Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by

Size: px
Start display at page:

Download "Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by"

Transcription

1 Chapter Fibonacci numbers The Fibonacci sequence The Fibonacci numbers F n are defined recursively by F n+ = F n + F n, F 0 = 0, F = The first few Fibonacci numbers are n F n An explicit expression can be obtained for the Fibonacci numbers by finding their generating function, which is the formal power series F(x) := F 0 + F x + + F n x n + From the defining relations, we have F x = F x x + F 0 x, F x = F x x + F x x, F x = F x x + F x x, F n x n = F n x n x + F n x n x,

2 0 Fibonacci numbers Combining these relations we have F(x) (F 0 + F x) = (F(x) F 0 ) x + F(x) x, F(x) x = F(x) x + F(x) x, ( x x )F(x) = x Thus, we obtain the generating function of the Fibonacci numbers: x F(x) = x x There is a factorization of x x by making use of the roots of the quadratic polynomial Let α > β be the two roots We have More explicitly, α = α + β =, αβ = 5 + 5, β = Now, since x x = ( αx)( βx), we have a partial fraction decomposition x x x = x ( αx)( βx) = ( α β αx ) βx Each of making use of and αx βx has a simple power series expansion In fact, x = + x + x + + x n + = and noting that α β = 5, we have ( x x x = α n x n 5 α n β n = x n 5 x n, ) β n x n The coefficients of this power series are the Fibonacci numbers: F n = αn β n 5, n = 0,,,

3 The Fibonacci sequence 0 F n is the integer nearest to αn 5 : F n = { α n 5 } Proof F n αn 5 = β n < < 5 5 For n, F n+ = {αf n } Proof Note that For n, F n+ αf n = αβn β n+ = F n+ αf n = β n < α β 5 β n = β n lim n F n+ F n = α Exercise (a) Make use of only the fact that 987 is a Fibonacci number to confirm that 77 is also a Fibonacci number, and find all intermediate Fibonacci numbers (b) Make use of the result of (a) to decide if 7506 is a Fibonacci number Prove by mathematical induction the Cassini formula: F n+ F n F n = ( )n The conversion from miles into kilometers can be neatly expressed by the Fibonacci numbers miles 5 8 kilometers 8

4 0 Fibonacci numbers How far does this go? Taking meter as 97 inches, what is the largest n for which F n miles can be approximated by F n+ kilometers, correct to the nearest whole number? Prove the Fermat Last Theorem for Fibonacci numbers: there is no solution of x n + y n = z n, n, in which x, y, z are (nonzero) Fibonacci numbers Some relations of Fibonacci numbers Sum of consecutive Fibonacci numbers: n F k = F n+ k= Sum of consecutive odd Fibonacci numbers: n F k = F n k= Sum of consecutive even Fibonacci numbers: n F k = F n+ k= Sum of squares of consecutive Fibonacci numbers: n Fk = F nf n+ k= 5 Cassini s formula: F n+ F n F n = ( )n

5 Fibonacci numbers and binomial coefficients 05 Fibonacci numbers and binomial coefficients Rewriting the generating function x x x = x (x+x ) as x + x(x + x ) + x(x + x ) + x(x + x ) + x(x+ ) + = x + x ( + x) + x ( + x) + x ( + x) + x 5 ( + x) + = x + x + x + x + x x + x + x 5 + x x 5 + x 6 + 6x x 7 + x x we obtain the following expressions of the Fibonacci numbers in terms of the binomial coefficents: F = F = F = F = F 5 = F 6 = F 7 = F 8 = ( ) 0 0 =, ( ) 0 =, ( ) ( ) + 0 =, ( ) ( ) + 0 = + =, ( ) ( ) ( ) = + + = 5, ( ) ( ) ( ) = + + = 8, ( ) ( ) ( ) ( ) = =, ( ) ( ) ( ) ( ) = =,

6 06 Fibonacci numbers Theorem For k 0, F k+ = k ( ) k j j j=0 Proof x x x = x (x + x ) n = = = = x n+ ( + x) n n ( ) n x n+ x m m m=0 n ( ) n x n+m+ m m=0 k ( ) k j x k+ j k= j=0

7 Chapter 5 Counting with Fibonacci numbers 5 Squares and dominos In how many ways can a n rectangle be tiled with unit squares and dominos ( squares)? Suppose there are a n ways of tiling a n rectangle There are two types of such tilings (i) The rightmost is tiled by a unit square There are a n of these tilings (ii) The rightmost is tiled by a domino There are a n of these Therefore, a n = a n + a n Note that a = and a = These are consecutive Fibonacci numbers: a = F and a = F Since the recurrence is the same as the Fibonacci sequence, it follows that a n = F n+ for every n

8 08 Counting with Fibonacci numbers 5 Fat subsets of [n] A subset A of [n] := {,, n} is called fat if for every a A, a A (the number of elements of A) For example, A = {, 5} is fat but B = {,, 5} is not Note that the empty set is fat How many fat subsets does [n] have? Solution Suppose there are b n fat subsets of [n] Clearly, b = (every subset is fat) and b = (all subsets except [] itself is fat) Here are the 5 fat subsets of []:, {}, {}, {}, {, } There are two kinds of fat subsets of [n] (i) Those fat subsets which do not contain n are actually fat subsets of [n ], and conversely There are b n of them (ii) Let A be a fat subset of m elements and n A If m =, then A = {n} If m >, then every element of A is greater than The subset A := {j : j < n, j A} has m elements, each m since j m for every j A Note that A does not contain n It is a fat subset of [n ] There are b n such subsets We have established the recurrence b n = b n + b n This is the same recurrence for the Fibonacci numbers Now, since b = = F and b = = F, it follows that b n = F n+ for every n Exercise (a) How many permutations π : [n] [n] satisfy π(i) i, i =,,, n? (b) Let π be a permutation satisfying the condition in (a) Suppose for distinct a, b [n], π(a) = b Prove that π(b) = a

9 5 An arrangement of pennies 09 5 An arrangement of pennies Consider arrangements of pennies in rows in which the pennies in any row are contiguous, and each penny not in the bottom row touches two pennies in the row below For example, the first one is allowed but not the second one: How many arrangements are there with n pennies in the bottom row? Here are the arrangements with pennies in the bottom, altogether Solution Let a n be the number of arrangements with n pennies in the bottom Clearly a =, a =, a = 5, a = A recurrence relation can be constructed by considering the number of pennies in the second bottom row This may be n, n,,, and also possibly none a n = a n + a n + + (n )a +

10 0 Counting with Fibonacci numbers Here are some beginning values: n a n =, =, = 89, These numbers are the old Fibonacci numbers: a = F, a = F, a = F 5, a = F 7, a 5 = F 9, a 6 = F From this we make the conjecture a n = F n for n Proof We prove by mathematical induction a stronger result: a n = F n, n a k = F n k= These are clearly true for n = Assuming these, we have a n+ = a n + a n + a n + + na + = (a n + a n + a n + + a ) + (a n + a n + + (n )a + ) = F n + a n = F n + F n = F n+ ; n+ n a k = a n+ + k= k= = F n+ + F n = F (n+) a k Therefore, the conjecture is established for all positive integers n In particular, a n = F n

11 Chapter 6 Fibonacci numbers 6 Factorization of Fibonacci numbers gcd(f m, F n ) = F gcd(m,n) If m n, then F m F n Here are the beginning values of F n F n : n F n F n L n = F n F n (a) These quotients seem to satisfy the same recurrence as the Fibonacci numbers: each number is the sum of the preceding two (b) Therefore, it is reasonable to expect that each of these quotients can be expressed in terms of Fibonacci numbers

12 Fibonacci numbers n F n F n L n = F n F n F n + F n+ = + 8 = + 7 = = = = = + (c) Conjectures: (a) L n+ = L n+ + L n, L =, L = ; (b) L n = F n+ + F n These conjectures are true They are easy consequences of Theorem 6 (Lucas Theorem) F n = F n+ F n, F n+ = F n+ + F n Proof We prove this by mathematical induction These are true for n = Assume these hold Then F n+ = F n+ + F n = (Fn+ + Fn) + (Fn+ Fn ) = (Fn+ + Fn+) + (Fn Fn ) = Fn+ + Fn+ + (F n + F n )(F n F n ) = Fn+ + Fn+ + F n+(f n F n ) = Fn+ + F n+(f n+ + (F n F n )) = Fn+ + F n+(f n + (F n+ F n )) = Fn+ + F n+f n = Fn+ + F n+f n + Fn Fn = Fn+ Fn; F n+ = F n+ + F n+ = (Fn+ Fn) + (Fn+ + Fn) = Fn+ + Fn+

13 6 Factorization of Fibonacci numbers Therefore the statements are true for all n 5 By Lucas theorem, F n = F n+ F n = (F n+ F n )(F n+ +F n ) = F n (F n+ +F n ) If we put L n = F n+ + F n, then L = F + F 0 =, L = F + F = + =, and L n+ = F n+ +F n+ = (F n+ +F n )+(F n+ +F n ) = L n+ +L n 6 If F n is prime, then n is prime The converse is not true Of course, F = is not a prime What is the least odd prime p for which F p is not prime? 7 Apart from F 0 = 0 and F = F =, there is only one more Fibonacci number which is a square What is this?

14 Fibonacci numbers 6 The Lucas numbers The sequence (L n ) satisfyin L n+ = L n+ + L n, L =, L =, is called the Lucas sequence, and L n the n-th Lucas number Here are the beginning Lucas numbers n L n Let α > β be the roots of the quadratic polynomial x x L n = α n + β n L n+ + L n = 5F n F k = L L L L 8 L k L = and L = are the only square Lucas numbers (U Alfred, 96) Exercise Prove that L n = L n + ( )n Solution L n = α n + β n = (α n + β n ) (αβ) n = L n ( ) n Express F n F n in terms of L n Solution F n = F n L n = F n L n L n = F n (L n + ( )n L n ) Express F n F n in terms of L n Answer F n = F n (L n + ( ) n )

15 6 Counting circular permutations 5 6 Counting circular permutations Let n The numbers,,, n are arranged in a circle How many permutations are there so that each number is not moved more than one place? Solution (a) π(n) = n There are F n permutations of [n ] satisfying π(i) i (b) π(n) = (i) If π() =, then π() =,, π(n ) = n (ii) If π() = n, then π restricts to a permutation of [,, n ] satisfying π(i) i There are F n such permutations (c) π(n) = n (i) If π(n ) = n, then π(n ) = n,, π() =, π() = n (ii) If π(n ) = n, then π restricts to a permutation of [, n ] satisfying π(i) i There are F n such permutations Therefore, there are altogether F n + (F n + ) = L n + such circular permutations For n =, this is L + = 9

Problem Solving and Recreational Mathematics

Problem Solving and Recreational Mathematics Problem Solving and Recreational Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Summer 2012 Chapters 1 44 August 1 Monday 6/25 7/2 7/9 7/16 7/23 7/30 Wednesday 6/27 *** 7/11

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Problem Solving and Recreational Mathematics

Problem Solving and Recreational Mathematics Problem Solving and Recreational Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Summer 016 April 4, 016 Contents 1 Arithmetic Problems 101 1.1 Reconstruction of division problems..........

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Introduction to Techniques for Counting

Introduction to Techniques for Counting Introduction to Techniques for Counting A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in

More information

The solutions to the two examples above are the same.

The solutions to the two examples above are the same. One-to-one correspondences A function f : A B is one-to-one if f(x) = f(y) implies that x = y. A function f : A B is onto if for any element b in B there is an element a in A such that f(a) = b. A function

More information

Solutions to Practice Final 3

Solutions to Practice Final 3 s to Practice Final 1. The Fibonacci sequence is the sequence of numbers F (1), F (2),... defined by the following recurrence relations: F (1) = 1, F (2) = 1, F (n) = F (n 1) + F (n 2) for all n > 2. For

More information

PUTNAM TRAINING PROBLEMS

PUTNAM TRAINING PROBLEMS PUTNAM TRAINING PROBLEMS (Last updated: December 3, 2003) Remark This is a list of Math problems for the NU Putnam team to be discussed during the training sessions Miguel A Lerma 1 Bag of candies In a

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

PROBLEMS ON CONGRUENCES AND DIVISIBILITY

PROBLEMS ON CONGRUENCES AND DIVISIBILITY PROBLEMS ON CONGRUENCES AND DIVISIBILITY 1. Do there exist 1,000,000 consecutive integers each of which contains a repeated prime factor? 2. A positive integer n is powerful if for every prime p dividing

More information

Algorithms: Background

Algorithms: Background Algorithms: Background Amotz Bar-Noy CUNY Amotz Bar-Noy (CUNY) Algorithms: Background 1 / 66 What is a Proof? Definition I: The cogency of evidence that compels acceptance by the mind of a truth or a fact.

More information

Using Properties of Exponents

Using Properties of Exponents 6.1 Using Properties of Exponents Goals p Use properties of exponents to evaluate and simplify expressions involving powers. p Use exponents and scientific notation to solve real-life problems. VOCABULARY

More information

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is LINEAR RECURSIVE SEQUENCES BJORN POONEN 1. Sequences A sequence is an infinite list of numbers, like 1) 1, 2, 4, 8, 16, 32,.... The numbers in the sequence are called its terms. The general form of a sequence

More information

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n.

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n. 11 Recurrences A recurrence equation or recurrence counts things using recursion. 11.1 Recurrence Equations We start with an example. Example 11.1. Find a recurrence for S(n), the number of subsets of

More information

UNCC 2001 Algebra II

UNCC 2001 Algebra II UNCC 2001 Algebra II March 5, 2001 1. Compute the sum of the roots of x 2 5x + 6 = 0. (A) 3 (B) 7/2 (C) 4 (D) 9/2 (E) 5 (E) The sum of the roots of the quadratic ax 2 + bx + c = 0 is b/a which, for this

More information

12 Sequences and Recurrences

12 Sequences and Recurrences 12 Sequences and Recurrences A sequence is just what you think it is. It is often given by a formula known as a recurrence equation. 12.1 Arithmetic and Geometric Progressions An arithmetic progression

More information

Named numbres. Ngày 25 tháng 11 năm () Named numbres Ngày 25 tháng 11 năm / 7

Named numbres. Ngày 25 tháng 11 năm () Named numbres Ngày 25 tháng 11 năm / 7 Named numbres Ngày 25 tháng 11 năm 2011 () Named numbres Ngày 25 tháng 11 năm 2011 1 / 7 Fibonacci, Catalan, Stirling, Euler, Bernoulli Many sequences are famous. 1 1, 2, 3, 4,... the integers. () Named

More information

Advanced Counting Techniques. Chapter 8

Advanced Counting Techniques. Chapter 8 Advanced Counting Techniques Chapter 8 Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence Relations Nonhomogeneous Recurrence Relations Divide-and-Conquer

More information

Fibonacci Numbers. Justin Stevens. Lecture 5. Justin Stevens Fibonacci Numbers (Lecture 5) 1 / 10

Fibonacci Numbers. Justin Stevens. Lecture 5. Justin Stevens Fibonacci Numbers (Lecture 5) 1 / 10 Fibonacci Numbers Lecture 5 Justin Stevens Justin Stevens Fibonacci Numbers (Lecture 5) 1 / 10 Outline 1 Fibonacci Numbers Justin Stevens Fibonacci Numbers (Lecture 5) 2 / 10 Fibonacci Numbers The Fibonacci

More information

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006 Divisibility in the Fibonacci Numbers Stefan Erickson Colorado College January 27, 2006 Fibonacci Numbers F n+2 = F n+1 + F n n 1 2 3 4 6 7 8 9 10 11 12 F n 1 1 2 3 8 13 21 34 89 144 n 13 14 1 16 17 18

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

Notes on Continued Fractions for Math 4400

Notes on Continued Fractions for Math 4400 . Continued fractions. Notes on Continued Fractions for Math 4400 The continued fraction expansion converts a positive real number α into a sequence of natural numbers. Conversely, a sequence of natural

More information

Generalized Lucas Sequences Part II

Generalized Lucas Sequences Part II Introduction Generalized Lucas Sequences Part II Daryl DeFord Washington State University February 4, 2013 Introduction Èdouard Lucas: The theory of recurrent sequences is an inexhaustible mine which contains

More information

Binomial Coefficient Identities/Complements

Binomial Coefficient Identities/Complements Binomial Coefficient Identities/Complements CSE21 Fall 2017, Day 4 Oct 6, 2017 https://sites.google.com/a/eng.ucsd.edu/cse21-fall-2017-miles-jones/ permutation P(n,r) = n(n-1) (n-2) (n-r+1) = Terminology

More information

Ex. Here's another one. We want to prove that the sum of the cubes of the first n natural numbers is. n = n 2 (n+1) 2 /4.

Ex. Here's another one. We want to prove that the sum of the cubes of the first n natural numbers is. n = n 2 (n+1) 2 /4. Lecture One type of mathematical proof that goes everywhere is mathematical induction (tb 147). Induction is essentially used to show something is true for all iterations, i, of a sequence, where i N.

More information

Ready To Go On? Skills Intervention 7-1 Integer Exponents

Ready To Go On? Skills Intervention 7-1 Integer Exponents 7A Evaluating Expressions with Zero and Negative Exponents Zero Exponent: Any nonzero number raised to the zero power is. 4 0 Ready To Go On? Skills Intervention 7-1 Integer Exponents Negative Exponent:

More information

17 Advancement Operator Equations

17 Advancement Operator Equations November 14, 2017 17 Advancement Operator Equations William T. Trotter trotter@math.gatech.edu Review of Recurrence Equations (1) Problem Let r(n) denote the number of regions determined by n lines that

More information

Problem Set 5 Solutions

Problem Set 5 Solutions Problem Set 5 Solutions Section 4.. Use mathematical induction to prove each of the following: a) For each natural number n with n, n > + n. Let P n) be the statement n > + n. The base case, P ), is true

More information

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes?

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes? 1 Section 4.1 Mathematical Induction Consider an infinite row of dominoes, labeled by 1,, 3,, where each domino is standing up. What should one do to knock over all dominoes? Principle of Mathematical

More information

7 Asymptotics for Meromorphic Functions

7 Asymptotics for Meromorphic Functions Lecture G jacques@ucsd.edu 7 Asymptotics for Meromorphic Functions Hadamard s Theorem gives a broad description of the exponential growth of coefficients in power series, but the notion of exponential

More information

PUTNAM TRAINING MATHEMATICAL INDUCTION. Exercises

PUTNAM TRAINING MATHEMATICAL INDUCTION. Exercises PUTNAM TRAINING MATHEMATICAL INDUCTION (Last updated: December 11, 017) Remark. This is a list of exercises on mathematical induction. Miguel A. Lerma 1. Prove that n! > n for all n 4. Exercises. Prove

More information

Chapter Generating Functions

Chapter Generating Functions Chapter 8.1.1-8.1.2. Generating Functions Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 8. Generating Functions Math 184A / Fall 2017 1 / 63 Ordinary Generating Functions (OGF) Let a n (n = 0, 1,...)

More information

QUARTIC POWER SERIES IN F 3 ((T 1 )) WITH BOUNDED PARTIAL QUOTIENTS. Alain Lasjaunias

QUARTIC POWER SERIES IN F 3 ((T 1 )) WITH BOUNDED PARTIAL QUOTIENTS. Alain Lasjaunias QUARTIC POWER SERIES IN F 3 ((T 1 )) WITH BOUNDED PARTIAL QUOTIENTS Alain Lasjaunias 1991 Mathematics Subject Classification: 11J61, 11J70. 1. Introduction. We are concerned with diophantine approximation

More information

Advanced Counting Techniques

Advanced Counting Techniques . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Advanced Counting

More information

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX #A05 INTEGERS 9 (2009), 53-64 TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300 shattuck@math.utk.edu

More information

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007 Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 007 Questions will be set on the following and related topics. Algebra: Sets, operations on sets. Prime numbers, factorisation of integers

More information

Section 5.1 Polynomial Functions and Models

Section 5.1 Polynomial Functions and Models Term: A term is an expression that involves only multiplication and/or division with constants and/or variables. A term is separated by + or Polynomial: A polynomial is a single term or the sum of two

More information

What can you prove by induction?

What can you prove by induction? MEI CONFERENCE 013 What can you prove by induction? Martyn Parker M.J.Parker@keele.ac.uk Contents Contents iii 1 Splitting Coins.................................................. 1 Convex Polygons................................................

More information

Generating Function Notes , Fall 2005, Prof. Peter Shor

Generating Function Notes , Fall 2005, Prof. Peter Shor Counting Change Generating Function Notes 80, Fall 00, Prof Peter Shor In this lecture, I m going to talk about generating functions We ve already seen an example of generating functions Recall when we

More information

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1)

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1) IB Mathematics HL Year Unit : Completion of Algebra (Core Topic ) Homewor for Unit Ex C:, 3, 4, 7; Ex D: 5, 8, 4; Ex E.: 4, 5, 9, 0, Ex E.3: (a), (b), 3, 7. Now consider these: Lesson 73 Sequences and

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Chapter Maintaining Mathematical Proficiency Simplify the expression. 1. 8x 9x 2. 25r 5 7r r + 3. 3 ( 3x 5) + + x. 3y ( 2y 5) + 11 5. 3( h 7) 7( 10 h) 2 2 +. 5 8x + 5x + 8x Find the volume or surface area

More information

3.3 Accumulation Sequences

3.3 Accumulation Sequences 3.3. ACCUMULATION SEQUENCES 25 3.3 Accumulation Sequences Overview. One of the most important mathematical ideas in calculus is that of an accumulation of change for physical quantities. As we have been

More information

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1).

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1). Lecture A jacques@ucsd.edu Notation: N, R, Z, F, C naturals, reals, integers, a field, complex numbers. p(n), S n,, b(n), s n, partition numbers, Stirling of the second ind, Bell numbers, Stirling of the

More information

Using the Laws of Exponents to Simplify Rational Exponents

Using the Laws of Exponents to Simplify Rational Exponents 6. Explain Radicals and Rational Exponents - Notes Main Ideas/ Questions Essential Question: How do you simplify expressions with rational exponents? Notes/Examples What You Will Learn Evaluate and simplify

More information

Convergence of sequences and series

Convergence of sequences and series Convergence of sequences and series A sequence f is a map from N the positive integers to a set. We often write the map outputs as f n rather than f(n). Often we just list the outputs in order and leave

More information

Series of Error Terms for Rational Approximations of Irrational Numbers

Series of Error Terms for Rational Approximations of Irrational Numbers 2 3 47 6 23 Journal of Integer Sequences, Vol. 4 20, Article..4 Series of Error Terms for Rational Approximations of Irrational Numbers Carsten Elsner Fachhochschule für die Wirtschaft Hannover Freundallee

More information

Pierre de Fermat ( )

Pierre de Fermat ( ) Section 04 Mathematical Induction 987 8 Find the sum of the first ten terms of the sequence: 9 Find the sum of the first 50 terms of the sequence: 0 Find the sum of the first ten terms of the sequence:

More information

INSPECT Algebra I Summative Assessment Summary

INSPECT Algebra I Summative Assessment Summary and Quantity The Real System Quantities Seeing Structure in Use properties of rational and irrational numbers. Reason quantitatively and use units to solve problems. Interpret the structure of expressions.

More information

MADHAVA MATHEMATICS COMPETITION, December 2015 Solutions and Scheme of Marking

MADHAVA MATHEMATICS COMPETITION, December 2015 Solutions and Scheme of Marking MADHAVA MATHEMATICS COMPETITION, December 05 Solutions and Scheme of Marking NB: Part I carries 0 marks, Part II carries 30 marks and Part III carries 50 marks Part I NB Each question in Part I carries

More information

6.1 Using Properties of Exponents 1. Use properties of exponents to evaluate and simplify expressions involving powers. Product of Powers Property

6.1 Using Properties of Exponents 1. Use properties of exponents to evaluate and simplify expressions involving powers. Product of Powers Property 6.1 Using Properties of Exponents Objectives 1. Use properties of exponents to evaluate and simplify expressions involving powers. 2. Use exponents and scientific notation to solve real life problems.

More information

Math 2412 Final Exam Review

Math 2412 Final Exam Review Math 41 Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Factor and simplify the algebraic expression. 1) (x + 4) /5 - (x + 4) 1/5

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

{ 0! = 1 n! = n(n 1)!, n 1. n! =

{ 0! = 1 n! = n(n 1)!, n 1. n! = Summations Question? What is the sum of the first 100 positive integers? Counting Question? In how many ways may the first three horses in a 10 horse race finish? Multiplication Principle: If an event

More information

Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Name (please print) Mathematics Final Examination December 14, 2005 I. (4) Mathematics 513-00 Final Examination December 14, 005 I Use a direct argument to prove the following implication: The product of two odd integers is odd Let m and n be two odd integers Since they are odd,

More information

Math Linear algebra, Spring Semester Dan Abramovich

Math Linear algebra, Spring Semester Dan Abramovich Math 52 0 - Linear algebra, Spring Semester 2012-2013 Dan Abramovich Fields. We learned to work with fields of numbers in school: Q = fractions of integers R = all real numbers, represented by infinite

More information

SOLUTIONS, what is the value of f(4)?

SOLUTIONS, what is the value of f(4)? 005 Georgia Tech High School Mathematics Competition Junior-Varsity Multiple-Choice Examination Version A Problem : If f(x) = x4 x +x x SOLUTIONS, what is the value of f(4)? (A) 6 (B) 70 (C) 78 (D) 8 (E)

More information

Solutions to Exercises 4

Solutions to Exercises 4 Discrete Mathematics Lent 29 MA2 Solutions to Eercises 4 () Define sequence (b n ) n by b n ( n n..., where we use n ) for > n. Verify that b, b 2 2, and that, for every n 3, we have b n b n b n 2. Solution.

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

Generating Functions (Revised Edition)

Generating Functions (Revised Edition) Math 700 Fall 06 Notes Generating Functions (Revised Edition What is a generating function? An ordinary generating function for a sequence (a n n 0 is the power series A(x = a nx n. The exponential generating

More information

Review Notes - Solving Quadratic Equations

Review Notes - Solving Quadratic Equations Review Notes - Solving Quadratic Equations What does solve mean? Methods for Solving Quadratic Equations: Solving by using Square Roots Solving by Factoring using the Zero Product Property Solving by Quadratic

More information

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them.

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them. Fermat s Little Theorem Fermat s little theorem is a statement about primes that nearly characterizes them. Theorem: Let p be prime and a be an integer that is not a multiple of p. Then a p 1 1 (mod p).

More information

Mathathon Round 1 (2 points each)

Mathathon Round 1 (2 points each) Mathathon Round ( points each). A circle is inscribed inside a square such that the cube of the radius of the circle is numerically equal to the perimeter of the square. What is the area of the circle?

More information

Intermediate Math Circles March 11, 2009 Sequences and Series

Intermediate Math Circles March 11, 2009 Sequences and Series 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Intermediate Math Circles March 11, 009 Sequences and Series Tower of Hanoi The Tower of Hanoi is a game

More information

Problem Solving in Math (Math 43900) Fall 2013

Problem Solving in Math (Math 43900) Fall 2013 Problem Solving in Math (Math 43900) Fall 203 Week six (October ) problems recurrences Instructor: David Galvin Definition of a recurrence relation We met recurrences in the induction hand-out. Sometimes

More information

Year 1: Fall. HSA Topics - 2 Year Cycle

Year 1: Fall. HSA Topics - 2 Year Cycle Year 1: Fall Primes and divisibility Derive divisibility rules for 2,3,5,6,9,10,11 Optional:Derive divisibility rules for larger primes such as 7, 13, 17, etc Show Euclid s proof of the infinitude of primes

More information

Generating Functions

Generating Functions 8.30 lecture notes March, 0 Generating Functions Lecturer: Michel Goemans We are going to discuss enumeration problems, and how to solve them using a powerful tool: generating functions. What is an enumeration

More information

Chapter-2 Relations and Functions. Miscellaneous

Chapter-2 Relations and Functions. Miscellaneous 1 Chapter-2 Relations and Functions Miscellaneous Question 1: The relation f is defined by The relation g is defined by Show that f is a function and g is not a function. The relation f is defined as It

More information

Introduction to Abstract Mathematics

Introduction to Abstract Mathematics Introduction to Abstract Mathematics Notation: Z + or Z >0 denotes the set {1, 2, 3,...} of positive integers, Z 0 is the set {0, 1, 2,...} of nonnegative integers, Z is the set {..., 1, 0, 1, 2,...} of

More information

SMSU Mathematics Course Content

SMSU Mathematics Course Content Southwest Minnesota State University Department of Mathematics SMSU Mathematics Course Content 2012-2013 Thefollowing is a list of possibletopics and techniques to cover in your SMSU College Now course.

More information

27 th Annual ARML Scrimmage

27 th Annual ARML Scrimmage 27 th Annual ARML Scrimmage Featuring: Howard County ARML Team (host) Baltimore County ARML Team ARML Team Alumni Citizens By Raymond Cheong May 23, 2012 Reservoir HS Individual Round (10 min. per pair

More information

CMSC Discrete Mathematics SOLUTIONS TO FIRST MIDTERM EXAM October 18, 2005 posted Nov 2, 2005

CMSC Discrete Mathematics SOLUTIONS TO FIRST MIDTERM EXAM October 18, 2005 posted Nov 2, 2005 CMSC-37110 Discrete Mathematics SOLUTIONS TO FIRST MIDTERM EXAM October 18, 2005 posted Nov 2, 2005 Instructor: László Babai Ryerson 164 e-mail: laci@cs This exam contributes 20% to your course grade.

More information

9. Finite fields. 1. Uniqueness

9. Finite fields. 1. Uniqueness 9. Finite fields 9.1 Uniqueness 9.2 Frobenius automorphisms 9.3 Counting irreducibles 1. Uniqueness Among other things, the following result justifies speaking of the field with p n elements (for prime

More information

Homework 3 Solutions, Math 55

Homework 3 Solutions, Math 55 Homework 3 Solutions, Math 55 1.8.4. There are three cases: that a is minimal, that b is minimal, and that c is minimal. If a is minimal, then a b and a c, so a min{b, c}, so then Also a b, so min{a, b}

More information

MAT115A-21 COMPLETE LECTURE NOTES

MAT115A-21 COMPLETE LECTURE NOTES MAT115A-21 COMPLETE LECTURE NOTES NATHANIEL GALLUP 1. Introduction Number theory begins as the study of the natural numbers the integers N = {1, 2, 3,...}, Z = { 3, 2, 1, 0, 1, 2, 3,...}, and sometimes

More information

PRE-ALGEBRA SUMMARY WHOLE NUMBERS

PRE-ALGEBRA SUMMARY WHOLE NUMBERS PRE-ALGEBRA SUMMARY WHOLE NUMBERS Introduction to Whole Numbers and Place Value Digits Digits are the basic symbols of the system 0,,,, 4,, 6, 7, 8, and 9 are digits Place Value The value of a digit in

More information

Math Circle: Recursion and Induction

Math Circle: Recursion and Induction Math Circle: Recursion and Induction Prof. Wickerhauser 1 Recursion What can we compute, using only simple formulas and rules that everyone can understand? 1. Let us use N to denote the set of counting

More information

Generating Functions Count

Generating Functions Count 2 Generating Functions Count 2.1 Counting from Polynomials to Power Series Consider the outcomes when a pair of dice are thrown and our interest is the sum of the numbers showing. One way to model the

More information

ASSIGNMENT 12 PROBLEM 4

ASSIGNMENT 12 PROBLEM 4 ASSIGNMENT PROBLEM 4 Generate a Fibonnaci sequence in the first column using f 0 =, f 0 =, = f n f n a. Construct the ratio of each pair of adjacent terms in the Fibonnaci sequence. What happens as n increases?

More information

Discrete Mathematics. Kishore Kothapalli

Discrete Mathematics. Kishore Kothapalli Discrete Mathematics Kishore Kothapalli 2 Chapter 4 Advanced Counting Techniques In the previous chapter we studied various techniques for counting and enumeration. However, there are several interesting

More information

ZEROES OF INTEGER LINEAR RECURRENCES. 1. Introduction. 4 ( )( 2 1) n

ZEROES OF INTEGER LINEAR RECURRENCES. 1. Introduction. 4 ( )( 2 1) n ZEROES OF INTEGER LINEAR RECURRENCES DANIEL LITT Consider the integer linear recurrence 1. Introduction x n = x n 1 + 2x n 2 + 3x n 3 with x 0 = x 1 = x 2 = 1. For which n is x n = 0? Answer: x n is never

More information

Chapter 5.1: Induction

Chapter 5.1: Induction Chapter.1: Induction Monday, July 1 Fermat s Little Theorem Evaluate the following: 1. 1 (mod ) 1 ( ) 1 1 (mod ). (mod 7) ( ) 8 ) 1 8 1 (mod ). 77 (mod 19). 18 (mod 1) 77 ( 18 ) 1 1 (mod 19) 18 1 (mod

More information

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015 Galois Theory TCU Graduate Student Seminar George Gilbert October 201 The coefficients of a polynomial are symmetric functions of the roots {α i }: fx) = x n s 1 x n 1 + s 2 x n 2 + + 1) n s n, where s

More information

Unit 5: Sequences, Series, and Patterns

Unit 5: Sequences, Series, and Patterns Unit 5: Sequences, Series, and Patterns Section 1: Sequences and Series 1. Sequence: an ordered list of numerical terms 2. Finite Sequence: has a first term (a beginning) and a last term (an end) 3. Infinite

More information

Notes on generating functions in automata theory

Notes on generating functions in automata theory Notes on generating functions in automata theory Benjamin Steinberg December 5, 2009 Contents Introduction: Calculus can count 2 Formal power series 5 3 Rational power series 9 3. Rational power series

More information

Recurrence Relations and Recursion: MATH 180

Recurrence Relations and Recursion: MATH 180 Recurrence Relations and Recursion: MATH 180 1: Recursively Defined Sequences Example 1: The sequence a 1,a 2,a 3,... can be defined recursively as follows: (1) For all integers k 2, a k = a k 1 + 1 (2)

More information

Math 46 Final Exam Review Packet

Math 46 Final Exam Review Packet Math 46 Final Exam Review Packet Question 1. Perform the indicated operation. Simplify if possible. 7 x x 2 2x + 3 2 x Question 2. The sum of a number and its square is 72. Find the number. Question 3.

More information

All numbered readings are from Beck and Geoghegan s The art of proof.

All numbered readings are from Beck and Geoghegan s The art of proof. MATH 301. Assigned readings and homework All numbered readings are from Beck and Geoghegan s The art of proof. Reading Jan 30, Feb 1: Chapters 1.1 1.2 Feb 6, 8: Chapters 1.3 2.1 Feb 13, 15: Chapters 2.2

More information

Recommended questions: a-d 4f 5 9a a 27.

Recommended questions: a-d 4f 5 9a a 27. Sheet jacques@ucsdedu Recommended questions: 2 3 4a-d 4f 5 9a 0 2 3 5 6 8 9 20 22 23 24 25a 27 Recommended reading for this assignment: Aigner Chapter, Chapter 2-24 Formal power series Question Let R be

More information

PUTNAM TRAINING EASY PUTNAM PROBLEMS

PUTNAM TRAINING EASY PUTNAM PROBLEMS PUTNAM TRAINING EASY PUTNAM PROBLEMS (Last updated: September 24, 2018) Remark. This is a list of exercises on Easy Putnam Problems Miguel A. Lerma Exercises 1. 2017-A1. Let S be the smallest set of positive

More information

MCR3U Unit 7 Lesson Notes

MCR3U Unit 7 Lesson Notes 7.1 Arithmetic Sequences Sequence: An ordered list of numbers identified by a pattern or rule that may stop at some number or continue indefinitely. Ex. 1, 2, 4, 8,... Ex. 3, 7, 11, 15 Term (of a sequence):

More information

CDM. Recurrences and Fibonacci

CDM. Recurrences and Fibonacci CDM Recurrences and Fibonacci Klaus Sutner Carnegie Mellon University 20-fibonacci 2017/12/15 23:16 1 Recurrence Equations Second Order The Fibonacci Monoid Recurrence Equations 3 We can define a sequence

More information

CmSc 250 Intro to Algorithms. Mathematical Review. 1. Basic Algebra. (a + b) 2 = a 2 + 2ab + b 2 (a - b) 2 = a 2-2ab + b 2 a 2 - b 2 = (a + b)(a - b)

CmSc 250 Intro to Algorithms. Mathematical Review. 1. Basic Algebra. (a + b) 2 = a 2 + 2ab + b 2 (a - b) 2 = a 2-2ab + b 2 a 2 - b 2 = (a + b)(a - b) CmSc 250 Intro to Algorithms Mathematical Review 1. Basic Algebra (a + b) 2 = a 2 + 2ab + b 2 (a - b) 2 = a 2-2ab + b 2 a 2 - b 2 = (a + b)(a - b) a/x + b/y = (ay + bx)/xy 2. Exponents X n = XXX..X, n

More information

Probability & Combinatorics Test and Solutions February 18, 2012

Probability & Combinatorics Test and Solutions February 18, 2012 1. A standard 12-hour clock has hour, minute, and second hands. How many times do two hands cross between 1:00 and 2:00 (not including 1:00 and 2:00 themselves)? Answer: 119 Solution: We know that the

More information

Algebra 2 Honors Summer Review

Algebra 2 Honors Summer Review Algebra Honors Summer Review 07-08 Label each problem and do all work on separate paper. All steps in your work must be shown in order to receive credit. No Calculators Allowed. Topic : Fractions A. Perform

More information

CDM. Recurrences and Fibonacci. 20-fibonacci 2017/12/15 23:16. Terminology 4. Recurrence Equations 3. Solution and Asymptotics 6.

CDM. Recurrences and Fibonacci. 20-fibonacci 2017/12/15 23:16. Terminology 4. Recurrence Equations 3. Solution and Asymptotics 6. CDM Recurrences and Fibonacci 1 Recurrence Equations Klaus Sutner Carnegie Mellon University Second Order 20-fibonacci 2017/12/15 23:16 The Fibonacci Monoid Recurrence Equations 3 Terminology 4 We can

More information

1 The distributive law

1 The distributive law THINGS TO KNOW BEFORE GOING INTO DISCRETE MATHEMATICS The distributive law The distributive law is this: a(b + c) = ab + bc This can be generalized to any number of terms between parenthesis; for instance:

More information

Q 1 Find the square root of 729. 6. Squares and Square Roots Q 2 Fill in the blank using the given pattern. 7 2 = 49 67 2 = 4489 667 2 = 444889 6667 2 = Q 3 Without adding find the sum of 1 + 3 + 5 + 7

More information

Section 11.1: Sequences

Section 11.1: Sequences Section 11.1: Sequences In this section, we shall study something of which is conceptually simple mathematically, but has far reaching results in so many different areas of mathematics - sequences. 1.

More information

Counting on Continued Fractions

Counting on Continued Fractions appeared in: Mathematics Magazine 73(2000), pp. 98-04. Copyright the Mathematical Association of America 999. All rights reserved. Counting on Continued Fractions Arthur T. Benjamin Francis Edward Su Harvey

More information