Synchrotron radiation

Size: px
Start display at page:

Download "Synchrotron radiation"

Transcription

1 Synchrotron radiation Bremsstrahlung is the electromagnetic radiation produced by the acceleration of a charged particle, such as an electron The electromagnetic field generated by a particle of charge q subjected to an acceleration a is described (at large distance R) by: E = q/(4πε 0 c 2 R) 1/(1-n v/c) 3 n [(n v/c) a] B = (n E)/c Poynting s vector: Σ = 1/μ 0 E B Σ n [(n v/c) a] 2 1/(1-n v/c) 6 v c The larger is a the larger the intensity of the emitted radiation B α = 1/γ = (1 β 2 ) 1/2 e - e - hν The synchrotron light is linearly polarized in the electron plane perpendicularly to the electrons trajectory

2 ESRF in Grenoble Electrons emitted by an electron gun are first accelerated in a linear accelerator (linac) and then transmitted to a circular accelerator (booster synchrotron) where they are accelerated to reach an energy level of 6 GeV. European Synchrotron Radiation Facility, Grenoble E = mc β β = These high-energy electrons are then injected into a large storage ring (844 meters in circumference) where they circulate in a vacuum environment, at a constant energy, for many hours.

3 Beamline Beamlines at ESRF The synchrotron beams emitted by the electrons are directed towards the "beamlines" which surround the storage ring in the experimental hall. Each beamline is designed for use with a specific technique or for a specific type of research. Experiments run throughout the day and night.

4 Undulator: The elliptical undulator is a devices for the production of circularly polarized synchrotron radiation. In an EPU, the magnetic field vector rotates as a particle passes through the device, causing the particle to spiral about a central axis. EPUs consist of four banks of magnets two on top and two below. The peak energy of the undulator output is changed by varying the vertical separation between the magnet assemblies, a so-called gap scan, while the polarization is varied by changing the relative positions (phases) of adjacent rows of magnets a row scan. Magnets and particle path in an EPU. Monochromator: an optics consisting of mirror and gratings select the photon energy -> ΔE/E <10-3 Intensity: photons/second For comparison a Mg K α XPS laboratory source produces an intensity of 10 7 photons/second Acquisition time: 1 second vs 30 hours for comparable signal to noise ratio

5 Synchrotron light spectrum SLS: Swiss Light Source Photons/sec/mr 2 /0.1%BW Electron energy: 2Gev Bending magnetic field:1t BW = band width = Δλ/λ Photons energy (ev) You can chose the photon energy you want Convention: Soft X-rays -> energy < 1keV Hard X-rays -> energy > 1keV

6 Photon - electron interaction Electron in the electric field generate by the photons H = H part + H int = p 2 /2m + V coulomb + H int Example: the electron in a H atom with H int = 0 V coulomb = -e 2 /4πε 0 r In terms of the spherical coordinates r, θ, and φ the wave function takes the form Ψ(r, θ, φ) = R(r) Θ(θ) Φ(φ) which gives three equations. The equation for each of the three variables gives rise to a quantum number and the quantized energy states of the atom can be specified in terms of these quantum numbers. A fourth quantum number arises from electron spin. Two electrons can not have an identical set of quantum numbers according to the Pauli exclusion principle. R(r) -> principal quantum number n = 1, 2, 3,.. (K, L, M,..) Θ(θ) -> orbital quantum number L = 0, 1, 2,, n-1 Φ(φ) -> magnetic quantum number m l = -L, -(L-1),. L-1, L -> spin quantum number m S = ± 1/2

7 Interaction of the electron with the electromagnetic field H int = Σ i (-q i /m i p A + q i2 /2m i A 2 + b i S i B) A(r,t) = Σ k α k ε k [a k exp(-iω k t+ik r)+ a k+ exp(iω k t-ik r)] ε is a unit vector defining the light polarization 1) Single photon process: destruction (a k term) or creation (a k+ term) of a photon conserving the energy 2) Two photons process: elastic diffusion with the destruction and the creation of a photon with the same energy 3) Zeeman effect: electron interaction with the magnetic field of the electromagnetic radiation On a first approximation only the first term is taken into account. Moreover, if the photon wavelength is large compared to the electronic shell dimension the electrical field can be considered position independent (A(r,t) = A(0,t) -> dipole approximation). It can also be shown that: e/m p A(0,t) = e r E(0,t) H int (0,t) r ε [a k exp(-iω k t) + c.c.]

8 The probability of the electronic transition between an initial state i and a final exited state f is described by the time dependent perturbation theory: W i f = 2π/ħ 2 f H int i 2 δ(ω fi ) with ω fi = (E f E i )/ħ For example in the case of the Hydrogen atom (central potential) i is described by n i, l i, m i where n, l, m are the quantum numbers In the dipole approximation W i f = 2π/ħ 2 f r ε i 2 [ a k 2 δ(ω fi - ω k ) + a k + 2 δ(ω fi + ω k ) ] σ= W i f /I 0 -> cross section of the photon-electron interaction (I 0 photon intensity) Energy conservation: term a k : annihilation of a photon with energy ħω k = (E f E i ) term a k + : creation of a photon with energy ħω k = (E i E f ) Dipole selection rule: ΔL = ± 1, Δm = 0, ± 1 ΔL = ± 1, Δm = + 1, ΔL = ± 1, Δm = 1, ΔS = 0 (linear polarization) ΔS = 0 (circular right polarization) ΔS = 0 (circular left polarization) Note: in a solid the quantum number L is replaced by J Any electron transition which involves the emission of a photon must involve a change of 1 in the angular momentum. The photon is said to have an intrinsic angular momentum or "spin" of 1, so that conservation of angular momentum in photon emission requires a change of 1 in the atom's angular momentum.

9 XAS: X-rays absorption spectroscopy Z = 79 Gold Measure of the x-rays intensity absorbed by the sample as a function of the in-coming photon energy A narrow beam of mono energetic photons with an incident intensity I o, penetrating a layer of material with mass thickness x and density ρ, emerges with intensity I given by the exponential attenuation law: I/I 0 = exp[-(μ/ρ)x] The mass thickness is defined as the mass per unit area, and is obtained by multiplying the thickness t by the density ρ, i.e., x = ρt. Usually the ratio μ/ρ is tabulated where: μ/ρ = x -1 ln(i 0 /I) The ratio μ/ρ is a measure of the probability of a given interaction process of photons with matter In particular we have μ/ρ = σ tot /ua where u = g is the atomic mass unit, A is the relative atomic mass of the target element, and σ tot is the total cross section for an interaction by the photon, frequently given in units of b/atom (barns/atom), where b = cm 2.

10 The total cross section can be written as the sum over contributions from the principal photon interactions The sharp edges correspond to the photon-electron interaction, while the intensity reduction in between is due to the other interaction processes σ tot = σ pe + σ coh + σ incoh + σ pair + σ trip + σ ph.n where σ pe is the atomic photon-electron cross section, σ coh and σ incoh are the coherent (Rayleigh) and the incoherent (Compton) scattering cross sections, respectively, σ pair and σ trip are the cross sections for electronpositron production in the fields of the nucleus and of the atomic electrons, respectively, and σ ph.n is the photonuclear cross section. M I edge E = 3425 ev M II edge E = 3148 ev M III edge E = 2743 ev M IV edge E = 2291 ev M V edge E = 2206 ev L I edge E = ev L II edge E = ev L III edge E = ev K edge E = ev

11 Some examples Z = 13 Aluminum Z = 29 copper Z = 79 Gold Z = 82 Lead For a fixed photon energy, absorption is highest in heavy material like Au or Pb Ex: for E = 2 kev Pb > μ/ρ = cm 2 /g and ρ = 11 g/cm 3 > I/I 0 = e -1 for t = cm Al > μ/ρ = cm 2 /g and ρ = 2.7 g/cm 3 > I/I 0 = e -1 for t = cm for E = 400 kev Pb > μ/ρ = cm 2 /g and ρ = 11 g/cm 3 > I/I 0 = e -1 for t = 0.4 cm Al > μ/ρ = cm 2 /g and ρ = 2.7 g/cm 3 > I/I 0 = e -1 for t = 3.9 cm

12 Several ways to measure the X-rays absorption: 1) Transmission: measure of the photon intensity after the beam traveled across the sample -> the more clean technique but for soft X-rays you need a thin sample (< 100 nm) 2) Total electron yield: measure of the current flowing from ground to the sample to counterbalance the emitted electrons -> surface sensibility because only the electrons coming from the surface layers can escape the sample 3) Emitted electrons: measure of the emitted electrons like in the Auger and XPS technique -> you need a complicate and expensive analyzer but you can have surface sensibility 4) Fluorescence: measure of the photons emitted during the relaxation process -> you have bulk sensibility but you need to separate the contribution of the in-coming and out-coming photons Photons + electrons X-rays Transmitted X-rays A

13 Actually the detection mode depends on the experiment you want to perform Ex.: detection of the emitted electrons K. Amemiya et al., J. Phys.: Condens. Matter 15, S561 (2003) The Cu signal increases increasing the detection angle (measured respect to the surface plane) -> you are loosing surface sensibility due to the increased electron escape depth Electron mean free path Only electrons generated at a surface distance not exciding the red line can escape in a direction parallel to the surface

14 Oscillations in absorption due to interference between outgoing and scattered photoelectrons by neighbors at r - Higher coordination higher amplitude - Shorter r increased period Convention: EXAFS -> about 100 ev above absorption edge XANES -> around the absorption edge

15 XPS Two well-separated N 1s peaks are observed with a chemical shift of 1.3 ev. The peak with the lowest binding energy (399.4 ev) corresponds to ionization of the outer N atom, whereas the high binding energy peak at ev is due to ionization of the inner N atom XAS In X-ray Absorption spectroscopy, a core electron is excited into unocupied atomic/molecular orbitals above the Fermi level. The XAS records the absorption intensity as a function of the incoming photon energy. In the soft x-ray regime electronic transitions are governed by dipole selection rules and consequently the absorption cross-sections show a polarization dependent angular anisotropy. By means of polarization dependent XAS measurements it is therefore possible to determine the orientation of molecular adsorbates.

16 Chemical shift H = H + H atom crystal field p Ze e H = + + ( r) l s; H = eφ ( r) i atom ξ i i i crystal field 2m ri rij XAS XPS Spin-orbit coupling of the 2p core levels Spin-orbit coupling of the 3d valence states Ti 2 O 3 Modification of the electronic cloud produces a perturbation of the entire Hamiltonian (included the core levels) Appl. Phys. A 78, (2004); J. Phys. Soc. Jpn., Vol. 75, (2006)

17 XANES: X-ray Absorption Near Edge Structure The absorption edge shape is representative of the film thickness and chemical composition Co/Pt(111) J. Thiele et al. Surf. Sci.. 384, 120 (1997) SiO 2 /Ni 81 Fe 19 (80 Å)/Co(20 Å)/ Al(20 Å+plasma oxidation for x seconds)/ Ni 18 Fe 19 (100 Å)/Cu(30 Å) Satellite peak due to the CoO N.D. Telling et al. Appl. Phys. Lett. 85, 3803 (2004)

18 Catalysis and catalysts A catalyst is a substance that increases the rate of a reaction Gold particles as a catalyst: CO + O 2 -> 2CO 2 A. T. Bell, Science, 299, 1688 (2003); M. Valden et al., Science, 281, 1647 (1998); C. Zhang et al., J. Am. Chem. Soc., 129, 2228 (2007); A. Cho, Science, 299, 1684 (2003) CO2 formation. (a-c) Au20 island with coadsorbed O 2 and CO (C atom in gray online): (a) the initial configuration; (b) the transition state (c) formation and desorption of CO 2 ; (d) the total energy profile along the C-O(2) reaction coordinate.

19 XANES spectra Angew. Chem. Int. Ed., 45, 4651 (2006) Pure Au Au + O 2 Au + CO Exposing the Au + O 2 to CO Produces first the CO + O 2 -> CO 2 And then the Au + CO.bonding formation

20 Diffraction Structure of chocolate unraveled at the ESRF Think about a piece of chocolate. Imagine it melting in your mouth. The sensation is delicious. Now think of the same image, but this time the chocolate is covered by a white film on its surface. This white film is produced when chocolate is poorly crystallized or when it is stored under the wrong conditions. We 'eat' also with our eyes and such badlooking chocolate seems less nice to the palate. Researchers from The Netherlands, working at the ESRF, are trying to avoid this white layer, called fat bloom, by studying the structure of chocolate. They studied the structure of a component of cocoa butter and also the crystal structure of the most common form of cocoa butter in chocolate

21 Band structure Schematic ray diagrams for the interference paths corresponding to quantum well states of the first kind (top panel) and the second kind (bottom panel). The first kind involves two S reflections, one each at the surface and the interface, while the second kind involves two S reflections at the surface and a pair of conjugate U (umklapp) reflections at the interface. While a S reflection preserves k //, a U reflection changes k // to k // -G (with G the surface reciprocal lattice vector of Ge) Angle-resolved photoemission data taken from a 13 ML Ag film on Ge(111) (top panel) and the same overlaid with labels and results from a model calculation (bottom panel). The set of approximately parabolic bands centered about the M point of Ge are quantum well states of the second kind. The quantum numbers n are indicated. Q1, Q2, and Q3 are quantum well states of the first kind. SS is a Shockley surface state. Phys. Rev. Lett., 96, (2006) Phys. Rev. Lett. 97, (2006)

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization r lim = 0 r e + e - mv 2/r e 2 /(4πε 0 r 2 ) KE } W = ½mv 2 - Electrons e =.6022x0-9 C ε 0 = 8.854x0-2 F/m m 0 = 9.094x0-3 kg PE } e 2 4πε 0 r (PE= F d ) e e W = - =( 2 2 -e 2 8πε 0 r 4πε 0 r ) mv 2 e

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7 Advanced Lab Course X-Ray Photoelectron Spectroscopy M210 As of: 2015-04-01 Aim: Chemical analysis of surfaces. Content 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT 3 3.1 Qualitative analysis 6 3.2 Chemical

More information

4. Inelastic Scattering

4. Inelastic Scattering 1 4. Inelastic Scattering Some inelastic scattering processes A vast range of inelastic scattering processes can occur during illumination of a specimen with a highenergy electron beam. In principle, many

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~pchemlab ; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

The Use of Synchrotron Radiation in Modern Research

The Use of Synchrotron Radiation in Modern Research The Use of Synchrotron Radiation in Modern Research Physics Chemistry Structural Biology Materials Science Geochemical and Environmental Science Atoms, molecules, liquids, solids. Electronic and geometric

More information

X-ray Energy Spectroscopy (XES).

X-ray Energy Spectroscopy (XES). X-ray Energy Spectroscopy (XES). X-ray fluorescence as an analytical tool for element analysis is based on 3 fundamental parameters: A. Specificity: In determining an x-ray emission energy E certainty

More information

Electron Spectroscopy

Electron Spectroscopy Electron Spectroscopy Photoelectron spectroscopy is based upon a single photon in/electron out process. The energy of a photon is given by the Einstein relation : E = h ν where h - Planck constant ( 6.62

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission . X-ray Sources.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission. Synchrotron Radiation Sources - Introduction - Characteristics of Bending Magnet

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei. Motivation Spins and excited states of double-magic nucleus 16 O Decay spectra are caused by electro-magnetic transitions. g-spectroscopy deals with g-ray detection and is one of the most relevant methods

More information

Chapter Six: X-Rays. 6.1 Discovery of X-rays

Chapter Six: X-Rays. 6.1 Discovery of X-rays Chapter Six: X-Rays 6.1 Discovery of X-rays In late 1895, a German physicist, W. C. Roentgen was working with a cathode ray tube in his laboratory. He was working with tubes similar to our fluorescent

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source What Makes Up The Canadian Light Source? 4. Storage Ring 5. Synchrotron Light 6. Beamline 1. Electron Gun 2. Linear Accelerator

More information

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 Outline Generation/Absorption of X-rays History Synchrotron Light Sources Data reduction/analysis Examples Crystallite size from Coordination Number

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2 Photoelectron spectroscopy Instrumentation Nanomaterials characterization 2 RNDr. Věra V Vodičkov ková,, PhD. Photoelectron Spectroscopy general scheme Impact of X-ray emitted from source to the sample

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS) As part of the course Characterization of Catalysts and Surfaces Prof. Dr. Markus Ammann Paul Scherrer Institut markus.ammann@psi.ch Resource for further reading:

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

Lecture 10. Transition probabilities and photoelectric cross sections

Lecture 10. Transition probabilities and photoelectric cross sections Lecture 10 Transition probabilities and photoelectric cross sections TRANSITION PROBABILITIES AND PHOTOELECTRIC CROSS SECTIONS Cross section = = Transition probability per unit time of exciting a single

More information

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis Dmitry Zemlyanov Birck Nanotechnology Center, Purdue University Outline Introduction

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

CHAPTER 2 INTERACTION OF RADIATION WITH MATTER

CHAPTER 2 INTERACTION OF RADIATION WITH MATTER CHAPTER 2 INTERACTION OF RADIATION WITH MATTER 2.1 Introduction When gamma radiation interacts with material, some of the radiation will be absorbed by the material. There are five mechanisms involve in

More information

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter Charge Particle Interaction Energetic charged particles interact with matter by electrical forces and lose kinetic energy

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Electron Microscopy I

Electron Microscopy I Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I Introduction Properties of electrons Electron-matter interactions and their applications

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

X-ray diffraction is a non-invasive method for determining many types of

X-ray diffraction is a non-invasive method for determining many types of Chapter X-ray Diffraction.1 Introduction X-ray diffraction is a non-invasive method for determining many types of structural features in both crystalline and amorphous materials. In the case of single

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Characteristics and Properties of Synchrotron Radiation

Characteristics and Properties of Synchrotron Radiation Characteristics and Properties of Synchrotron Radiation Giorgio Margaritondo Vice-président pour les affaires académiques Ecole Polytechnique Fédérale de Lausanne (EPFL) Outline: How to build an excellent

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

5.8 Auger Electron Spectroscopy (AES)

5.8 Auger Electron Spectroscopy (AES) 5.8 Auger Electron Spectroscopy (AES) 5.8.1 The Auger Process X-ray and high energy electron bombardment of atom can create core hole Core hole will eventually decay via either (i) photon emission (x-ray

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

An Introduction to XAFS

An Introduction to XAFS An Introduction to XAFS Matthew Newville Center for Advanced Radiation Sources The University of Chicago 21-July-2018 Slides for this talk: https://tinyurl.com/larch2018 https://millenia.cars.aps.anl.gov/gsecars/data/larch/2018workshop

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Conductance Measurements The conductance measurements were performed at the University of Aarhus. The Ag/Si surface was prepared using well-established procedures [1, 2]. After

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY SCHEME OF EVAUATION MANIPA INSTITUTE OF TECHNOOGY MANIPA UNIVERSITY, MANIPA SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY SUBJECT: ENGINEERING PHYSICS (PHY/) Time: 3 Hrs. Max. Marks: 5 Note: Answer

More information

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln X-ray Absorption Spectroscopy Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln Interaction of X-rays with matter Incident X-ray beam Fluorescent X-rays (XRF) Scattered

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

EEE4101F / EEE4103F Radiation Interactions & Detection

EEE4101F / EEE4103F Radiation Interactions & Detection EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March

More information

Shell Atomic Model and Energy Levels

Shell Atomic Model and Energy Levels Shell Atomic Model and Energy Levels (higher energy, deeper excitation) - Radio waves: Not absorbed and pass through tissue un-attenuated - Microwaves : Energies of Photos enough to cause molecular rotation

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

Appearance Potential Spectroscopy

Appearance Potential Spectroscopy Appearance Potential Spectroscopy Submitted by Sajanlal P. R CY06D009 Sreeprasad T. S CY06D008 Dept. of Chemistry IIT MADRAS February 2006 1 Contents Page number 1. Introduction 3 2. Theory of APS 3 3.

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

INTERACTIONS OF RADIATION WITH MATTER

INTERACTIONS OF RADIATION WITH MATTER INTERACTIONS OF RADIATION WITH MATTER Renée Dickinson, MS, DABR Medical Physicist University of Washington Medical Center Department of Radiology Diagnostic Physics Section Outline Describe the various

More information

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture Nuclear Physics (PHY-31) Dr C. M. Cormack 11 Nuclear Physics This Lecture This Lecture We will discuss an important effect in nuclear spectroscopy The Mössbauer Effect and its applications in technology

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

Lecture 10. Transition probabilities and photoelectric cross sections

Lecture 10. Transition probabilities and photoelectric cross sections Lecture 10 Transition probabilities and photoelectric cross sections TRANSITION PROBABILITIES AND PHOTOELECTRIC CROSS SECTIONS Cross section = σ = Transition probability per unit time of exciting a single

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly Conclusion This small book presents a description of the results of studies performed over many years by our research group, which, in the best period, included 15 physicists and laboratory assistants

More information

DR KAZI SAZZAD MANIR

DR KAZI SAZZAD MANIR DR KAZI SAZZAD MANIR PHOTON BEAM MATTER ENERGY TRANSFER IONISATION EXCITATION ATTENUATION removal of photons from the beam by the matter. ABSORPTION SCATTERING TRANSMISSION Taking up the energy from the

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

Essentials of Quantum Physics

Essentials of Quantum Physics Essentials of Quantum Physics References Direct energy conversion by S.W. Angrist, Ch 3. (out of print text book) Essential Quantum Physics by Peter Landshoff, Allen Metherell and Gareth Rees, 1997, Cambridge

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

4. Other diffraction techniques

4. Other diffraction techniques 4. Other diffraction techniques 4.1 Reflection High Energy Electron Diffraction (RHEED) Setup: - Grazing-incidence high energy electron beam (3-5 kev: MEED,

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Final Exam - Solutions PHYS/ECE Fall 2011

Final Exam - Solutions PHYS/ECE Fall 2011 Final Exam - Solutions PHYS/ECE 34 - Fall 211 Problem 1 Cosmic Rays The telescope array project in Millard County, UT can detect cosmic rays with energies up to E 1 2 ev. The cosmic rays are of unknown

More information

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan Core-Level spectroscopy Experiments and first-principles calculations Tomoyuki Yamamoto Waseda University, Japan 22 nd WIEN2k workshop Jun. 26 th, 2015@Singapore Outline What is core-level spectroscopy

More information

For the next several lectures, we will be looking at specific photon interactions with matter. In today s lecture, we begin with the photoelectric

For the next several lectures, we will be looking at specific photon interactions with matter. In today s lecture, we begin with the photoelectric For the next several lectures, we will be looking at specific photon interactions with matter. In today s lecture, we begin with the photoelectric effect. 1 The objectives of today s lecture are to identify

More information

Probability and Normalization

Probability and Normalization Probability and Normalization Although we don t know exactly where the particle might be inside the box, we know that it has to be in the box. This means that, ψ ( x) dx = 1 (normalization condition) L

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms Chapter 9 Electrons in Atoms and the Periodic Table Blimps, Balloons, and Models for the Atom Hindenburg Blimps, Balloons, and Models for the Atom Properties of Elements Hydrogen Atoms Helium Atoms 1 Blimps,

More information

Photoemission Spectroscopy

Photoemission Spectroscopy FY13 Experimental Physics - Auger Electron Spectroscopy Photoemission Spectroscopy Supervisor: Per Morgen SDU, Institute of Physics Campusvej 55 DK - 5250 Odense S Ulrik Robenhagen,

More information