ELEMENTARY PROBLEMS AND SOLUTIONS

Size: px
Start display at page:

Download "ELEMENTARY PROBLEMS AND SOLUTIONS"

Transcription

1 ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 4063, or by at If you wish to have receipt of your submission acnowledged by mail, please include a selfaddressed, stamped envelope. Each problem or solution should be typed on separate sheets. Solutions to problems in this issue must be received by August 5, 09. If a problem is not original, the proposer should inform the Problem Editor of the history of the problem. A problem should not be submitted elsewhere while it is under consideration for publication in this Journal. Solvers are ased to include references rather than quoting well-nown results. The content of the problem sections of The Fibonacci Quarterly are all available on the web free of charge at BASIC FORMULAS The Fibonacci numbers F n and the Lucas numbers L n satisfy F n+ F n+ + F n, F 0 0, F ; L n+ L n+ + L n, L 0, L. Also, α ( + 5)/, β ( 5)/, F n (α n β n )/ 5, and L n α n + β n. PROBLEMS PROPOSED IN THIS ISSUE B-756 Proposed by Stanley Rabinowitz, Chelmsford, MA. (Vol. 3., February 994) Find a formula expressing the Pell number P n in terms of Fibonacci and/or Lucas numbers. Editor s Note: This is an old problem from 994 that was proposed by the former Problem Section Editor. At that time, no relatively simple and elegant solutions were received, so the editor left the problem open. At its 5th anniversary, we have revived the problem, and invite the readers to solve it. B-4 Proposed by Ivan V. Feda, Vasyl Stefany Precarpathian National University, Ivano-Franivs, Uraine. For all positive integers n, prove that F n+ + F n+ F n + >. L n+ L n+ L n+ + F n+ FEBRUARY 09 8

2 THE FIBONACCI QUARTERLY B-4 Proposed by Hideyui Ohtsua, Saitama, Japan. Let r, r,..., r n be positive even integers. Prove that n F ɛ r + +ɛ nr n 0, and L ɛ r + +ɛ nr n L r. ɛ,,ɛ n {,} ɛ,,ɛ n {,} B-43 Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain. For any positive integer, the -Fibonacci numbers are defined recursively by F,0 0, F,, and F,n F, + F,n for n. Prove that n ( F,m ) n+ n+ n + 4 (. + 4 ) m0 B-44 Proposed by Robert Frontcza, Landesban Baden-Württemberg, Stuttgart, Germany. Let n be an integer. Prove the following identities for the Fibonacci and Lucas numbers: n a) (F F j ) nf n F n+ (F n+ ). b) c) j+ n j+ n j+ (L L j ) n(l n L n+ ) (L n+ 3). (F L j F j L ) { F n F n+ (L n L n+ ) (F n+ L n ), F n F n+ (L n L n+ ) Fn+ L n, B-45 Proposed by Kenny B. Davenport, Dallas, PA. Show that, for any positive integer n, n L 3 5 [(n + 3)L 3 L 3n ] + 49 (n + )L 3 L 3 4 n. Determinant of a Symmetric Matrix if n is even, if n is odd. B- Proposed by José Luis Díaz-Barrero, Technical University of Catalonia (Barcelona Tech), Barcelona Spain. For any positive integer n, show that 4 F n L n 54F n F n (F n+ + L n ) F n L n F n Fn+ is a perfect square, and find its value. 8 VOLUME 57, NUMBER

3 ELEMENTARY PROBLEMS AND SOLUTIONS Composite solution by I. V. Feda, Vasyl Stefany Precarpathian National University. Ivano-Franivs, Uraine, and the editor. and Let x F and y F n+, so that Then, F n y x, L n y + x, F n+ y x, F n+ + L n y + x, 4 F n L n F n (F n+ + L n ) F n L n F n Fn+ F n F n L n (y x)(y + x) y x. 4 y x y + x y x (y + x) y x y + x y x (y x) 4(y + x) (y x) (y x ) (y + x) (y + x) (y x) (y x), which can be simplified to [((y x) (y + x) ] (y + x) + [(y + x) (y x) ] (y x) (y x ) (7y 0xy + x )(y + x) + (7y + 0xy + x )(y x) (y x ) (7y + x )(4y + x ) 80x y (y x ) 54y (y x ) 54F n+f n. Thus, the value of the given expression is Fn+ for any positive inteber n. Also solved by Brian D. Beasley, Dmitry Fleischman, G. C. Gruebel, Stacy M. Hartz (student), Wei-Kai Lai, Ehren Metcalfe, Kambiz Moghaddamfar (student), Raphael Schumacher (student), Jaroslav Seibert, Jason L. Smith, Albert Stadler, Nicuşor Zlota, and the proposer. The Generating Function for Harmonic Numbers B- Proposed by Kenny B. Davenport, Dallas, PA. Let H n denote the nth harmonic number. Prove that H F n ln 6 ln α H n n L n, and 5 n n (ln ) + 4(ln α). n Solution by Amanda M. Andrews and Samantha L. Zimmerman (students), California University of Pennsylvania, California, PA (jointly). We will deduce the results for the generalized Fibonacci sequence {G n } n N defined by G a, G b, and G n G + G n, for n 3. The generating function for H n is nown to be H n x n ( ) x ln, x (, ). x n FEBRUARY n

4 THE FIBONACCI QUARTERLY Now, after integrating this power series over [0, x] for x (, ), we obtain H x n n ln ( x), x (, ). We also use [, p. ] n G n cαn dβ n 5, n Z, where c a + (a b)β, and d a + (a b)α. Since α, β (, ), we find H G n n n c H ( α ) n d ( H 5 β n 5 n n n n c ) ). 5 ln ( α It is easy to verify that α, and β α β n H G n n n 5 d 5 ln ( β ) n α. Therefore, [ ( ) ( )] α c ln 5 α d ln [ c (ln + ln α) d (ln ln α) ] 5 ( ) (c d) [(ln ) + 4(ln α) ] + 4(c + d) ln ln α. For Fibonacci numbers, we have a b ; hence, c d, and H F n n n ln 6 ln α (8 ln ln α). 5 5 n For Lucas numbers, we have a and b 3; hence, c d 5, which leads to c + d 0, and c d 5. Thus, H L n n n (ln ) + 4(ln α). n References [] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New Yor, 00. Also solved by Khristo N. Boyadzhiev, I. V. Feda, Dmitry Fleischman, Robert Frontcza, G. C. Greubel, Albert Natian, Hieyui Ohtsua, Ángel Plaza, Raphael Schumacher (student), Jaroslav Seibert, Jason L. Smith, Albert Stadler, Santiago Alzate Suárez (student), and the proposer. An Inequality with a Geometric Twist B-3 Proposed by Ivan V. Feda, Vasyl Stefany Precarpathian National University, Ivano-Franivs, Uraine. 84 VOLUME 57, NUMBER

5 For all positive integers n and a, prove that n F (F+ a + F + a F n+ a ) 0. ELEMENTARY PROBLEMS AND SOLUTIONS Solution by Wei-Kai Lai, University of South Carolina Salehatchie, Walterboro, SC. The claimed inequality is equivalent to n F (F+ a + F + a ) (F n+ a + ) n F (Fn+ a + )(F n+ ). We find n F (F+ a + F + a ) F F a + F n Fn+ a + (F + F + )F+ a + F nfn+ a + F a+ +. Since F F, we can further rewrite the claimed inequality as or n+ F n Fn+ a + Fi a+ Fn+ a+ F n+ a + F n+, i i n+ Fi a+ Fn+F a n+ Fn+ a + F n+. We will prove this inequality by induction on n. The equality becomes an equality when n. Assume it is true when n. Then, + Fi a+ F+ a F + F+ a + F + + F a+ +. i To complete the inductive step, it suffices to prove that or equivalently, F a + F + F a + + F + + F a+ + F a +3 F + F a +3 + F +3, F + (F a + ) (F + )(F a +3 F a + ). After factoring F+ a and F +3 a F + a and canceling common factors, the inequality above reduces to a a F a j + F a j +3 F j +, j0 j0 which is obviously true. Therefore, the claimed inequality is true for any positive integer n. Solution by the proposer. The inequality becomes an equality when n, so we shall assume n >. Using F, and the identities F F + F + and n F F n+, we can write the given inequality as n (F + F + ) F + a + F + a (F n+ F ) F n+ a + F a. FEBRUARY 09 85

6 THE FIBONACCI QUARTERLY Let A denote the point ( F, F a ) on the graph of the function f(x) x a, and B denote the point (F, 0). The left side is the sum of the areas of the trapezoids A + A + B + B + from to n. The right side of the inequality above is the area of the trapezoid A A n+ B n+ B. Because f(x) a x is a convex function, it is obvious that the left side is less than or equal to the right side. Also solved by Dmitry Fleischman, and Ángel Plaza. An Intriguing Binomial Sum B-4 Proposed by Hideyui Ohtsua, Saitama, Japan. For any positive integer n, prove that n ( ) n F n F, and n ( ) n L n L. Solution by Kambiz Moghaddamfar (student), Sharif University of Technology, Tehran, Iran. Given G 0 and G, the generalized Fibonacci sequence G 0, G, G,..., is defined recursively by G n G + G n for n. First, we claim that ( n n ) G G n ( ) G i n 0 +. i i To prove this, we apply the well-nown identity [] that ( ) G G i i to obtain n G i0 i [ n ( ] )G i i i0 ( n ) [ n n ( ) ] G 0 + G i i i i ( n ) n G i n i ( ) G 0 + i i + j i i + j i i j0 ( n ) n G i n i ( ) G 0 + i + j. i i i j0 Applying the Hocey-Stic Theorem, we find n i ( ) i + j i j0 ( ) n, i 86 VOLUME 57, NUMBER

7 ELEMENTARY PROBLEMS AND SOLUTIONS from which the claim follows. The proof is completed by substituting in G n F n and G n L n, respectively. Solution by Khristo N. Boyadzhiev, Ohio Northern University, Ada, OH. Let a i, i,, 3,..., be a sequence, and let n ( ) n b n a. The following result was proved in [, 3]: n ( ) n a 0 n b. Using the Binet s formula and the binomial theorem, it is easy to show that n ( ) n n ( ) n F F n, and L L n. Since F 0 0, we immediately obtain n ( ) n F n 0 F. The second identity follows in a similar manner, because L 0, and n ( n ) L L n. References [] S. Vajda, Fibonacci and Lucas Numbers and the Golden Ratio, Dover, 008. [] K. N. Boyadzhiev, Binomial transform and the bacward difference, Advan. Appl. Discrete Math., 3 (04), [3] A. N. t Woord, Solution II to Problem 0490, Amer. Math. Monthly, 06 (999), 588. Also solved by I. V. Feda, Dmitry Fleischman, G. C. Greubel, Albert Natian, Ángel Plaza, Raphael Schumacher (student), Jason L. Smith, Albert Stadler, and the proposer. A Sequence of Matrices with Special Properties B-5 Proposed by Jathan Austin, Salisbury University, Salisbury, MD. Construct a sequence {M n } n of 3 3 matrices with positive entries that satisfy the following conditions: (A) M n is the product of nonzero Fibonacci numbers. (B) The determinant of any submatrix of M n is a Fibonacci number or the product of nonzero Fibonacci numbers. (C) lim n M n+ / M n + α. FEBRUARY 09 87

8 THE FIBONACCI QUARTERLY Solution by Ehren Metcalfe, Barrie, Ontario, Canada. Define a sequence of 3 3 matrices {M n } n such that M n F n+ F n+ F n+ F n+ F n+ F n+. F n+ F n+ F n+ Then, each entry of M n is positive, and M n Fn+ 3 Fn+F n+ F n+ Fn+ + Fn+ 3 (Fn+ Fn+)(F n+ F n+ ) (F n+ F n+ ) (F n+ + F n+ ) F nf n+3 is a product of nonzero Fibonacci numbers. For the lower left submatrix, F n+ F n+ F n+ F n+ F n+ F n+ F n+ (F n+ F n+ )F n+ F n F n+. For the upper right submatrix, F n+ F n+ F n+ F n+ F n+ Fn+ (F n+ F n+ )(F n+ + F n+ ) F n F n+3. Since the upper left and lower right can be obtained from the the submatrix above by interchanging their rows, their determinants differ by a factor of F. All these determinants are products of nonzero Fibonacci numbers. Finally, ( ) M n+ Fn+ lim lim Fn+4 α α ( + α) α + α, n M n n F n+3 as desired. Editor s Note: There are other possible answers. Feda gave proposer presented F n F n+ F n+ F n+3 Fn+ Fn+ Fn+3 as solutions. Also solved by I. V. Feda, and the proposer. F n+4 F n F n F n+ F n F n+ F n F n F n+3, and the 88 VOLUME 57, NUMBER

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutions and problem proposals to Dr Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 4063, or by

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutions and problem proposals to Dr Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY 4063, or by email

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutions and problem proposals to Dr Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 4063, or by email at kwong@fredoniaedu If you

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals and their solutions to the Problems Editor, DR RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals their solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics Statistics, Northwest Missouri State University,

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals their solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics Statistics, Northwest Missouri State University,

More information

Edited by Russ Euler and Jawad Sadek

Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sade Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutios ad problem proposals to Dr. Harris Kwog Departmet of Mathematical Scieces SUNY Fredoia Fredoia NY 14063 or by email at wog@fredoia.edu.

More information

Edited by Russ Euler and Jawad Sadek

Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sadek Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals and their solutions to the Problems Editor, DR RUSS EULER, Department of Mathematics and Statistics,

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals and their solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutios ad problem proposals to Dr Harris Kwog, Departmet of Mathematical Scieces, SUNY Fredoia, Fredoia, NY, 4063, or by email at

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sadek Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian , China (Submitted June 2002)

Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian , China (Submitted June 2002) SELF-INVERSE SEQUENCES RELATED TO A BINOMIAL INVERSE PAIR Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China (Submitted June 2002) 1 INTRODUCTION Pairs of

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sadek Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

On identities with multinomial coefficients for Fibonacci-Narayana sequence

On identities with multinomial coefficients for Fibonacci-Narayana sequence Annales Mathematicae et Informaticae 49 08 pp 75 84 doi: 009/ami080900 http://amiuni-eszterhazyhu On identities with multinomial coefficients for Fibonacci-Narayana sequence Taras Goy Vasyl Stefany Precarpathian

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz IMPORTANT NOTICE: There is a new editor of this department and a new address for all submissions. Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to DR. STANLEY

More information

PROBLEMS. Problems. x 1

PROBLEMS. Problems. x 1 Irish Math. Soc. Bulletin Number 76, Winter 05, 9 96 ISSN 079-5578 PROBLEMS IAN SHORT We begin with three integrals. Problems Problem 76.. a 0 sinx dx b 0 x log x dx c cos x e /x + dx I learnt the next

More information

Fibonacci and Lucas numbers via the determinants of tridiagonal matrix

Fibonacci and Lucas numbers via the determinants of tridiagonal matrix Notes on Number Theory and Discrete Mathematics Print ISSN 30 532, Online ISSN 2367 8275 Vol 24, 208, No, 03 08 DOI: 07546/nntdm2082403-08 Fibonacci and Lucas numbers via the determinants of tridiagonal

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, MATHEMATICAL INSTITUTE, UNAM, CP 0450, MEXICO DF, MEXICO

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr,

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr, Edited by Stanley Rablnowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to

More information

The k-fibonacci matrix and the Pascal matrix

The k-fibonacci matrix and the Pascal matrix Cent Eur J Math 9(6 0 403-40 DOI: 0478/s533-0-0089-9 Central European Journal of Mathematics The -Fibonacci matrix and the Pascal matrix Research Article Sergio Falcon Department of Mathematics and Institute

More information

*********************************************************

********************************************************* Problems Ted Eisenberg, Section Editor ********************************************************* This section of the Journal offers readers an opportunity to exchange interesting mathematical problems

More information

ELA

ELA Volume 18, pp 564-588, August 2009 http://mathtechnionacil/iic/ela GENERALIZED PASCAL TRIANGLES AND TOEPLITZ MATRICES A R MOGHADDAMFAR AND S M H POOYA Abstract The purpose of this article is to study determinants

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

SOME FORMULAE FOR THE FIBONACCI NUMBERS

SOME FORMULAE FOR THE FIBONACCI NUMBERS SOME FORMULAE FOR THE FIBONACCI NUMBERS Brian Curtin Department of Mathematics, University of South Florida, 4202 E Fowler Ave PHY4, Tampa, FL 33620 e-mail: bcurtin@mathusfedu Ena Salter Department of

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. Hillman

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. Hillman Edited by A. P. Hillman Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution should be on a separate sheet (or

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD f AM 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic

More information

EXTENDING THE DOMAINS OF DEFINITION OF SOME FIBONACCI IDENTITIES

EXTENDING THE DOMAINS OF DEFINITION OF SOME FIBONACCI IDENTITIES EXTENDING THE DOMAINS OF DEFINITION OF SOME FIBONACCI IDENTITIES MARTIN GRIFFITHS Abstract. In this paper we consider the possibility for extending the domains of definition of particular Fibonacci identities

More information

PROBLEMS PROPOSED IN THIS ISSUE

PROBLEMS PROPOSED IN THIS ISSUE Edited by A. P. Hillman Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution should be on a separate sheet (or

More information

ADVANCED PROBLEMS AND SOLUTIONS PROBLEMS PROPOSED IN THIS ISSUE

ADVANCED PROBLEMS AND SOLUTIONS PROBLEMS PROPOSED IN THIS ISSUE ADVANCED PROBLEMS AND SOLUTIONS EDITED BY LORIAN LUCA Please sen all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to LORIAN LUCA, SCHOOL O MATHEMATICS, UNIVERSITY O THE WITWA- TERSRAND, PRIVATE

More information

The generalized order-k Fibonacci Pell sequence by matrix methods

The generalized order-k Fibonacci Pell sequence by matrix methods Journal of Computational and Applied Mathematics 09 (007) 33 45 wwwelseviercom/locate/cam The generalized order- Fibonacci Pell sequence by matrix methods Emrah Kilic Mathematics Department, TOBB University

More information

ANNULI FOR THE ZEROS OF A POLYNOMIAL

ANNULI FOR THE ZEROS OF A POLYNOMIAL U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 4, 2015 ISSN 1223-7027 ANNULI FOR THE ZEROS OF A POLYNOMIAL Pantelimon George Popescu 1 and Jose Luis Díaz-Barrero 2 To Octavian Stănăşilă on his 75th birthday

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E. Whitney Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA VEN, PA 17745. This

More information

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 14 (2011), Article 11.4.6 Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices Ayhan Dil and Veli Kurt Department of Mathematics

More information

*********************************************************

********************************************************* Problems Ted Eisenberg, Section Editor ********************************************************* This section of the Journal offers readers an opportunity to exchange interesting mathematical problems

More information

On the generating matrices of the k-fibonacci numbers

On the generating matrices of the k-fibonacci numbers Proyecciones Journal of Mathematics Vol. 3, N o 4, pp. 347-357, December 013. Universidad Católica del Norte Antofagasta - Chile On the generating matrices of the k-fibonacci numbers Sergio Falcon Universidad

More information

THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS

THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS DIEGO MARQUES Abstract. Let F n be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest

More information

X X + 1 " P n ) = P m "

X X + 1  P n ) = P m ELEMENTARY PROBLEMS AND SOLUTIONS Edited by A. P. HILLiVIAW University of New IVSexico, Albuquerque, New Mexico Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman,

More information

PAijpam.eu THE PERIOD MODULO PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS

PAijpam.eu THE PERIOD MODULO PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS International Journal of Pure and Applied Mathematics Volume 90 No. 014, 5-44 ISSN: 111-8080 (printed version); ISSN: 114-95 (on-line version) url: http://www.ipam.eu doi: http://dx.doi.org/10.17/ipam.v90i.7

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Summation of certain infinite Fibonacci related series

Summation of certain infinite Fibonacci related series arxiv:52.09033v (30 Dec 205) Summation of certain infinite Fibonacci related series Bakir Farhi Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes Université de Bejaia 06000 Bejaia Algeria

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information

Homework 5 Solutions

Homework 5 Solutions Homework 5 Solutions ECS 0 (Fall 17) Patrice Koehl koehl@cs.ucdavis.edu ovember 1, 017 Exercise 1 a) Show that the following statement is true: If there exists a real number x such that x 4 +1 = 0, then

More information

On Certain Sums of Stirling Numbers with Binomial Coefficients

On Certain Sums of Stirling Numbers with Binomial Coefficients 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 18 (2015, Article 15.9.6 On Certain Sums of Stirling Numbers with Binomial Coefficients H. W. Gould Department of Mathematics West Virginia University

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Florian Luca Please send all communications concerning ADVANCED PROBLEMS AND SOLU- TIONS to FLORIAN LUCA, IMATE, UNAM, AP. POSTAL 61-3 (XANGARI),CP 58 089, MORELIA, MICHOACAN, MEXICO, or by e-mail

More information

ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS

ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS Hacettepe Journal of Mathematics and Statistics Volume 8() (009), 65 75 ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS Dursun Tascı Received 09:0 :009 : Accepted 04 :05 :009 Abstract In this paper we

More information

Some Generalized Fibonomial Sums related with the Gaussian q Binomial sums

Some Generalized Fibonomial Sums related with the Gaussian q Binomial sums Bull. Math. Soc. Sci. Math. Roumanie Tome 55(103 No. 1, 01, 51 61 Some Generalized Fibonomial Sums related with the Gaussian q Binomial sums by Emrah Kilic, Iler Aus and Hideyui Ohtsua Abstract In this

More information

Fibonacci Number of the Tadpole Graph

Fibonacci Number of the Tadpole Graph Kennesaw State University DigitalCommons@Kennesaw State University Faculty Publications 9-1-2014 Fibonacci Number of the Tadpole Graph Joe DeMaio Kennesaw State University, jdemaio@kennesaw.edu John Jacobson

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also he sent to

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 2.6.3, 2.7.4, 2.7.5, 2.7.2,

More information

Y. H. Harris Kwong SUNY College at Fredonia, Fredonia, NY (Submitted May 1987)

Y. H. Harris Kwong SUNY College at Fredonia, Fredonia, NY (Submitted May 1987) Y. H. Harris Kwong SUNY College at Fredonia, Fredonia, NY 14063 (Submitted May 1987) 1. Introduction The Stirling number of the second kind, S(n, k), is defined as the number of ways to partition a set

More information

MATHEMATICS BONUS FILES for faculty and students

MATHEMATICS BONUS FILES for faculty and students MATHEMATICS BONUS FILES for faculty and students http://www2.onu.edu/~mcaragiu1/bonus_files.html RECEIVED: November 1, 2007 PUBLISHED: November 7, 2007 The Euler formula for ζ (2 n) The Riemann zeta function

More information

CONVOLUTION TREES AND PASCAL-T TRIANGLES. JOHN C. TURNER University of Waikato, Hamilton, New Zealand (Submitted December 1986) 1.

CONVOLUTION TREES AND PASCAL-T TRIANGLES. JOHN C. TURNER University of Waikato, Hamilton, New Zealand (Submitted December 1986) 1. JOHN C. TURNER University of Waikato, Hamilton, New Zealand (Submitted December 986). INTRODUCTION Pascal (6-66) made extensive use of the famous arithmetical triangle which now bears his name. He wrote

More information

Notes on Continued Fractions for Math 4400

Notes on Continued Fractions for Math 4400 . Continued fractions. Notes on Continued Fractions for Math 4400 The continued fraction expansion converts a positive real number α into a sequence of natural numbers. Conversely, a sequence of natural

More information

F. T. HOWARD AND CURTIS COOPER

F. T. HOWARD AND CURTIS COOPER SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 0, if 0 n < r 1; G n = 1, if n = r 1; G

More information

*********************************************************

********************************************************* Problems Ted Eisenberg, Section Edit ********************************************************* This section of the Journal offers readers an opptunity to exchange interesting mathematical problems and

More information

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 8 >< 0, if 0 n < r 1; G n = 1, if n = r

More information

CALCULATING EXACT CYCLE LENGTHS IN THE GENERALIZED FIBONACCI SEQUENCE MODULO p

CALCULATING EXACT CYCLE LENGTHS IN THE GENERALIZED FIBONACCI SEQUENCE MODULO p CALCULATING EXACT CYCLE LENGTHS IN THE GENERALIZED FIBONACCI SEQUENCE MODULO p DOMINIC VELLA AND ALFRED VELLA. Introduction The cycles that occur in the Fibonacci sequence {F n } n=0 when it is reduced

More information

On the Pell Polynomials

On the Pell Polynomials Applied Mathematical Sciences, Vol. 5, 2011, no. 37, 1833-1838 On the Pell Polynomials Serpil Halici Sakarya University Department of Mathematics Faculty of Arts and Sciences 54187, Sakarya, Turkey shalici@sakarya.edu.tr

More information

Several Generating Functions for Second-Order Recurrence Sequences

Several Generating Functions for Second-Order Recurrence Sequences 47 6 Journal of Integer Sequences, Vol. 009), Article 09..7 Several Generating Functions for Second-Order Recurrence Sequences István Mező Institute of Mathematics University of Debrecen Hungary imezo@math.lte.hu

More information

*********************************************************

********************************************************* Problems Ted Eisenberg, Section Editor ********************************************************* This section of the Journal offers readers an opportunity to echange interesting mathematical problems and

More information

Pascal Eigenspaces and Invariant Sequences of the First or Second Kind

Pascal Eigenspaces and Invariant Sequences of the First or Second Kind Pascal Eigenspaces and Invariant Sequences of the First or Second Kind I-Pyo Kim a,, Michael J Tsatsomeros b a Department of Mathematics Education, Daegu University, Gyeongbu, 38453, Republic of Korea

More information

COMPLEMENTARY FAMILIES OF THE FIBONACCI-LUCAS RELATIONS. Ivica Martinjak Faculty of Science, University of Zagreb, Zagreb, Croatia

COMPLEMENTARY FAMILIES OF THE FIBONACCI-LUCAS RELATIONS. Ivica Martinjak Faculty of Science, University of Zagreb, Zagreb, Croatia #A2 INTEGERS 9 (209) COMPLEMENTARY FAMILIES OF THE FIBONACCI-LUCAS RELATIONS Ivica Martinjak Faculty of Science, University of Zagreb, Zagreb, Croatia imartinjak@phy.hr Helmut Prodinger Department of Mathematics,

More information

ELEMENTARY PROBLEMS AND SOLUTIONS Edited by Muss Euler and Jawad Sadek

ELEMENTARY PROBLEMS AND SOLUTIONS Edited by Muss Euler and Jawad Sadek Edited by Muss Euler and Jawad Sadek Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

DIOPHANTINE EQUATIONS, FIBONACCI HYPERBOLAS, AND QUADRATIC FORMS. Keith Brandt and John Koelzer

DIOPHANTINE EQUATIONS, FIBONACCI HYPERBOLAS, AND QUADRATIC FORMS. Keith Brandt and John Koelzer DIOPHANTINE EQUATIONS, FIBONACCI HYPERBOLAS, AND QUADRATIC FORMS Keith Brandt and John Koelzer Introduction In Mathematical Diversions 4, Hunter and Madachy ask for the ages of a boy and his mother, given

More information

PROBLEMS IAN SHORT. ( 1) n x n

PROBLEMS IAN SHORT. ( 1) n x n Irish Math. Soc. Bulletin Number 8, Winter 27, 87 9 ISSN 79-5578 PROBLEMS IAN SHORT Problems The first problem this issue was contributed by Finbarr Holland of University College Cork. Problem 8.. Let

More information

Sprague-Grundy Values of the R-Wythoff Game

Sprague-Grundy Values of the R-Wythoff Game Sprague-Grundy Values of the R-Wythoff Game Albert Gu Department of Mathematics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A agu@andrew.cmu.edu Submitted: Aug 6, 2014; Accepted: Apr 10, 2015;

More information

RESISTANCE DISTANCE IN WHEELS AND FANS

RESISTANCE DISTANCE IN WHEELS AND FANS Indian J Pure Appl Math, 41(1): 1-13, February 010 c Indian National Science Academy RESISTANCE DISTANCE IN WHEELS AND FANS R B Bapat 1 and Somit Gupta Indian Statistical Institute, New Delhi 110 016,

More information

A Note on the Determinant of Five-Diagonal Matrices with Fibonacci Numbers

A Note on the Determinant of Five-Diagonal Matrices with Fibonacci Numbers Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 9, 419-424 A Note on the Determinant of Five-Diagonal Matrices with Fibonacci Numbers Hacı Civciv Department of Mathematics Faculty of Art and Science

More information

Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers

Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers International Mathematical Forum, Vol 12, 2017, no 16, 747-753 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/imf20177652 Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers

More information

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k RALF BUNDSCHUH AND PETER BUNDSCHUH Dedicated to Peter Shiue on the occasion of his 70th birthday Abstract. Let F 0 = 0,F 1 = 1, and F n = F n 1 +F

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan 8. Sequences We start this section by introducing the concept of a sequence and study its convergence. Convergence of Sequences. An infinite

More information

SOME RESULTS ON q-analogue OF THE BERNOULLI, EULER AND FIBONACCI MATRICES

SOME RESULTS ON q-analogue OF THE BERNOULLI, EULER AND FIBONACCI MATRICES SOME RESULTS ON -ANALOGUE OF THE BERNOULLI, EULER AND FIBONACCI MATRICES GERALDINE M. INFANTE, JOSÉ L. RAMÍREZ and ADEM ŞAHİN Communicated by Alexandru Zaharescu In this article, we study -analogues of

More information

On the properties of k-fibonacci and k-lucas numbers

On the properties of k-fibonacci and k-lucas numbers Int J Adv Appl Math Mech (1) (01) 100-106 ISSN: 37-59 Available online at wwwijaammcom International Journal of Advances in Applied Mathematics Mechanics On the properties of k-fibonacci k-lucas numbers

More information

The primitive root theorem

The primitive root theorem The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under

More information

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR.

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR. GENERATING FUNCTIONS OF CENTRAL VALUES CLAUDIA SMITH and VERNER E. HOGGATT, JR. San Jose State University, San Jose, CA 95. INTRODUCTION In this paper we shall examine the generating functions of the central

More information

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by Chapter Fibonacci numbers The Fibonacci sequence The Fibonacci numbers F n are defined recursively by F n+ = F n + F n, F 0 = 0, F = The first few Fibonacci numbers are n 0 5 6 7 8 9 0 F n 0 5 8 55 89

More information

DISTRIBUTION OF THE FIBONACCI NUMBERS MOD 2. Eliot T. Jacobson Ohio University, Athens, OH (Submitted September 1990)

DISTRIBUTION OF THE FIBONACCI NUMBERS MOD 2. Eliot T. Jacobson Ohio University, Athens, OH (Submitted September 1990) DISTRIBUTION OF THE FIBONACCI NUMBERS MOD 2 Eliot T. Jacobson Ohio University, Athens, OH 45701 (Submitted September 1990) Let FQ = 0, Fi = 1, and F n = F n _i + F n _ 2 for n > 2, denote the sequence

More information

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Raymond E. Whitney

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Raymond E. Whitney Edited by Raymond E. Whitney Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 7745. This department

More information

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression Applied Mathematical Sciences Vol. 207 no. 25 2-29 HIKARI Ltd www.m-hikari.com https://doi.org/0.2988/ams.207.7392 On Two New Classes of Fibonacci Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

More information

Homework 5 Solutions

Homework 5 Solutions Homework 5 Solutions ECS 0 (Fall 17) Patrice Koehl koehl@cs.ucdavis.edu February 8, 019 Exercise 1 a) Show that the following statement is true: If there exist two integers n and m such that n + n + 1

More information

DIOPHANTINE QUADRUPLES FOR SQUARES OF FIBONACCI AND LUCAS NUMBERS

DIOPHANTINE QUADRUPLES FOR SQUARES OF FIBONACCI AND LUCAS NUMBERS PORTUGALIAE MATHEMATICA Vol. 52 Fasc. 3 1995 DIOPHANTINE QUADRUPLES FOR SQUARES OF FIBONACCI AND LUCAS NUMBERS Andrej Dujella Abstract: Let n be an integer. A set of positive integers is said to have the

More information

#A87 INTEGERS 18 (2018) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX

#A87 INTEGERS 18 (2018) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX #A87 INTEGERS 8 (208) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX Achille Frigeri Dipartimento di Matematica, Politecnico di Milano, Milan, Italy achille.frigeri@polimi.it Received: 3/2/8, Accepted: 0/8/8,

More information

COMPOSITIONS AND FIBONACCI NUMBERS

COMPOSITIONS AND FIBONACCI NUMBERS COMPOSITIONS AND FIBONACCI NUMBERS V. E. HOGGATT, JR., and D. A. LIND San Jose State College, San Jose, California and University of Cambridge, England 1, INTRODUCTION A composition of n is an ordered

More information

arxiv: v1 [math.nt] 17 Nov 2011

arxiv: v1 [math.nt] 17 Nov 2011 sequences of Generalized Van der Laan and Generalized Perrin Polynomials arxiv:11114065v1 [mathnt] 17 Nov 2011 Kenan Kaygisiz a,, Adem Şahin a a Department of Mathematics, Faculty of Arts and Sciences,

More information

More calculations on determinant evaluations

More calculations on determinant evaluations Electronic Journal of Linear Algebra Volume 16 Article 007 More calculations on determinant evaluations A. R. Moghaddamfar moghadam@kntu.ac.ir S. M. H. Pooya S. Navid Salehy S. Nima Salehy Follow this

More information

On Generalized k-fibonacci Sequence by Two-Cross-Two Matrix

On Generalized k-fibonacci Sequence by Two-Cross-Two Matrix Global Journal of Mathematical Analysis, 5 () (07) -5 Global Journal of Mathematical Analysis Website: www.sciencepubco.com/index.php/gjma doi: 0.449/gjma.v5i.6949 Research paper On Generalized k-fibonacci

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E. WHITNEY Please send all communications concerning to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems

More information

On the complex k-fibonacci numbers

On the complex k-fibonacci numbers Falcon, Cogent Mathematics 06, 3: 0944 http://dxdoiorg/0080/33835060944 APPLIED & INTERDISCIPLINARY MATHEMATICS RESEARCH ARTICLE On the complex k-fibonacci numbers Sergio Falcon * ceived: 9 January 05

More information

LONGEST SUCCESS RUNS AND FIBONACCI-TYPE POLYNOMIALS

LONGEST SUCCESS RUNS AND FIBONACCI-TYPE POLYNOMIALS LONGEST SUCCESS RUNS AND FIBONACCI-TYPE POLYNOMIALS ANDREAS N. PHILIPPOU & FROSSO S. MAKRI University of Patras, Patras, Greece (Submitted January 1984; Revised April 1984) 1. INTRODUCTION AND SUMMARY

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 5 (0) 554 559 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: wwwelseviercom/locate/aml On the (s, t)-pell and (s, t)-pell Lucas

More information

COMBINATORIAL COUNTING

COMBINATORIAL COUNTING COMBINATORIAL COUNTING Our main reference is [1, Section 3] 1 Basic counting: functions and subsets Theorem 11 (Arbitrary mapping Let N be an n-element set (it may also be empty and let M be an m-element

More information

Fibonacci and Lucas Identities the Golden Way

Fibonacci and Lucas Identities the Golden Way Fibonacci Lucas Identities the Golden Way Kunle Adegoe adegoe00@gmail.com arxiv:1810.12115v1 [math.nt] 25 Oct 2018 Department of Physics Engineering Physics, Obafemi Awolowo University, 220005 Ile-Ife,

More information

Lucas Polynomials and Power Sums

Lucas Polynomials and Power Sums Lucas Polynomials and Power Sums Ulrich Tamm Abstract The three term recurrence x n + y n = (x + y (x n + y n xy (x n + y n allows to express x n + y n as a polynomial in the two variables x + y and xy.

More information

Power series and Taylor series

Power series and Taylor series Power series and Taylor series D. DeTurck University of Pennsylvania March 29, 2018 D. DeTurck Math 104 002 2018A: Series 1 / 42 Series First... a review of what we have done so far: 1 We examined series

More information

CLOSED FORM CONTINUED FRACTION EXPANSIONS OF SPECIAL QUADRATIC IRRATIONALS

CLOSED FORM CONTINUED FRACTION EXPANSIONS OF SPECIAL QUADRATIC IRRATIONALS CLOSED FORM CONTINUED FRACTION EXPANSIONS OF SPECIAL QUADRATIC IRRATIONALS DANIEL FISHMAN AND STEVEN J. MILLER ABSTRACT. We derive closed form expressions for the continued fractions of powers of certain

More information

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS Acta Math. Univ. Comenianae Vol. LXXXVII, 2 (2018), pp. 291 299 291 ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS B. FARHI Abstract. In this paper, we show that

More information