katja Ickstadt Abstract Microarrays enable to measure the expression levels of tens

More information

Randomized Numerical Linear Algebra: Review and Progresses

Randomized Numerical Linear Algebra: Review and Progresses ized ized SVD ized : Review and Progresses Zhihua Department of Computer Science and Engineering Shanghai Jiao Tong University The 12th China Workshop on Machine Learning and Applications Xi an, November

More information

Master of Science in Statistics A Proposal

Master of Science in Statistics A Proposal 1 Master of Science in Statistics A Proposal Rationale of the Program In order to cope up with the emerging complexity on the solutions of realistic problems involving several phenomena of nature it is

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Sketching as a Tool for Numerical Linear Algebra

Sketching as a Tool for Numerical Linear Algebra Foundations and Trends R in Theoretical Computer Science Vol. 10, No. 1-2 (2014) 1 157 c 2014 D. P. Woodruff DOI: 10.1561/0400000060 Sketching as a Tool for Numerical Linear Algebra David P. Woodruff IBM

More information

Outline Challenges of Massive Data Combining approaches Application: Event Detection for Astronomical Data Conclusion. Abstract

Outline Challenges of Massive Data Combining approaches Application: Event Detection for Astronomical Data Conclusion. Abstract Abstract The analysis of extremely large, complex datasets is becoming an increasingly important task in the analysis of scientific data. This trend is especially prevalent in astronomy, as large-scale

More information

Recovering any low-rank matrix, provably

Recovering any low-rank matrix, provably Recovering any low-rank matrix, provably Rachel Ward University of Texas at Austin October, 2014 Joint work with Yudong Chen (U.C. Berkeley), Srinadh Bhojanapalli and Sujay Sanghavi (U.T. Austin) Matrix

More information

Bayesian Grouped Horseshoe Regression with Application to Additive Models

Bayesian Grouped Horseshoe Regression with Application to Additive Models Bayesian Grouped Horseshoe Regression with Application to Additive Models Zemei Xu 1,2, Daniel F. Schmidt 1, Enes Makalic 1, Guoqi Qian 2, John L. Hopper 1 1 Centre for Epidemiology and Biostatistics,

More information

Theoretical and computational aspects of association tests: application in case-control genome-wide association studies.

Theoretical and computational aspects of association tests: application in case-control genome-wide association studies. Theoretical and computational aspects of association tests: application in case-control genome-wide association studies Mathieu Emily November 18, 2014 Caen mathieu.emily@agrocampus-ouest.fr - Agrocampus

More information

Lecture 9: Low Rank Approximation

Lecture 9: Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Fall 2018 Lecture 9: Low Rank Approximation Lecturer: Shayan Oveis Gharan February 8th Scribe: Jun Qi Disclaimer: These notes have not been subjected to the

More information

25.2 Last Time: Matrix Multiplication in Streaming Model

25.2 Last Time: Matrix Multiplication in Streaming Model EE 381V: Large Scale Learning Fall 01 Lecture 5 April 18 Lecturer: Caramanis & Sanghavi Scribe: Kai-Yang Chiang 5.1 Review of Streaming Model Streaming model is a new model for presenting massive data.

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 22 1 / 21 Overview

More information

Fast Approximation of Matrix Coherence and Statistical Leverage

Fast Approximation of Matrix Coherence and Statistical Leverage Journal of Machine Learning Research 13 (01) 3475-3506 Submitted 7/1; Published 1/1 Fast Approximation of Matrix Coherence and Statistical Leverage Petros Drineas Malik Magdon-Ismail Department of Computer

More information

Dimensionality Reduction Notes 3

Dimensionality Reduction Notes 3 Dimensionality Reduction Notes 3 Jelani Nelson minilek@seas.harvard.edu August 13, 2015 1 Gordon s theorem Let T be a finite subset of some normed vector space with norm X. We say that a sequence T 0 T

More information

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing.

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Previous lecture P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Interaction Outline: Definition of interaction Additive versus multiplicative

More information

Computationally Efficient Estimation of Multilevel High-Dimensional Latent Variable Models

Computationally Efficient Estimation of Multilevel High-Dimensional Latent Variable Models Computationally Efficient Estimation of Multilevel High-Dimensional Latent Variable Models Tihomir Asparouhov 1, Bengt Muthen 2 Muthen & Muthen 1 UCLA 2 Abstract Multilevel analysis often leads to modeling

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Statistical Clustering of Vesicle Patterns Practical Aspects of the Analysis of Large Datasets with R

Statistical Clustering of Vesicle Patterns Practical Aspects of the Analysis of Large Datasets with R Statistical Clustering of Vesicle Patterns Mirko Birbaumer Rmetrics Workshop 3th July 2008 1 / 23 Statistical Clustering of Vesicle Patterns Practical Aspects of the Analysis of Large Datasets with R Mirko

More information

On Bayesian Computation

On Bayesian Computation On Bayesian Computation Michael I. Jordan with Elaine Angelino, Maxim Rabinovich, Martin Wainwright and Yun Yang Previous Work: Information Constraints on Inference Minimize the minimax risk under constraints

More information

Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models

Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models David B. Dahl Department of Statistics Texas A&M University Marina Vannucci, Michael Newton, & Qianxing Mo

More information

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Jan Vybíral Austrian Academy of Sciences RICAM, Linz, Austria January 2011 MPI Leipzig, Germany joint work with Aicke

More information

Randomized Algorithms in Linear Algebra and Applications in Data Analysis

Randomized Algorithms in Linear Algebra and Applications in Data Analysis Randomized Algorithms in Linear Algebra and Applications in Data Analysis Petros Drineas Rensselaer Polytechnic Institute Computer Science Department To access my web page: drineas Why linear algebra?

More information

sublinear time low-rank approximation of positive semidefinite matrices Cameron Musco (MIT) and David P. Woodru (CMU)

sublinear time low-rank approximation of positive semidefinite matrices Cameron Musco (MIT) and David P. Woodru (CMU) sublinear time low-rank approximation of positive semidefinite matrices Cameron Musco (MIT) and David P. Woodru (CMU) 0 overview Our Contributions: 1 overview Our Contributions: A near optimal low-rank

More information

Discovering molecular pathways from protein interaction and ge

Discovering molecular pathways from protein interaction and ge Discovering molecular pathways from protein interaction and gene expression data 9-4-2008 Aim To have a mechanism for inferring pathways from gene expression and protein interaction data. Motivation Why

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

ESL Chap3. Some extensions of lasso

ESL Chap3. Some extensions of lasso ESL Chap3 Some extensions of lasso 1 Outline Consistency of lasso for model selection Adaptive lasso Elastic net Group lasso 2 Consistency of lasso for model selection A number of authors have studied

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Zhiguang Huo 1, Chi Song 2, George Tseng 3. July 30, 2018

Zhiguang Huo 1, Chi Song 2, George Tseng 3. July 30, 2018 Bayesian latent hierarchical model for transcriptomic meta-analysis to detect biomarkers with clustered meta-patterns of differential expression signals BayesMP Zhiguang Huo 1, Chi Song 2, George Tseng

More information

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions in GWAS

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions in GWAS Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions in GWAS Jorge González-Domínguez*, Bertil Schmidt*, Jan C. Kässens**, Lars Wienbrandt** *Parallel and Distributed Architectures

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

Some Statistical Models and Algorithms for Change-Point Problems in Genomics

Some Statistical Models and Algorithms for Change-Point Problems in Genomics Some Statistical Models and Algorithms for Change-Point Problems in Genomics S. Robin UMR 518 AgroParisTech / INRA Applied MAth & Comput. Sc. Journées SMAI-MAIRCI Grenoble, September 2012 S. Robin (AgroParisTech

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

Hypes and Other Important Developments in Statistics

Hypes and Other Important Developments in Statistics Hypes and Other Important Developments in Statistics Aad van der Vaart Vrije Universiteit Amsterdam May 2009 The Hype Sparsity For decades we taught students that to estimate p parameters one needs n p

More information

Fast Dimension Reduction

Fast Dimension Reduction Fast Dimension Reduction Nir Ailon 1 Edo Liberty 2 1 Google Research 2 Yale University Introduction Lemma (Johnson, Lindenstrauss (1984)) A random projection Ψ preserves all ( n 2) distances up to distortion

More information

2017 SISG Module 1: Bayesian Statistics for Genetics Lecture 7: Generalized Linear Modeling

2017 SISG Module 1: Bayesian Statistics for Genetics Lecture 7: Generalized Linear Modeling 2017 SISG Module 1: Bayesian Statistics for Genetics Lecture 7: Generalized Linear Modeling Jon Wakefield Departments of Statistics and Biostatistics University of Washington Outline Introduction and Motivating

More information

Multi Omics Clustering. ABDBM Ron Shamir

Multi Omics Clustering. ABDBM Ron Shamir Multi Omics Clustering ABDBM Ron Shamir 1 Outline Introduction Cluster of Clusters (COCA) icluster Nonnegative Matrix Factorization (NMF) Similarity Network Fusion (SNF) Multiple Kernel Learning (MKL)

More information

Causal Discovery by Computer

Causal Discovery by Computer Causal Discovery by Computer Clark Glymour Carnegie Mellon University 1 Outline 1. A century of mistakes about causation and discovery: 1. Fisher 2. Yule 3. Spearman/Thurstone 2. Search for causes is statistical

More information

Scaling up Bayesian Inference

Scaling up Bayesian Inference Scaling up Bayesian Inference David Dunson Departments of Statistical Science, Mathematics & ECE, Duke University May 1, 2017 Outline Motivation & background EP-MCMC amcmc Discussion Motivation & background

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

COMPRESSED AND PENALIZED LINEAR

COMPRESSED AND PENALIZED LINEAR COMPRESSED AND PENALIZED LINEAR REGRESSION Daniel J. McDonald Indiana University, Bloomington mypage.iu.edu/ dajmcdon 2 June 2017 1 OBLIGATORY DATA IS BIG SLIDE Modern statistical applications genomics,

More information

Inferring Transcriptional Regulatory Networks from High-throughput Data

Inferring Transcriptional Regulatory Networks from High-throughput Data Inferring Transcriptional Regulatory Networks from High-throughput Data Lectures 9 Oct 26, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20

More information

Exercise Sheet 1. 1 Probability revision 1: Student-t as an infinite mixture of Gaussians

Exercise Sheet 1. 1 Probability revision 1: Student-t as an infinite mixture of Gaussians Exercise Sheet 1 1 Probability revision 1: Student-t as an infinite mixture of Gaussians Show that an infinite mixture of Gaussian distributions, with Gamma distributions as mixing weights in the following

More information

Lecture 18 Nov 3rd, 2015

Lecture 18 Nov 3rd, 2015 CS 229r: Algorithms for Big Data Fall 2015 Prof. Jelani Nelson Lecture 18 Nov 3rd, 2015 Scribe: Jefferson Lee 1 Overview Low-rank approximation, Compression Sensing 2 Last Time We looked at three different

More information

QALGO workshop, Riga. 1 / 26. Quantum algorithms for linear algebra.

QALGO workshop, Riga. 1 / 26. Quantum algorithms for linear algebra. QALGO workshop, Riga. 1 / 26 Quantum algorithms for linear algebra., Center for Quantum Technologies and Nanyang Technological University, Singapore. September 22, 2015 QALGO workshop, Riga. 2 / 26 Overview

More information

Identifying Bio-markers for EcoArray

Identifying Bio-markers for EcoArray Identifying Bio-markers for EcoArray Ashish Bhan, Keck Graduate Institute Mustafa Kesir and Mikhail B. Malioutov, Northeastern University February 18, 2010 1 Introduction This problem was presented by

More information

Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap

Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap via the Bootstrap Miles E. Lopes 1 Shusen Wang 2 Michael W. Mahoney 2 Abstract Over the course of the past decade, a variety of randomized algorithms have been proposed for computing approximate least-squares

More information

a Short Introduction

a Short Introduction Collaborative Filtering in Recommender Systems: a Short Introduction Norm Matloff Dept. of Computer Science University of California, Davis matloff@cs.ucdavis.edu December 3, 2016 Abstract There is a strong

More information

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Mingon Kang, Ph.D. Computer Science, Kennesaw State University Problems

More information

Robust Preprocessing of Time Series with Trends

Robust Preprocessing of Time Series with Trends Robust Preprocessing of Time Series with Trends Roland Fried Ursula Gather Department of Statistics, Universität Dortmund ffried,gatherg@statistik.uni-dortmund.de Michael Imhoff Klinikum Dortmund ggmbh

More information

Disease mapping with Gaussian processes

Disease mapping with Gaussian processes EUROHEIS2 Kuopio, Finland 17-18 August 2010 Aki Vehtari (former Helsinki University of Technology) Department of Biomedical Engineering and Computational Science (BECS) Acknowledgments Researchers - Jarno

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

A fast randomized algorithm for approximating an SVD of a matrix

A fast randomized algorithm for approximating an SVD of a matrix A fast randomized algorithm for approximating an SVD of a matrix Joint work with Franco Woolfe, Edo Liberty, and Vladimir Rokhlin Mark Tygert Program in Applied Mathematics Yale University Place July 17,

More information

17 Random Projections and Orthogonal Matching Pursuit

17 Random Projections and Orthogonal Matching Pursuit 17 Random Projections and Orthogonal Matching Pursuit Again we will consider high-dimensional data P. Now we will consider the uses and effects of randomness. We will use it to simplify P (put it in a

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

Bustamante et al., Supplementary Nature Manuscript # 1 out of 9 Information #

Bustamante et al., Supplementary Nature Manuscript # 1 out of 9 Information # Bustamante et al., Supplementary Nature Manuscript # 1 out of 9 Details of PRF Methodology In the Poisson Random Field PRF) model, it is assumed that non-synonymous mutations at a given gene are either

More information