ON COVERING EQUIVALENCE. Zhi-Wei Sun

Size: px
Start display at page:

Download "ON COVERING EQUIVALENCE. Zhi-Wei Sun"

Transcription

1 Aalytic Number Theory Beijig/Kyoto, 999, 77 30, Dev. Math., 6, Kluwer Acad. Publ., Dordrecht, 00. ON COVERING EQUIVALENCE Zhi-Wei Su Abtract. A arithmetic equece a {a+x : x Z} 0 a < with weight λ C i deoted by λ, a,. For two fiite ytem A { λ, a, } k ad B { µ t, b t, } l t of uch triple, if x a λ x b t µ t for all x Z the we ay that A ad B are coverig equivalet. I thi paper we characterize coverig equivalece i variou way, our characterizatio ivolve the -fuctio, the Hurwitz ζ-fuctio, trigoometric fuctio, the greatet iteger fuctio ad Egyptia fractio.. Itroductio ad Prelimiarie By Z + we mea the et of poitive iteger. For a Z ad Z + we let a + Z repreet the arithmetic equece {, a, a, a, a +, a +, } ad write a for a + Z if a R {0,,, }. For a fiite ytem. A {a } k Z + ad a R for,.k of uch arithmetic equece, we defie the coverig fuctio w A : Z N {0,,, } a follow:. w A x { k : x a }. Let m be a poitive iteger. If w A x m for all x Z, the we call. a m- cover of Z; whe w A x m for ay x Z, we ay that A form a exact m-cover of Z. The otio of cover i.e. -cover wa itroduced by P. Erdö [Er] i the early 930, oe of the implet otrivial cover of Z i {0, 03, 4, 56, 7}. Cover of Z have may ice propertie ad iteretig applicatio, for problem Key word ad phrae. Coverig equivalece, uiform fuctio, gamma fuctio, Hurwitz zeta fuctio, trigoometric fuctio. 000 Mathematic Subject Claificatio. Primary B5; Secodary B75, D68, M35, 33B0, 33B5, 33C05, 39B5. The reearch i upported by the Teachig ad Reearch Award Fud for Outtadig Youg Teacher i Higher Educatio Ititutio of MOE, ad the Natioal Natural Sciece Foudatio of P. R. Chia.

2 ZHI-WEI SUN ad reult we recommed the reader to ee R. K. Guy [G], ad Š. Porubký ad J. Schöheim [PS]. Let M be a additive abelia group. I 989 the author [Su] coidered triple of the form λ, a, where λ M, Z + ad a R, we ca view λ, a, a the arithmetic equece a with weight or multiplier λ. Let SM deote the et of all fiite ytem of uch triple. For.3 A { λ, a, } k SM we aociate it with the followig periodic arithmetical map w A : Z M:.4 w A x x a λ for x Z, which i called the coverig map of A. w refer to the zero map ito M. Clearly w A i periodic modulo the leat commo multiple [,, k ] of all the moduli,, k. For A, B SM, if w A w B the we ay that A i coverig equivalet to B ad write A B for thi. Oberve that.3 ad B { µ t, b t, } l t SM are equivalet if ad oly if.5 C { λ, a,,, λ k, a k, k, µ, b, m,, µ l, b l, m l }. We idetify. with the ytem {, a, } k. Thu,. form a exact m-cover if ad oly if A { m, 0, }. Let M be a additive abelia group, ad f a map of two complex variable ito M uch that { x+r, y : r R} Domf for all x, y Domf ad Z+. If.6 x + r f, y fx, y for ay x, y Domf ad Z +, the we call f a uiform map ito M. Note that fx, y f x+0, y ad {r} {0} for ay Z+. I 989 the author [Su] howed the followig Theorem.. Let M be a left R-module where R i a rig with idetity. Wheever two ytem A { λ, a, } k ad B { µ t, b t, } l t i SR are equivalet, for ay uiform map f ito M we have.7 x + a λ f, y l t x + bt µ t f, y for all x, y Domf. A imple proof of thi remarkable theorem wa give i Sectio of [Su8].

3 ON COVERING EQUIVALENCE 3 Let f be a uiform map ito the complex field C with Domf D D ad fx 0, y 0 0 for ome x 0, y 0 D D. If fx, y gxhy for all x D ad y D, the for each Z + we have x0 + r g hy 0 gx 0 hy 0 0, thu θ hy 0 /hy 0 0 ad therefore θhy hy g gx 0 θm hy 0 hmy 0 hmy 0 hmy 0 x0 + r hy for every y D, θmθ for ay m, Z+ ad.8 x + r g θgx for all Z + ad x D. Such fuctio g with D Domg [0, or Q [0, were tudied by H. Walum [W] i 99 where Q deote the ratioal field, ad ivetigated earlier by H. Ba [B], D. S. Kubert [K], S. Lag [La] ad J. Milor [M] i the cae θ where C. I thi paper by R ad R + we mea the field of real umber ad the et of poitive real. For a field F we ue F to deote the multiplicative group of ozero elemet of F. Whe x R, [x] ad {x} deote the itegral part ad the fractioal part of x repectively, if Z + the we write {x} to mea {x/}. For coveiece, we alo et.9 q0 0 ad qz z for z C.. Some Example of Uiform Map For a uiform map f, the map f x, y f x, y i alo a uiform map. Example.. Two imple uiform map ito the additive group Z are the fuctio I, I + : C C Z give below: { if x Z,. Ix, y 0 otherwie; { if x Z +, I + x, y 0 otherwie.

4 4 ZHI-WEI SUN Aother example i the fuctio [ ] : R R Z defied by. [ ]x, y [x], the idetity [ x+r ] [x] for Z+ i well kow ad due to Hermite. Now we tur to uiform map ito the multiplicative group C. Example.. i Defie γ : C R + C a follow:.3 γx, y { xy x / πy if x N {0,,, }, x x! yx πy otherwie. Whe Z + ad y R +, if x C \ N, the by applyig Gau multiplicatio formula z + r π z z with z x/, we obtai that x + r y x+r/ y x x ; πy πy o the other had, for m k + l with k N ad l R, we have lim x m r l lim x m x+r x+r y lim πy x m x+l x + m + m j0 x + j y x / x+m xy x / πy x+l y / πy + k j0 x+l + j y x+l m m! y m πy k k! y k πy. Thu γ i a uiform map ito C. ii A z z π/ i πz for z Z, γx, yγ x, y I +x,y /Sx, y for x C ad y > 0, where { i πx if x Z,.4 Sx, y x y if x Z. It follow that the fuctio S : C C C i a uiform map ito C. iii For α, β, γ C with Reγ > Reα + β ad γ 0,,,, we ue F α, β, γ, z to deote the hypergeometric erie give by F α, β, γ, z + αα + α + ββ + β + z!γγ + γ +

5 ON COVERING EQUIVALENCE 5 which coverge abolutely for z. Let u, v, w C ad D u,v,w coit of all thoe x, y C C uch that x+ w w u y, x+ y, x+ w v y N ad Rex+ w u v y > 0. Whe x, y D u,v,w, by a formula i [Ba] we have F u y, v y, w y + x, x x u/y v/y x u/yx v/y γx, yγx, y γx 3, yγx 4, y 0 where x x + w y, x x + w u v y, x 3 x + w u y Z + clearly x+r F, y D u,v,w for all r R ice x+r u y, v y, w y + x + r, F ad x 4 x + w v y ; for ay + z ad u y, v y, x + r, γ x +r, yγ x +r, y γ x 3+r, yγ x 4+r, y γx, yγx, y γx 3, yγx 4, y F So the fuctio F u,v,w : D u,v,w C give by.5 F u,v,w x, y F u y, v y, w y + x, y x+z/y+r u y, v y, w y + x, i a uiform map ito C. Remark.. Sice the fuctio S i a uiform map ito C, we have log i π x + r log i πx for Z + ad x 0,. I 966 H. Ba [B] howed that every liear relatio over Q amog the umber log i πx with x Q 0,, i a coequece of the lat idetity, together with the fact that log i π x log i πx. See alo V. Eola [E]. Example.3. i Defie G, H : C R + C by.6 Gx, y y ad.7 Hx, y y log y + log y + m0 m qm + x m + + qx m. m We aert that G i a uiform map ito C ad hece o i H G..

6 6 ZHI-WEI SUN Let Z + ad y > 0. By Example.i, x + r y x+r πy xy x πy for x C \ N. Takig the logarithmic derivative of both ide we get that Thu y x + r/ x + r/ + logy x + log y for x 0,,,. x x + r/ x + r/ + logy + γ x y x + log y + γ for x C \ N where γ i the Euler cotat. By a kow formula ee, e.g., [Ba], if x C \ N the ygx, y log y m + x m + x m + m + x x x + γ. m0 So, for ay x C \ N we have m0 x + r G, y Gx, y. Whe x a b where a R ad b N, x + r G x + a G, y, y Gx, y Gx, y + lim z x G b, y Gx, y + lim z x z x lim y z Z + y lim z x y m0 m x m0 m b z Z z Z r a Gz, y G z + r G, y z + a, y qm + x qm + z + q0 q x + z y q m + z + a qm b + q b + z + a q0 y x z + y 0. z + a/ + b

7 Note that for ay v N we have lim u v m0 m v ON COVERING EQUIVALENCE 7 m u m v lim u v mv+ u v m um v 0. For, if u v < / the m u m v u v m um v < / m v / for m v +, v +,, thu the erie mv+ m u m v with u v < / coverge uiformly. ii The Hurwitz zeta fuctio ζ, v i defied by the erie ζ, v m0 m + v for, v C with Re > ad Rev > 0 or v N, by Lemma of [M] it exted to a fuctio which i defied ad holomorphic i both variable for all complex ad for all v i the imply coected regio C\, 0]. I additio, we et ζ, v Gv,. For v C \ N, if Re > the we alo have ζ, v + ζ, v ζ, v + ζ, v If Re > the m m0 m + v + m + m + v m0 m0 m + v v ; m + m + v v. d dv ζ, v m0 dm + v dv ζ +, v for all v C \ N. Wheever C \ {0, }, d ζ, v ζ +, v for all v C \, 0] dv by aalytic cotiuatio. A ζ0, v v, d dv ζ0, v. For thoe v C \ N, we have d d ζ, v dv dv m + ζ, v. m + v m + v m0 m0

8 8 ZHI-WEI SUN For C we defie ζ : C \, 0] R + C by { y ζ, x if,.8 ζ x, y y ζ, x logy if. Let x C \, 0] ad y R +. The ζ x, y Gx, y. If Re > ad Z +, the ζ, x + r k0 ζ, x. x + r + k By part i ad aalytic cotiuatio, for ay C the fuctio ζ i a uiform map ito C. Remark.. a I [M] Milor oberved that there i o cotat c uch that x + r/ x + r/ + c x x + c for Z+ ad x 0,. b By [Ba], if x, y > 0 the dζ x, y d y d 0 d 0 ζ, x y log y ζ, x log x logπ + x log y log γx, y. 0 c For C \ N Milor [M] proved i 983 that the complex vector pace of all thoe cotiuou fuctio g : 0, C which atify.8 with D 0, ad θ, i paed by liearly idepedet fuctio ζ, x ad ζ, x where x rage over 0,. Example.4. i Let ψ be a fuctio ito C with Domψ C. Let D ψ deote the et of thoe x, y C C uch that x + ky Domψ for all k Z ad k a mod ψx + ky coverge for ay a Z ad Z+. If x, y D ψ ad Z +, the x+r, y D ψ for all r R ice x+r + ky x + r + ky, furthermore k x + r ψ + k y Thu the fuctio ψ : D ψ C give by.9 ψx, y + l r mod k ψxy + ky ψx + ly + l ψx + ly

9 ON COVERING EQUIVALENCE 9 i a uiform map ito C. Thi fact wa firt metioed by the author i [S]. ii Let m N. We defie cot m : C C C by m y cot m πx if x Z, m+.0 cot m x, y m y m+ B m+ m+ if x Z & m, 0 if x Z & m, where cot m z dm cot z dz m x C ad y C. A for z C \ πz, ad B i the th Beroulli umber. Fix π cot πv + k v + k v + v v k for v C \ Z, k if x Z the π m+ cot m πx dm dv m + v vx k + d m dv m v + k vx m m! ad o k cot m x, y m! πy m+ + k If x Z ad m, the cot m x, y vaihe ad If x Z ad m, the + k k x + x + k m+ l l 0 cot m x, y m+ πm+ m +! B m+ So we alway have cot m x, y m! πy m+ m! πy m+ + k k x + l l 0 + k d m v dv m v k vx x + k m+ x + k m+. 0. lm+ l m+ m! πy m+ m! x + k m+ π m+ m! m!ζm + πy m+ πy m+ + k k x + k x + k m+. qxy + ky m+.

10 0 ZHI-WEI SUN By part i thi implie that cot m i a uiform map ito C. Let x C ad y > 0. Clearly. Alo, π cot 0 x, y Ix, y π cot πx y Hx, y H x, y ζ x, y ζ x, y.. cot x, y { y cc πx if x Z, 3y if x Z;.3 cot x, y { co πx y 3 i 3 πx if x Z, 0 if x Z, cot 0 x, y cot x, y; ad.4 cot 3 x, y { + co πx y 4 i 4 πx if x Z, 5y 4 if x Z, 6 πy 4 + k k x x + k 4. Remark.3. I 970 S. Chowla [C] proved that if p i a odd prime, the the p real umber cot π r p p r,,, are liearly idepedet over Q, thi wa exteded by T. Okada [O] i 980. By Lemma 7 of Milor [M], there i a uique fuctio g : R R periodic mod for which gx cot m πx m cot m x, for x R \ Z ad.8 hold with θ m+ ad D R, we remark that gx m cot m x, for all x R becaue cot m i a uiform map ito C. With the help of Dirichlet L-fuctio, Milor [M] alo howed that every Q-liear relatio amog the value gx with x Q, follow from.8 with θ m+ ad D Q, ad the fact gx+ gx ad g x m+ gx for x Q. So, each Q-liear relatio amog the value cot m x, m gx with x Q ad m+ Z +, i a coequece of the fact that cot m i a uiform map ito C, together with the trivial equalitie cot m x +, cot m x, ad cot m m cot m. 3. Characterizatio of coverig equivalece I order to characterize coverig equivalece, we eed Lemma 3.. Let f be a complex-valued fuctio o that for ay Z +, fx, i defied ad cotiuou at x, \ Z, ad x + r f, fx, for all x < with x Z.

11 Suppoe that ON COVERING EQUIVALENCE lim fx, for each m N. x m Let A { λ, a, } k be uch a ytem i SC that The A. x + a λ f, 0 for all x < with x Z. Proof. Sice w A i periodic mod [,, k ], it uffice to how w A m 0 for ay m N. A lim x m fx, there exit a δ 0, uch that fx, 0 for all x m δ, m + δ with x m. If Z + the ad hece So Therefore w A m x + {m} lim fx, f x m x + r lim x m λ f r {m} x + {m} f f x+a lim, x m fx, f x+a lim, x m fx,,, fx,, f r {m} m + r a x m. { if m a, 0 otherwie. lim x m fx,, x + a λ f, 0. Let ow characterize the coverig equivalece of two ytem of arithmetic equece. Theorem 3.. Let, Z +, a R ad b t R for,, k ad t,, l. The the followig tatemet are equivalet: 3. A {a } k B {b t } l t; 3. I {,,k} I c I e πi I a J {,,l} t J c J e πi t J b t for all c 0;

12 ZHI-WEI SUN 3.3 k k a z i π S z S z [ z ] l l b t z i π m t t t T z [ z m ] t t T z for z C where S z { k : z a } ad T z { t l : z b t }; 3.4 k U z lt t V z a z b t z m a z b t z t π k l U z [ z ]! [ z ] [ z ] t V z [ z ]! [ z ] m [ z ] t for z C where U z { k : z a + N} ad V z { t l : z b t + N}; 3.5 k u F, v, w + a, l t u v F,, w + b t, for u, v, w C with Rew > Reu + v ad w, w u, w v N. Proof Let N [,, k, m,, m l ]. Set k fz z N/ e πia / ad gz l t z N/ e πib t/. Clearly ay zero of fz or gz i a Nth root of uity. For each a Z, e πia/n i a zero of fz with multiplicity w A a, ad a zero of gz with multiplicity w B a. By Viéte theorem, we have the idetity fz gz if ad oly if w A w B. Note that fz gz if ad oly if I z I N/ e πi I a / I {,,k} J {,,l} J z t J N/ e πi t J b t/. By comparig the coefficiet of power of z, we fid that w A w B if ad oly if I e πi I a / J e πi t J b t/ I {,,k} I N/ a J {,,k} t J N/a for all a 0,,,. Thi prove the equivalece of 3. ad ,3.4. We ca view the multiplicative group C a a Z-module with the calar product m, z z m. By Theorem., for ay z C we have k a z S, l bt z S, t

13 ad ON COVERING EQUIVALENCE 3 k a z γ, l bt z γ,. Apparetly S z T z ad U z V z. If Z +, a R ad z a, the a z z a [ z ]. Therefore 3.3 ad 3.4 follow , ad For Z + ad x, \ Z, we put f x, log i πx, f x, log x + x log logπ. Let j {, }. The lim x m f j x, for all m N. Let Z +. The f j x, i cotiuou for x, \ Z. Whe x < ad x Z, x + r f, log ad x + r f, log If k for x, \ Z, or k x + a i π x + a x+a π t i π x + r log i πx f x, x + r l t l t x+r π log x f x,. π i π x + b t for x, \ Z, the for j or we have x + a f j, l t x + bt m x+b t t π x + bt f j, 0 for all x < with x Z, therefore {, a,,,, a k, k,, b, m,,, b l, m l } by Lemma 3.. So, each of 3.3 ad 3.4 implie Let u, v, w be complex umber with Rew > Reu + v ad w, w u, w v N. By Example.iii, F u,v,w i a uiform map ito the multiplicative group C. Note that 0, D u,v,w. Sice A B, applyig Theorem. we get that k a F u,v,w, l t bt F u.v.w,,

14 4 ZHI-WEI SUN i.e., k F u, v, w + a, l F t u, v, w + b t, Let x R \ Z. By a kow formula i [Ba], if Z + ad a R the F So, by 3.5 we have x, x, + a, k +a x+a x+a +a +a x+a +a x +a x+a. l t x x +a x +b t, x+b t x+b t i.e., k x+a l t x+bt k +a / l t +bt / x+a x+bt. Note that + z zz zz z z for N ad z Z. Let m N. The k + x+m / [m/ ] x+m j0 j k x+a m a + x+m / m a [m/ ]. x+m x+b j0 j t t l m b t Lettig x m we obtai from ad that t l m b t / x + m x + m c for ome c C. k m a t l m b t Thu x+m w Bm w A m ted to a ozero umber a x m. Thi how that w A m w B m. We are doe. Remark 3.. a Whe 3. hold with k < k ad m m l, by takig c / k i 3. we obtai that / k t J / for ome J

15 ON COVERING EQUIVALENCE 5 {,, l} ad hece k m l. Frohi we ca deduce that if A {a } k ad B {b t } l t are equivalet ytem with < < k ad m < < m l the A B i.e. k l, m ad a b for,, k, thi uiquee reult wa dicovered by S. K. Stei [S]. Whe B {b t } l t i the ytem of m copie of 0, the right had ide of the formula i 3. tur out to be { m J if c for ome 0,,, m, J {,,m} J t J c 0 otherwie. Thu. form a exact m-cover of Z if ad oly if I e πi a I m I {,,k} I for,, m ad I {,,k} I J I e πi I a 0 for ay J {,, k} with J Z. For coectio of cover of Z with Egyptia fractio, the reader may ee [Su3 Su7]. b By the proof of ad , 3. i valid if the formula i 3.3 or 3.4 hold for ay z C\Z. Thu 3. ha the followig two equivalet form by aalytic cotiuatio. k l k k z + a i π a z z+a π k l l t i π b t z for all z C; l z + bt t z+b t m m t t for z C \ N. That implie 3. wa firt obtaied by Stei [S] i the cae B {0}; the covere i geeral cae wa oticed by the author i 989 a a coequece of theorem i [Su], whe B {b t } l t i imply {0} it wa foud repeatedly by J. Beebee [Be] i 99. That 3. implie i eetially Corollary 3 of Su [Su] which exted the Gau multiplicatio formula, the covere wa metioed i [Su] a a cojecture. By the above,. i a exact m-cover of Z i.e. A { m, 0, } if ad oly if 3.6 k z + a z+a π k m m z for all z C \ N.

16 6 ZHI-WEI SUN Coequetly, if. i a exact -cover of Z with a 0, the z z+a k z+a π k z/ a k a π k lim z 0 z z z z z for z 0,,,, i.e., 3.7 z z z k z+a z a for all z C \ N by Theorem 3. we directly have k a a / / π k / /. I 994 Beebee [Be3] howed that the relative formula 3.7 hold for ay exact -cover. of Z a we have ee thi wa actually rooted i [Su] publihed i 989. The ew cotributio of [Be3] i that if 3.7 hold the. mut be a exact -cover of Z, however we have a impler equivalet form of 3.. Now we give Theorem 3.. For every,, k we let λ C, Z + ad a R. The the followig tatemet are equivalet: 3.8 A { λ, a, } k ; 3.9 λ t i<j k gcd i, j a i a j λ t i λ t j [ i, j ] for t, where λ Reλ ad λ Imλ for ay,, k; 3.0 [ ] x + ma λ m 0 for all x Z where m i a iteger prime to the moduli,, k ; 3. z + a λ cot m, 0 for all z C where m i a oegative iteger ad cot m z 3. t i a i Example.4ii; z + at λ t ζ, t 0 for all z C \, 0] t

17 ON COVERING EQUIVALENCE 7 where i a complex umber ot i N ad ζ i a i Example.3ii. Proof For t, ad N [,, k ] we ca eaily check that N N λ k r a t λ t + i<j k a i i a j j λ t i λ t j [ i, j ]. So 3.8 ad 3.9 are equivalet Let B { λ, b, } k where b i the leat oegative reidue of ma mod. A m i prime to N [,, k ], ay iteger z ca be writte i the form mu + Nv with u, v Z ad hece w B z w B mu w A u. Thu B if A. Clearly fx, y x ad gx, y fx, y [ ]x, y {x} over R R are uiform map ito R. If A ad x R, the [ ] x + ma λ m x/m + a m λ { } x + b λ 0. If 3.0 hold, the o doe 3.8, becaue for ay x Z we have w A x k ma mx λ [ ma mx λ ] m [ ] ma mx λ [ ] ma mx [ ] ma mx λ m Sice cot m i a uiform map ito C, 3.8 implie 3. by Theorem.. By Example.4ii, cot m z, m! π m+ + k k + z m+ for z C \ Z. Obviouly cot m z, a z ted to a iteger. If Z +, the cot m z, cot m z, / m+ i cotiuou for z C \ Z. I the light of Lemma 3., 3. implie By Example.3ii, ζ i a uiform map ito C. So 3. i implied by 3.8. A 0,,,, by Example.3ii we have d d ζ, v ζ +, v, dv ζ +, v ζ +, v, dv

18 8 ZHI-WEI SUN i the regio C\, 0]. Let m [ Re] if Re, ad m 0 if Re >. Put + m. The Re > ad d m ζ, v dvm 0 j<m If Z + ad a R, the d m z + a dz m ζ, j ζ, v for v C \, 0]. z + a m + ζ, Apparetly ζ z, ζ, z a z ted to a iteger i N. Let aume 3.. The t z + at λ t ζ, t t m + d m dz m t for z C \, 0], ad hece by aalytic cotiuatio t for z C \, 0]. z + at λ t ζ, t 0 t z + at λ t ζ, t 0 for all z 0,,,. t Applyig Lemma 3. we the get 3.8. So far we have completed the proof of Theorem 3.. Remark 3.. I the cae m, that 3.8 implie 3.0 wa firt realized by the author [Su] i 989 ad later refoud by Porubký [P4] i 994. If 3.8 hold, the the formula i 3.0 i the cae m ad x [,, k ] yield the equality k λ 0. I 989 the author [Su] obtaied Theorem. ad oted that fx, y y cot πx over C \ Z C i a uiform map ito C, thu for ay exact -cover. we have cot π z + a cot πz ad for all z C \ Z, thi wa alo give by Beebee [Be] i 99. cc π z + a cc πz Corollary 3.. Let. be a fiite ytem of arithmetic equece, ad m a poitive iteger. The i. form a exact m-cover of Z if ad oly if 3.3 m ad i<j k i, j a i a j [ i, j ] mm,

19 ON COVERING EQUIVALENCE 9 alo. form a exact m-cover of Z if ad oly if 3.4 m ad [ ] a + a am + k m for a RN where i ay fixed iteger prime to N [,, k ]. ii Suppoe that. i a m-cover of Z. The 3.5 t t ζ, x + a t mζ, x for > ad x > 0, t ad for ay Z + we have 3.6 k x+a Z cot π x + a { m cot πx if x R \ Z, 4 B m k x+a if x Z. Proof. Let A {, a,,,, a k, k, m, 0, }. i Clearly A {a } k form a exact m-cover if ad oly if A. If A, the k / m 0 by Remark 3.. That k / m for ay exact m-cover. i actually a well-kow reult, it ca be foud i [P]. By the equivalece of 3.8 ad 3.9, A if ad oly if + m i<j k i, j a i a j [ i, j ] + k, a 0 m Uder the coditio k / m, reduce to the latter equality i 3.3. So, A if ad oly if 3.3 hold. By Theorem 3., A if ad oly if for all x Z we have [ ] x + a m [ ] x + 0 0, i.e. [ ] x + a mx + k m.

20 0 ZHI-WEI SUN Ay iteger x ca be writte i the form a + qn where a R ad q Z, thu the lat equality hold for all x Z if ad oly if 3.4 i valid. Thi ed the proof of part i. ii A w A x m for all x Z, w A x 0 for ay x Z. Obviouly A { w A r, r, N } N. Whe > ad x > 0, by Theorem 3. therefore t x + at ζ, t t t t ζ N x + 0 mζ,, x + a N t mζ, x t ice ζ, x+r N x+r j0 j + N > 0. By Example.4ii, x + r w A rζ N, N, w A r N ζ, x + r 0 N cot x, N! πn + j j x > 0 for all x R. j + x A i the lat paragraph, ow we have x + a cot, m cot x, 0 for ay x R. Clearly thi i equivalet to 3.6. We are doe. Remark i the cae give the followig iequality: 3.7 cc π x + a { m cc πx if x R \ Z, 3 m k if x Z. x+a k x+a Z Let A { λ, a, } k SC ad z C. For y π/ max{,, k }, 0 we have e yz w A e y e y z+a λ e y 0 λ y y z+a ye e y λ y B z+a y! where B x i the Beroulli polyomial of degree. So, A if ad oly if z + λ a B 0 for all 0,,,.

21 ON COVERING EQUIVALENCE For the ytem B {, a,,,, a k, k, m, 0, }, thi wa proved by A. S. Fraekel [F,F] i the cae m ad z 0, by Beebee [Be] i the cae m, ad by Porubký [P] i the cae m Z + ad z 0. See alo Porubký [P,P3] ad Zám [Z] for the cae z 0 with the weight i B replaced by real weight. I 994 Porubký [P4] eetially etablihed the above geeral reult. However, before the work of Beebee [Be] ad Porubký [P4], i 989 the author [Su] proved Theorem. ad oberved that the fuctio b x, y y B x i a uiform map ito C for each N. I 988 D.H. Lehmer [Le] howed that B x i the oly moic polyomial of degree uch that d x + r d B B x for all d Z +. d For ay N clearly Thu A if ad oly if z + λ a B l0 B l l λ l z + a l. 3.9 l0 B l l λ l a l 0 for 0,,,. I 99 E. Y. Deeba ad D. M. Rodriguez [DR] foud thi for the trivial ytem {, 0, d,,, d,,, d, d,, 0, } where d Z +, later Beebee [Be] obtaied the reult for ytem B with m, ad Porubký [P5] oberved the geeralizatio to A SR. For the coverig equivalece betwee ytem i SR, Porubký [P5] provided ome characterizatio ivolvig Euler polyomial ad recurio for Euler umber. I [Su] the author aouced everal reult cloely related to thi paper, proof of them are preeted i a recet paper [Su9]. Referece [B] H. Ba, Geerator ad relatio for cyclotomic uit, Nagoya Math. J , MR 34#98. [Ba] H. Batema, edited by Erdélyi et al., Higher Tracedetal Fuctio, vol. I, McGraw-Hill, 953, Ch. ad. [Be] J. Beebee, Some trigoometric idetitie related to exact cover, Proc. Amer. Math. Soc. 99, MR 9i:03. [Be] J. Beebee, Beroulli umber ad exact coverig ytem, Amer. Math. Mothly 99 99, MR 93i:05. [Be3] J. Beebee, Exact coverig ytem ad the Gau Legedre multiplicatio formula for the gamma fuctio, Proc. Amer. Math. Soc , MR 94f:3300.

22 ZHI-WEI SUN [C] S. D. Chowla, The oexitece of otrivial liear relatio betwee the root of a certai irreducible equatio, J. Number Theory 970, 0 3. MR 40#638. [DR] E. Y. Deeba ad D. M. Rodriguez, Stirlig erie ad Beroulli umber, Amer. Math. Mothly 98 99, MR 9g:05. [E] V. Eola, O relatio betwee cyclotomic uit, J. Number Theory 4 97, MR 45#8633 E 46#754. [Er] P. Erdö, O iteger of the form k + p ad ome related problem, Summa Brail. Math. 950, 3 3. MR 3, 437. [F] A. S. Fraekel, A characterizatio of exactly coverig cogruece, Dicrete Math , MR 47#4906. [F] A. S. Fraekel, Further characterizatio ad propertie of exactly coverig cogruece, Dicrete Math. 975, 93 00, 397. MR 5#076. [G] R. K. Guy, Uolved Problem i Number Theory d, ed., Spriger-Verlag, New York, 994, Sectio A9, B, E3, F3, F4. [K] D. S. Kubert, The uiveral ordiary ditributio, Bull. Soc. Math. Frace , MR 8b:004. [La] S. Lag, Cyclotomic Field II Graduate Text i Math.; 69, Spriger -Verlag, New York, 980, Ch. 7. [Le] D. H. Lehmer, A ew approach to Beroulli polyomial, Amer. Math. Mothly , MR 90c:04. [M] J. Milor, O polylogarithm, Hurwitz zeta fuctio, ad the Kubert idetitie, Eeig. Math , 8 3. MR 86d:007. [O] T. Okada, O a exteio of a theorem of S. Chowla, Acta Arith , MR 83b:004. [P] Š. Porubký, Coverig ytem ad geeratig fuctio, Acta Arith /75, 3 3. MR 5#38. [P] Š. Porubký, O ime coverig ytem of cogruece, Acta rith , MR 53#884. [P3] Š. Porubký, A characterizatio of fiite uio of arithmetic equece, Dicrete Math , MR 84a:0057. [P4] Š. Porubký, Idetitie ivolvig coverig ytem I, Math. Slovaca , MR 95f:00. [P5] Š. Porubký, Idetitie ivolvig coverig ytem II, Math. Slovaca , [PS] Š. Porubký ad J. Schöheim, Coverig ytem of Paul Erdö: pat, preet ad future, preprit, 000. [S] S. K. Stei, Uio of arithmetic equece, Math. A , MR 0#7. [Su] Z. W. Su, Sytem of cogruece with multiplier, Najig Uiv. J. Math. Biq , o., Zbl. M , MR 90m:006. [Su] Z. W. Su, Several reult o ytem of reidue clae, Adv. i Math. Chia 8 989, o., 5 5. [Su3] Z. W. Su, O exactly ime cover, Irael J. Math , MR 93k:007. [Su4] Z. W. Su, Coverig the iteger by arithmetic equece, Acta Arith , MR 96k:03. [Su5] Z. W. Su, Coverig the iteger by arithmetic equece II, Tra. Amer. Math. Soc , MR 97c:0. [Su6] Z. W. Su, Exact m-cover ad the liear form k x /, Acta Arith , MR 98h:09. [Su7] Z. W. Su, O coverig multiplicity, Proc. Amer. Math. Soc , MR 99h:0. [Su8] Z. W. Su, Product of biomial coefficiet modulo p, Acta Arith , [Su9] Z. W. Su, Algebraic approache to periodic arithmetical map, J. Algebra 40 00,

23 ON COVERING EQUIVALENCE 3 [W] H. Walum, Multiplicatio formulae for periodic fuctio, Pacific J. Math , MR 9c:09. [Z] Š.Zám, Vector-coverig ytem of arithmetic equece, Czech. Math. J , MR 50#450. Departmet of Mathematic, Najig Uiverity, Najig 0093, the People Republic of Chia. zwu@ju.edu.c

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon New proof of the duplicatio ad multiplicatio formulae for the gamma ad the Bare double gamma fuctio Abtract Doal F. Coo dcoo@btopeworld.com 6 March 9 New proof of the duplicatio formulae for the gamma

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre:

More information

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES Publ. Math. Debrece 8504, o. 3-4, 85 95. ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES QING-HU HOU*, ZHI-WEI SUN** AND HAOMIN WEN Abstract. We cofirm Su s cojecture that F / F 4 is strictly decreasig

More information

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry Zeta-reciprocal Eteded reciprocal zeta fuctio ad a alterate formulatio of the Riema hypothei By. Alam Chaudhry Departmet of athematical Sciece, Kig Fahd Uiverity of Petroleum ad ieral Dhahra 36, Saudi

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

Dirichlet s Theorem on Arithmetic Progressions

Dirichlet s Theorem on Arithmetic Progressions Dirichlet s Theorem o Arithmetic Progressios Athoy Várilly Harvard Uiversity, Cambridge, MA 0238 Itroductio Dirichlet s theorem o arithmetic progressios is a gem of umber theory. A great part of its beauty

More information

Chapter 8. Euler s Gamma function

Chapter 8. Euler s Gamma function Chapter 8 Euler s Gamma fuctio The Gamma fuctio plays a importat role i the fuctioal equatio for ζ(s) that we will derive i the ext chapter. I the preset chapter we have collected some properties of the

More information

AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES

AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES Hacettepe Joural of Mathematic ad Statitic Volume 4 4 03, 387 393 AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES Mutafa Bahşi ad Süleyma Solak Received 9 : 06 : 0 : Accepted 8 : 0 : 03 Abtract I thi

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

Riemann Paper (1859) Is False

Riemann Paper (1859) Is False Riema Paper (859) I Fale Chu-Xua Jiag P O Box94, Beijig 00854, Chia Jiagchuxua@vipohucom Abtract I 859 Riema defied the zeta fuctio ζ () From Gamma fuctio he derived the zeta fuctio with Gamma fuctio ζ

More information

A Faster Product for π and a New Integral for ln π 2

A Faster Product for π and a New Integral for ln π 2 A Fater Product for ad a New Itegral for l Joatha Sodow. INTRODUCTION. I [5] we derived a ifiite product repreetatio of e γ, where γ i Euler cotat: e γ = 3 3 3 4 3 3 Here the th factor i the ( + )th root

More information

On Certain Sums Extended over Prime Factors

On Certain Sums Extended over Prime Factors Iteratioal Mathematical Forum, Vol. 9, 014, o. 17, 797-801 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/imf.014.4478 O Certai Sum Exteded over Prime Factor Rafael Jakimczuk Diviió Matemática,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Some p-adic congruences for p q -Catalan numbers

Some p-adic congruences for p q -Catalan numbers Some p-adic cogrueces for p q -Catala umbers Floria Luca Istituto de Matemáticas Uiversidad Nacioal Autóoma de México C.P. 58089, Morelia, Michoacá, México fluca@matmor.uam.mx Paul Thomas Youg Departmet

More information

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i 0 Dirichlet Serie & Logarithmic Power Serie. Defiitio & Theorem Defiitio.. (Ordiary Dirichlet Serie) Whe,a,,3, are complex umber, we call the followig Ordiary Dirichlet Serie. f() a a a a 3 3 a 4 4 Note

More information

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients Proof of a cojecture of Amdeberha ad Moll o a divisibility property of biomial coefficiets Qua-Hui Yag School of Mathematics ad Statistics Najig Uiversity of Iformatio Sciece ad Techology Najig, PR Chia

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

New integral representations. . The polylogarithm function

New integral representations. . The polylogarithm function New itegral repreetatio of the polylogarithm fuctio Djurdje Cvijović Atomic Phyic Laboratory Viča Ititute of Nuclear Sciece P.O. Box 5 Belgrade Serbia. Abtract. Maximo ha recetly give a excellet ummary

More information

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng The value of Baach limits o a certai sequece of all ratioal umbers i the iterval 0, Bao Qi Feg Departmet of Mathematical Scieces, Ket State Uiversity, Tuscarawas, 330 Uiversity Dr. NE, New Philadelphia,

More information

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences Turkih Joural of Aalyi ad Number Theory, 4, Vol., No. 6, 33-38 Available olie at http://pub.ciepub.com/tjat//6/9 Sciece ad Educatio Publihig DOI:.69/tjat--6-9 Geeralized Fiboacci Like Sequece Aociated

More information

Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun

Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun It J Numer Theory 05, o8, 9-404 Super cogrueces cocerig Beroulli polyomials Zhi-Hog Su School of Mathematical Scieces Huaiyi Normal Uiversity Huaia, Jiagsu 00, PR Chia zhihogsu@yahoocom http://wwwhytceduc/xsjl/szh

More information

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles Ope Joural of Dicrete Mathematic, 205, 5, 54-64 Publihed Olie July 205 i SciRe http://wwwcirporg/oural/odm http://dxdoiorg/0426/odm2055005 O the Siged Domiatio Number of the Carteia Product of Two Directed

More information

1. (a) If u (I : R J), there exists c 0 in R such that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hence, if j J, for all q 0, j q (cu q ) =

1. (a) If u (I : R J), there exists c 0 in R such that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hence, if j J, for all q 0, j q (cu q ) = Math 615, Witer 2016 Problem Set #5 Solutio 1. (a) If u (I : R J), there exit c 0 i R uch that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hece, if j J, for all q 0, j q (cu q ) = c(ju) q I [q], o

More information

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution A tail boud for um of idepedet radom variable : applicatio to the ymmetric Pareto ditributio Chritophe Cheeau To cite thi verio: Chritophe Cheeau. A tail boud for um of idepedet radom variable : applicatio

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

On Divisibility concerning Binomial Coefficients

On Divisibility concerning Binomial Coefficients A talk give at the Natioal Chiao Tug Uiversity (Hsichu, Taiwa; August 5, 2010 O Divisibility cocerig Biomial Coefficiets Zhi-Wei Su Najig Uiversity Najig 210093, P. R. Chia zwsu@ju.edu.c http://math.ju.edu.c/

More information

arxiv: v1 [math.nt] 28 Apr 2014

arxiv: v1 [math.nt] 28 Apr 2014 Proof of a supercogruece cojectured by Z.-H. Su Victor J. W. Guo Departmet of Mathematics, Shaghai Key Laboratory of PMMP, East Chia Normal Uiversity, 500 Dogchua Rd., Shaghai 0041, People s Republic of

More information

Factors of sums and alternating sums involving binomial coefficients and powers of integers

Factors of sums and alternating sums involving binomial coefficients and powers of integers Factors of sums ad alteratig sums ivolvig biomial coefficiets ad powers of itegers Victor J. W. Guo 1 ad Jiag Zeg 2 1 Departmet of Mathematics East Chia Normal Uiversity Shaghai 200062 People s Republic

More information

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction Acta Math. Uiv. Comeiaae Vol. LXXXVI, 2 (2017), pp. 279 286 279 k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c N. IRMAK ad M. ALP Abstract. The k-geeralized Fiboacci sequece { F (k)

More information

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution Applied Mathematic E-Note, 9009, 300-306 c ISSN 1607-510 Available free at mirror ite of http://wwwmaththuedutw/ ame/ A Tail Boud For Sum Of Idepedet Radom Variable Ad Applicatio To The Pareto Ditributio

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES #A5 INTEGERS 4 (24) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES Kohtaro Imatomi Graduate School of Mathematics, Kyushu Uiversity, Nishi-ku, Fukuoka, Japa k-imatomi@math.kyushu-u.ac.p

More information

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS Proc. Amer. Math. Soc. 139(2011, o. 5, 1569 1577. BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS Zhi-Wei Su* ad Wei Zhag Departmet of Mathematics, Naig Uiversity Naig 210093, People s Republic of

More information

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION J Korea Math Soc 44 (2007), No 2, pp 487 498 GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION Gi-Sag Cheo ad Moawwad E A El-Miawy Reprited from the Joural of the Korea Mathematical

More information

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS Folia Mathematica Vol. 5, No., pp. 4 6 Acta Uiversitatis Lodziesis c 008 for Uiversity of Lódź Press SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS ROMAN WITU LA, DAMIAN S

More information

Fractional parts and their relations to the values of the Riemann zeta function

Fractional parts and their relations to the values of the Riemann zeta function Arab. J. Math. (08) 7: 8 http://doi.org/0.007/40065-07-084- Arabia Joural of Mathematic Ibrahim M. Alabdulmohi Fractioal part ad their relatio to the value of the Riema zeta fuctio Received: 4 Jauary 07

More information

On the Equivalence of Ramanujan s Partition Identities and a Connection with the Rogers Ramanujan Continued Fraction

On the Equivalence of Ramanujan s Partition Identities and a Connection with the Rogers Ramanujan Continued Fraction JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 98, 0 996 ARTICLE NO. 007 O the Equivalece of Ramauja s Partitio Idetities ad a Coectio with the RogersRamauja Cotiued Fractio Heg Huat Cha Departmet of

More information

ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS

ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS NORBERT KAIBLINGER Abstract. Results of Lid o Lehmer s problem iclude the value of the Lehmer costat of the fiite cyclic group Z/Z, for 5 ad all odd. By complemetary

More information

On a q-analogue of the p-adic Log Gamma Functions and Related Integrals

On a q-analogue of the p-adic Log Gamma Functions and Related Integrals Joural of Number Theory 76, 320329 (999) Article ID jth.999.2373, available olie at httpwww.idealibrary.com o O a q-aalogue of the p-adic Log Gamma Fuctios ad Related Itegrals Taekyu Kim Departmet of Mathematics,

More information

Harmonic Number Identities Via Euler s Transform

Harmonic Number Identities Via Euler s Transform 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 2009), Article 09.6.1 Harmoic Number Idetities Via Euler s Trasform Khristo N. Boyadzhiev Departmet of Mathematics Ohio Norther Uiversity Ada, Ohio 45810

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces, Vol. 5 (0), Article..7 Series with Cetral Biomial Coefficiets, Catala Numbers, ad Harmoic Numbers Khristo N. Boyadzhiev Departmet of Mathematics ad Statistics Ohio Norther

More information

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS LIVIU I. NICOLAESCU ABSTRACT. We ivestigate the geeralized covergece ad sums of series of the form P at P (x, where P R[x], a R,, ad T : R[x] R[x]

More information

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS EALATION OF SMS INOLING PRODCTS OF GASSIAN -BINOMIAL COEFFICIENTS WITH APPLICATIONS EMRAH KILIÇ* AND HELMT PRODINGER** Abstract Sums of products of two Gaussia -biomial coefficiets are ivestigated oe of

More information

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009)

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009) Joural of Ramaua Mathematical Society, Vol. 4, No. (009) 199-09. IWASAWA λ-invariants AND Γ-TRANSFORMS Aupam Saikia 1 ad Rupam Barma Abstract. I this paper we study a relatio betwee the λ-ivariats of a

More information

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A05 Q-BINOMIALS AND THE GREATEST COMMON DIVISOR Keith R. Slavi 8474 SW Chevy Place, Beaverto, Orego 97008, USA slavi@dsl-oly.et Received:

More information

MDIV. Multiple divisor functions

MDIV. Multiple divisor functions MDIV. Multiple divisor fuctios The fuctios τ k For k, defie τ k ( to be the umber of (ordered factorisatios of ito k factors, i other words, the umber of ordered k-tuples (j, j 2,..., j k with j j 2...

More information

The Arakawa-Kaneko Zeta Function

The Arakawa-Kaneko Zeta Function The Arakawa-Kaeko Zeta Fuctio Marc-Atoie Coppo ad Berard Cadelpergher Nice Sophia Atipolis Uiversity Laboratoire Jea Alexadre Dieudoé Parc Valrose F-0608 Nice Cedex 2 FRANCE Marc-Atoie.COPPO@uice.fr Berard.CANDELPERGHER@uice.fr

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

A note on the p-adic gamma function and q-changhee polynomials

A note on the p-adic gamma function and q-changhee polynomials Available olie at wwwisr-publicatioscom/jmcs J Math Computer Sci, 18 (2018, 11 17 Research Article Joural Homepage: wwwtjmcscom - wwwisr-publicatioscom/jmcs A ote o the p-adic gamma fuctio ad q-chaghee

More information

Some identities involving Fibonacci, Lucas polynomials and their applications

Some identities involving Fibonacci, Lucas polynomials and their applications Bull. Math. Soc. Sci. Math. Roumaie Tome 55103 No. 1, 2012, 95 103 Some idetities ivolvig Fiboacci, Lucas polyomials ad their applicatios by Wag Tigtig ad Zhag Wepeg Abstract The mai purpose of this paper

More information

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4.

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4. 11. FINITE FIELDS 11.1. A Field With 4 Elemets Probably the oly fiite fields which you ll kow about at this stage are the fields of itegers modulo a prime p, deoted by Z p. But there are others. Now although

More information

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function Filomat 31:14 2017), 4507 4513 https://doi.org/10.2298/fil1714507l Published by Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: http://www.pmf.i.ac.rs/filomat Some Extesios of

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

(6), (7) and (8) we have easily, if the C's are cancellable elements of S,

(6), (7) and (8) we have easily, if the C's are cancellable elements of S, VIOL. 23, 1937 MA THEMA TICS: H. S. VANDIVER 555 where the a's belog to S'. The R is said to be a repetitive set i S, with respect to S', ad with multiplier M. If S cotais a idetity E, the if we set a,

More information

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE UPB Sci Bull, Series A, Vol 79, Iss, 207 ISSN 22-7027 NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE Gabriel Bercu We itroduce two ew sequeces of Euler-Mascheroi type which have fast covergece

More information

Generalized Likelihood Functions and Random Measures

Generalized Likelihood Functions and Random Measures Pure Mathematical Sciece, Vol. 3, 2014, o. 2, 87-95 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pm.2014.437 Geeralized Likelihood Fuctio ad Radom Meaure Chrito E. Koutzaki Departmet of Mathematic

More information

Riesz-Fischer Sequences and Lower Frame Bounds

Riesz-Fischer Sequences and Lower Frame Bounds Zeitschrift für Aalysis ud ihre Aweduge Joural for Aalysis ad its Applicatios Volume 1 (00), No., 305 314 Riesz-Fischer Sequeces ad Lower Frame Bouds P. Casazza, O. Christese, S. Li ad A. Lider Abstract.

More information

AN ARC-LIKE CONTINUUM THAT ADMITS A HOMEOMORPHISM WITH ENTROPY FOR ANY GIVEN VALUE

AN ARC-LIKE CONTINUUM THAT ADMITS A HOMEOMORPHISM WITH ENTROPY FOR ANY GIVEN VALUE AN ARC-LIKE CONTINUUM THAT ADMITS A HOMEOMORPHISM WITH ENTROPY FOR ANY GIVEN VALUE CHRISTOPHER MOURON Abstract. A arc-like cotiuum X is costructed with the followig properties: () for every ɛ [0, ] there

More information

A generalization of Morley s congruence

A generalization of Morley s congruence Liu et al. Advaces i Differece Euatios 05 05:54 DOI 0.86/s366-05-0568-6 R E S E A R C H Ope Access A geeralizatio of Morley s cogruece Jiaxi Liu,HaoPa ad Yog Zhag 3* * Correspodece: yogzhag98@63.com 3

More information

Positive solutions of singular (k,n-k) conjugate boundary value problem

Positive solutions of singular (k,n-k) conjugate boundary value problem Joural of Applied Mathematic & Bioiformatic vol5 o 25-2 ISSN: 792-662 prit 792-699 olie Sciepre Ltd 25 Poitive olutio of igular - cojugate boudar value problem Ligbi Kog ad Tao Lu 2 Abtract Poitive olutio

More information

Lecture 1. January 8, 2018

Lecture 1. January 8, 2018 Lecture 1 Jauary 8, 018 1 Primes A prime umber p is a positive iteger which caot be writte as ab for some positive itegers a, b > 1. A prime p also have the property that if p ab, the p a or p b. This

More information

Concavity of weighted arithmetic means with applications

Concavity of weighted arithmetic means with applications Arch. Math. 69 (1997) 120±126 0003-889X/97/020120-07 $ 2.90/0 Birkhäuser Verlag, Basel, 1997 Archiv der Mathematik Cocavity of weighted arithmetic meas with applicatios By ARKADY BERENSTEIN ad ALEK VAINSHTEIN*)

More information

Evaluation of Some Non-trivial Integrals from Finite Products and Sums

Evaluation of Some Non-trivial Integrals from Finite Products and Sums Turkish Joural of Aalysis umber Theory 6 Vol. o. 6 7-76 Available olie at http://pubs.sciepub.com/tjat//6/5 Sciece Educatio Publishig DOI:.69/tjat--6-5 Evaluatio of Some o-trivial Itegrals from Fiite Products

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

Beurling Integers: Part 2

Beurling Integers: Part 2 Beurlig Itegers: Part 2 Isomorphisms Devi Platt July 11, 2015 1 Prime Factorizatio Sequeces I the last article we itroduced the Beurlig geeralized itegers, which ca be represeted as a sequece of real umbers

More information

Bijective Proofs of Gould s and Rothe s Identities

Bijective Proofs of Gould s and Rothe s Identities ESI The Erwi Schrödiger Iteratioal Boltzmagasse 9 Istitute for Mathematical Physics A-1090 Wie, Austria Bijective Proofs of Gould s ad Rothe s Idetities Victor J. W. Guo Viea, Preprit ESI 2072 (2008 November

More information

arxiv: v1 [math.fa] 3 Apr 2016

arxiv: v1 [math.fa] 3 Apr 2016 Aticommutator Norm Formula for Proectio Operators arxiv:164.699v1 math.fa] 3 Apr 16 Sam Walters Uiversity of Norther British Columbia ABSTRACT. We prove that for ay two proectio operators f, g o Hilbert

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

MATH 304: MIDTERM EXAM SOLUTIONS

MATH 304: MIDTERM EXAM SOLUTIONS MATH 304: MIDTERM EXAM SOLUTIONS [The problems are each worth five poits, except for problem 8, which is worth 8 poits. Thus there are 43 possible poits.] 1. Use the Euclidea algorithm to fid the greatest

More information

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES LE MATEMATICHE Vol. LXXIII 208 Fasc. I, pp. 3 24 doi: 0.448/208.73.. EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES THOMAS ERNST We preset idetities of various kids for

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

A brief introduction to linear algebra

A brief introduction to linear algebra CHAPTER 6 A brief itroductio to liear algebra 1. Vector spaces ad liear maps I what follows, fix K 2{Q, R, C}. More geerally, K ca be ay field. 1.1. Vector spaces. Motivated by our ituitio of addig ad

More information

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS LOUKAS GRAFAKOS AND RICHARD G. LYNCH 2 Abstract. We exted a theorem by Grafakos ad Tao [5] o multiliear iterpolatio betwee adjoit operators

More information

Bernoulli Numbers and a New Binomial Transform Identity

Bernoulli Numbers and a New Binomial Transform Identity 1 2 3 47 6 23 11 Joural of Iteger Sequece, Vol. 17 2014, Article 14.2.2 Beroulli Nuber ad a New Bioial Trafor Idetity H. W. Gould Departet of Matheatic Wet Virgiia Uiverity Morgatow, WV 26506 USA gould@ath.wvu.edu

More information

A MODIFIED BERNOULLI NUMBER. D. Zagier

A MODIFIED BERNOULLI NUMBER. D. Zagier A MODIFIED BERNOULLI NUMBER D. Zagier The classical Beroulli umbers B, defied by the geeratig fuctio x e x = = B x!, ( have may famous ad beautiful properties, icludig the followig three: (i B = for odd

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

arxiv: v2 [math.nt] 9 May 2017

arxiv: v2 [math.nt] 9 May 2017 arxiv:6.42v2 [math.nt] 9 May 27 Itegral Represetatios of Equally Positive Iteger-Idexed Harmoic Sums at Ifiity Li Jiu Research Istitute for Symbolic Computatio Johaes Kepler Uiversity 44 Liz, Austria ljiu@risc.ui-liz.ac.at

More information

Enumerative & Asymptotic Combinatorics

Enumerative & Asymptotic Combinatorics C50 Eumerative & Asymptotic Combiatorics Stirlig ad Lagrage Sprig 2003 This sectio of the otes cotais proofs of Stirlig s formula ad the Lagrage Iversio Formula. Stirlig s formula Theorem 1 (Stirlig s

More information

SOLVED EXAMPLES

SOLVED EXAMPLES Prelimiaries Chapter PELIMINAIES Cocept of Divisibility: A o-zero iteger t is said to be a divisor of a iteger s if there is a iteger u such that s tu I this case we write t s (i) 6 as ca be writte as

More information

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O M A T H 2 4 0 F A L L 2 0 1 4 HOMEWORK ASSIGNMENT #4 CORRECTION Algebra I 1 4 / 1 0 / 2 0 1 4 U N I V E R S I T Y O F T O R O N T O P r o f e s s o r : D r o r B a r - N a t a Correctio Homework Assigmet

More information

Stochastic Matrices in a Finite Field

Stochastic Matrices in a Finite Field Stochastic Matrices i a Fiite Field Abstract: I this project we will explore the properties of stochastic matrices i both the real ad the fiite fields. We first explore what properties 2 2 stochastic matrices

More information

ON CONVERGENCE OF BASIC HYPERGEOMETRIC SERIES. 1. Introduction Basic hypergeometric series (cf. [GR]) with the base q is defined by

ON CONVERGENCE OF BASIC HYPERGEOMETRIC SERIES. 1. Introduction Basic hypergeometric series (cf. [GR]) with the base q is defined by ON CONVERGENCE OF BASIC HYPERGEOMETRIC SERIES TOSHIO OSHIMA Abstract. We examie the covergece of q-hypergeometric series whe q =. We give a coditio so that the radius of the covergece is positive ad get

More information

arxiv: v1 [math.nt] 10 Dec 2014

arxiv: v1 [math.nt] 10 Dec 2014 A DIGITAL BINOMIAL THEOREM HIEU D. NGUYEN arxiv:42.38v [math.nt] 0 Dec 204 Abstract. We preset a triagle of coectios betwee the Sierpisi triagle, the sum-of-digits fuctio, ad the Biomial Theorem via a

More information

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction Chapter 2 Periodic poits of toral automorphisms 2.1 Geeral itroductio The automorphisms of the two-dimesioal torus are rich mathematical objects possessig iterestig geometric, algebraic, topological ad

More information

E.W.BARNES APPROACH OF THE MULTIPLE GAMMA FUNCTIONS

E.W.BARNES APPROACH OF THE MULTIPLE GAMMA FUNCTIONS J. Korea Math. Soc. 9 (99), No., pp. 7 40 E.W.BARNES APPROACH OF THE MULTIPLE GAMMA FUNCTIONS JUNESANG CHOI AND J. R. QUINE I this paper we provide a ew proof of multiplicatio formulas for the simple ad

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistat Professor Departmet of Mathematics Uiversity Of Kalyai West Begal, Idia E-mail : sahoopulak1@gmail.com 1 Module-2: Stereographic Projectio 1 Euler

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

(I.C) THE DISTRIBUTION OF PRIMES

(I.C) THE DISTRIBUTION OF PRIMES I.C) THE DISTRIBUTION OF PRIMES I the last sectio we showed via a Euclid-ispired, algebraic argumet that there are ifiitely may primes of the form p = 4 i.e. 4 + 3). I fact, this is true for primes of

More information

Notes on the prime number theorem

Notes on the prime number theorem Notes o the rime umber theorem Keji Kozai May 2, 24 Statemet We begi with a defiitio. Defiitio.. We say that f(x) ad g(x) are asymtotic as x, writte f g, if lim x f(x) g(x) =. The rime umber theorem tells

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information