Spectrum of the Dirac Operator and Random Matrix Theory

Size: px
Start display at page:

Download "Spectrum of the Dirac Operator and Random Matrix Theory"

Transcription

1 Spectrum of the Dirac Operator and Random Matrix Theory Marco Catillo Karl Franzens - Universität Graz 29 June 2016 Advisor: Dr. Leonid Glozman 1 / 23

2 Outline 1 Introduction 2 Overlap Dirac Operator 3 Random Matrix Theory 4 Numerical Analysis 5 Conclusions 2 / 23

3 What we already know The Dirac operator D plays an important rule on the calculation of the hadron spectroscopy. It is important to estimate hadron interpolators and correlators. The symmetry properties of D effect the values of the meson and baryon masses. The chiral condensate Σ = qq is an order parameter for chiral symmetry breaking. Therefore, from the Bank-Casher relation Σ = πρ(0), the presence of the symmetry breaking can be extrapolated from the distribution of Dirac eigenvalues ρ(λ). Different part of the spectrum of D give us useful informations about the symmetries in QCD, like the SU(4) symmetry. 3 / 23

4 What we want to do The importance to see the symmetries of the Dirac operator analyzing different part of the spectrum is crucial. The Random Matrix Theory (RMT ) gives us an useful tool to interpret symmetry properties of the ensembles of random matrix. Therefore we will apply the results of the RMT to the spectrum of the Dirac operator. 4 / 23

5 Lattice Setup Overlap Dirac operator D ov (m) N f = 2 lattice size: L 3 L t = configurations (JLQCD) a = (30)fm, L 1.9fm β = 2.30 m π = 289(2)MeV Topological charge Q = 0 S.Aoki et al (2008) 5 / 23

6 Overlap Dirac Operator ( D ov (m) = ρ + m ) ( + ρ m ) γ 5 sign (H w ) = 2 2 ( = 1 m ) D ov (0) + m 2ρ Neuberger(1998) where m is the lattice quark mass (m = 0.015), ρ is the simulation parameter (ρ = 1.6) and it sets the topological sector, H w = γ 5 D( ρ), D( ρ) is the Wilson-Dirac operator. 6 / 23

7 Chiral Symmetry The eigenvalues of D ov (m) comes in pairs: (λ ov (m), λ ov (m)). This is a consequence of the Chiral Symmetry on the lattice: {γ 5, D ov (0)} = 1 ρ Dov (0)γ 5D ov (0) Ginsparg-Wilson equation (1982) ( ) because λ ov (m) = 1 m λ 2ρ ov (0) + m. Im λ ov The eigenvalues ( are in) the circle with radius R = ρ 1 m 2ρ and centre in ( m + ρ, 0). 2 In this case the lagrangian is invariant under transformations: ( ) ψ(x) e iαa T a Dov (0) γ 5 1 2ρ ψ(x) m ( ) ρ 1 m 2ρ 2ρ Re λ ov ψ(x) ψ(x)e iαa T a γ 5 ( 1 ) Dov (0) 2ρ 7 / 23

8 Random Matrix Theory 8 / 23

9 RMT: General Remarks Hypothesis Suppose to have an N N matrix H in which each element is a random variable. The elements of H are statistically independent. How is made the distribution P(H)? We distinguish 3 different ensembles in which we associate a transformation law H H such that P(H)dH = P(H )dh : Matrices Properties Transformation law Ensemble β H real and symmetric H = O T HO, O O(N) GOE 1 H hermitian H = U HU, U U(N) GUE 2 H quaternion real H = U R HU, U Sp(N) GSE 4 β is called Dyson index. 9 / 23

10 RMT: General Remarks Distribution P(H) dh is the Haar measure P N,β (H)dH = N N,β exp ( β2 ( Tr H H) ) dh Joint probability for the eigenvalues of H ( P N,β (λ 1,..., λ N ) = C N,β exp 1 2 β i C N,β is the normalization constant. ) λ 2 i λ j λ k β j<k 10 / 23

11 Chiral Random Matrix Theory Chiral Ensembles P(W )dw = N(det D) N f e NΣ2 ( ) β Tr W W 4 dw where ( ) m iw D = iw is the Dirac operator, m W is an n m matrix, if Q = 0 then n = m = N/2, E. V. Shuryak and J. M. Verbaarschot, Nucl. Phys A560 (1993) Σ is a parameter and it is not necessarily connected to the chiral condensate, β is the Dyson index. These ensembles are invariant under transformation W UWV 1 : U, V orthogonal matrices, β = 1, chgoe, U, V unitary matrices, β = 2, chgue, U, V symplectic matrices, β = 4, chgse. 11 / 23

12 0.5 rhzl Chiral Random Matrix Theory x 2 IJ2HxL2 - J1HxL J3HxLM 0.2 x 2 IJ0HxL2 + J1HxL 2 M Joint probability for the eigenvalues of D, with Q = ( P n,β (λ 1,..., λ n) = C n,β (λ 2 k + m2 )λ β 1 k exp 1 2 nσ2 β ) z λ 2 i λ 2 j λ 2 k β k i j<k 1 If we change variable z k = NΣλ k, and we consider the limit N, the distribution of the eigenvalues for the chgue (β = 2), N f = 2 and Q = 0 is given by 0.5 rhzl Massless limit ρ(z; 0) = z ( J (z) J 1 (z)j 3 (z) ) Quenched limit ρ(z; ) = z ( J (z) + J1 2 (z)) where J(z) is the Bessel function z rhz;0l rhz; L 12 / 23

13 ChRMT and QCD The chiral symmetry breaking SU L (N f ) SU R (N f ) SU V (N f ) leads to Nf 2 1 Goldstone bosons, U(x) SU(N f ). The effective lagrangian of these Goldstone boson can be written as L eff (U) = F 2 4 Tr ( µu (x) µu(x) ) { ΣRe e i θ ( ) } Nf Tr MU (x) where F 93MeV is the pion decay constant, Σ is the chiral condensate, M is the mass matrix. If the zero momentum modes p = 0 of the pion field U(x) are dominant then the partition function becomes Z eff = e d 4 xl eff (U) du P(W )dw The constraints on the form of the matrix elements of the Dirac operator depend by the color group and the choice of the representation of the quarks: Color group Quark representation Dirac operator β ensemble SU(2) fundamental real 1 chgoe SU(N c 3) fundamental complex 2 chgue SU(N c) adjoint quaternion real 4 chgse 13 / 23

14 An important consequence of the Bank-Casher formula (333) is thattheeigenvalu Introduction Overlap Dirac Operator immediately results in the Banks-Casher relation (333). Random Matrix Theory Numerical Analysis Conclusions The order of the limits in (333) is important. First we take the thermodynamiclim next the chiral limit and, finally, the field theory limit. near zero virtuality are spaced as QCD and ɛ regime λ = 1/ρ(0)= π/σv. (33 The p = 0 modes are dominant in this For case the average position of the smallest nonzero eigenvalue we obtain the estimate 1 L 1 λ min = π/σv. (34, V Σm 1 Λ QCD This should m π be contrasted with the eigenvalue spectrum of the non-interactingdi operator. Then the eigenvalues are those of a free Dirac particle in a box with eigenva spacing equal to λ 1/V We can expand the partition function in terms of ɛ 2 1/4 for mπ the eigenvalues 4πF p2 near λ = 0. Clearly, the presence gauge fields leads to a strong modification of (4πF the spectrum ) 2. near zerovirtuality.stro interactions result in the coupling of many degrees of freedom leading to extended sta At leading order of the ɛ expansion, and correlated the partition eigenvalues. function Because of isasymptotic perfectly freedom, described thespectraldensityof by ChRMT. Dirac operator for large λ behaves as Vλ 3.InFig.2weshowaplotofatypicalavera spectral density of the QCD Dirac operator for λ 0. The spectral density for negat λ is obtained by reflection with respect to the y-axis. More discussion of this figure w be given in section The spectrum of the Dirac operator can be schematically explained in this way: 1 λ min < λ < m c, we only have to include the p = 0 modes, 2 m c < λ < Λ QCD, the ɛ expansion can be applied and we have to consider p 0 modes, 3 λ > Λ QCD, the ɛ expansion is no longer applicable. ρ(λ) - λ min m c chrmt log λ Λ QCD 3 ~V λ FIGURE 2. Schematic picture of the average spectral density of QCD Dirac operator. (Taken from [83].) M. F. L. Golterman and K. C. L. Leung, Let us study the Leutwyler-Smilga sum rule for equally spaced eigenvalues,i.e. Phys. Rev. D57 (1998). λ n = πn. 14 / 23 (34

15 regime. The plot is normalized with 0:00212, which is with sea quark mass in the ran the value after the chiral extrapolation shown in Fig. 10. confined in a fixed topologica First of all, the physical volume at 2:30 is about 30% few cases with finite Q. larger than that at 2:35. Therefore, as explained We found a good agreeme above, the growth of O 3 is expected to be much milder lying eigenvalues in the re and the lattice data are consistent with this picture. The flat ChRMT, which implies strong region extends up to around In our case Σ = (251 ± 7 ± 11MeV ) 3 m V 30. Second, because breaking of chiral symmetr. the microscopic eigenvalue distribution approaches that of tracted the chiral condensate But V Σm 4.17 the quenched and m πl theory, 2.76, the lowest hence peak weis are shifted NOT towards in the ɛ regime! 11 MeV 3 from the lowest e Nevertheless for left. heavy Overall, quarks the number the low-lying of eigenvalues eigenvalues in the microscopic tion factor was calculated no should behave as if they region increases a lot. Unfortunately, the correspondence are in the quenched lattice. between ChPTand ChRMT is theoretically less clear, since And in this case ChRMT the sea quark can be masses applied are out in the of pthe regime. ɛ regime, In order to but the correspondence ChRMT and ChPT is less clear. Is our spectrum described by ChRMT? H. Fukaya at al. Phys. Rev. D ρ(λ)/v m =0.070 m =0.050 m =0.035 m =0.015 ChRMT (quenched) 3/(4π 2 )λ 3 +Σ/π contains a systematic error order effect in the expansio nation of will require larg press such finite size effects. Out of the regime (the masses) the Dirac eigenvalu reasonable agreement with C tracted in this region shows pendence, while its chiral l -regime result. Further information on the extracted in the regime by point functions or analyzing th with imaginary chemical pot work is a first step towards su ACKNOWLE We thank P. H. Damgaar λσv useful suggestions and comm edge the YITP workshop YIT FIG. 12 (color online). Eigenvalue histogram for the 2:30 Symmetries in Lattice Gauge 15 / 23

16 P(s) distribution An important prediction of the RMT is given by the nearest neighbor spacing distribution p(s): where p β (s) = a β s β e b β s ensemble a β b β chgoe (β = 1) π/2 π/4 chgue (β = 2) 32/π 2 4/π chgse (β = 4) /729π 3 64/9π Figure: Nearest neighbor spacing p(s) for β = 1 (solid line), β = 2 (dotted line), β = 4 (dashed line). s n = ξ n+1 ξ n and ξ n is given by ξ n ξ(λ n) = λn 0 ρ(λ)dλ. 16 / 23

17 Numerical Analysis 17 / 23

18 Stereographic Projection The choice of the stereographic projection is not unique. 1 From the center (ρ + m 2, 0): λ = 1 Im λov (m) Re λov (m) ρ+ m 2 ( = ρ + m ) tg(θ) where θ ( π, π]. 2 First 200 eigenvalues From the point (2ρ, 0): λ ov (m) λ ov (0) Im λ ov λ = 1 Im λov (m) Re λov (m) 2ρ ( 3 Dm = D ov (m) 1 D m = K + m, {K, γ 5 } = 0, K = K, = ρ sin(θ) cos 2 (θ/2). ) Dov (0) 1 2ρ, m (ρ + m 2, 0) 2ρ Re λ ov 0.1 Im(λ) λ = Im 1 λov (m) λov (0) 2ρ = 2ρtg(θ/2) Re(λ) 18 / 23

19 Unfolding Procedure S(λ) = 1 M M δ(λ λ k ) k=1 λ η(λ) = S(λ)dλ = 1 M 0 M θ(λ λ k ) k=1 η(λ) = ξ(λ) + η fl (λ) η(λ) Graph 1 Histogram η(λ) Quintic Polynomial, χ = where the smooth part is ξ(λ) = λ 0 ρ(λ)dλ, η fl (λ) is the fluctating part. Consequences: The density distribution ρ (ξ) = 1, λ(mev ) in a small region of the spectrum such that in the limit M it contains a lot of levels, then ρ(λ) = 1 D, with D = λ n+1 λ n, therefore ξ(λ) = λ D. 19 / 23

20 s Lowest Eigenmodes Histogram of the s variable defined in Eq. (26). The bin size e number of eigenvalues is 50 and the number of configurations is nsider the It is set well-known { 1,..., 50}. that This the is lowest the distribution eigenvalues p(s). are The described solid by the RMT. p(s) in For Gaussian different Unitary definitions Ensembles of the (chgue), stereographic the dashed projection line is and different choice of the fit n Gaussian in the Orthogonal unfolding Ensembles procedure (chgoe), p(s) doesn t the dotted change. line is the aussian Symplectic Ensembles (see the Eq. (34)). Range eigenvalues: Stereographic projection 2 k/j h k i/h j i RMT 2/ / / / / / p(s) chgoe chgue chgse 0.4 atio h k i/h j i for all 1 apple j apple k apple 4 and the same values computed Table: Ratio λ MT. We donote with k / λ the j for all 1 j k 4 and the same values computed error. 0.2 with the RMT. σ is the error. 10 The shape of p(s) is in agreement with the predictions of ChGUE s 20 / 23

21 Higher Eigenmodes For higher eigenvalues the agreement with the RMT is not obvious. Range eigenvalues: Stereographic projection 2 Range eigenvalues: Stereographic projection chgoe 1.2 chgoe 1 chgue 1 chgue chgse chgse p(s) p(s) s s But the shape of p(s) for higher eigenvalues and in general for all eigenvalues is still in agreement with the predictions of GUE. 21 / 23

22 Conclusions The distribution of first 200 eigenvalues doesn t depend by the stereographic projection and by the definition of the unfolding procedure. p(s) doesn t change in different regions of the spectrum and in general if we consider all Dirac spectrum. The applicability of RMT is not restricted to lowest eigenvalues but also to higher eigenvalues, but it is not clear the relation with the QCD. We guess that it can be a consequence of the SU(4) symmetry confinement breaking. 22 / 23

23 Thank you! 23 / 23

Random Matrix Theory

Random Matrix Theory Random Matrix Theory Gernot Akemann Faculty of Physics, Bielefeld University STRONGnet summer school, ZiF Bielefeld, 14-25 June 2011 Content What is RMT about? Nuclear Physics, Number Theory, Quantum Chaos,...

More information

Effects of low-lying eigenmodes in the epsilon regime of QCD

Effects of low-lying eigenmodes in the epsilon regime of QCD Effects of low-lying eigenmodes in the epsilon regime of QCD Shoji Hashimoto (KEK) @ ILFTNetwork Tsukuba Workshop "Lattice QCD and Particle Phenomenology", Dec 6, 2004. Work in collaboration with H. Fukaya

More information

Banks-Casher-type relations for complex Dirac spectra

Banks-Casher-type relations for complex Dirac spectra Banks-Casher-type relations for complex Dirac spectra Takuya Kanazawa, a Tilo Wettig, b Naoki Yamamoto c a University of Tokyo, b University of Regensburg, c University of Maryland EPJA 49 (2013) 88 [arxiv:1211.5332]

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34 The Topology in QCD Ting-Wai Chiu Physics Department, National Taiwan University The vacuum of QCD has a non-trivial topological structure. T.W.

More information

First results from dynamical chirally improved fermions

First results from dynamical chirally improved fermions First results from dynamical chirally improved fermions arxiv:hep-lat/595v1 1 Sep 25 C. B.Lang Karl-Franzens-Universität Graz, Austria E-mail: christian.lang@uni-graz.at Karl-Franzens-Universität Graz,

More information

Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion

Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion T.W. Chiu, Lattice 2008, July 15, 2008 p.1/30 Topological susceptibility in (2+1)-flavor lattice QCD with overlap fermion Ting-Wai Chiu Physics Department, National Taiwan University Collaborators: S.

More information

arxiv:hep-lat/ v1 23 Dec 1997

arxiv:hep-lat/ v1 23 Dec 1997 Statistical properties at the spectrum edge of the QCD Dirac operator Jian Zhong Ma, Thomas Guhr, Tilo Wettig (March 7, 28) arxiv:hep-lat/971226v1 23 Dec 1997 Abstract The statistical properties of the

More information

Chiral symmetry breaking, instantons, and monopoles

Chiral symmetry breaking, instantons, and monopoles Chiral symmetry breaking, instantons, and monopoles Adriano Di Giacomo 1 and Masayasu Hasegawa 2 1 University of Pisa, Department of Physics and INFN 2 Joint Institute for Nuclear Research, Bogoliubov

More information

Random Matrix Theory for the Wilson-Dirac operator

Random Matrix Theory for the Wilson-Dirac operator Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of Physics and Astronomy SUNY Stony Brook (NY, USA) Bielefeld, December 14th, 2011 Outline Introduction in Lattice QCD and in

More information

The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator

The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator Stony Brook University Department of Physics and Astronomy The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator Savvas Zafeiropoulos July 29-August 3, 2013 Savvas

More information

Chiral Random Matrix Model as a simple model for QCD

Chiral Random Matrix Model as a simple model for QCD Chiral Random Matrix Model as a simple model for QCD Hirotsugu FUJII (University of Tokyo, Komaba), with Takashi Sano T. Sano, HF, M. Ohtani, Phys. Rev. D 80, 034007 (2009) HF, T. Sano, Phys. Rev. D 81,

More information

Baryon spectroscopy with spatially improved quark sources

Baryon spectroscopy with spatially improved quark sources Baryon spectroscopy with spatially improved quark sources T. Burch,, D. Hierl, and A. Schäfer Institut für Theoretische Physik Universität Regensburg D-93040 Regensburg, Germany. E-mail: christian.hagen@physik.uni-regensburg.de

More information

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations L. Ya. Glozman Institut für Physik, FB Theoretische Physik, Universität Graz With Christian Lang and Markus

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Two-colour Lattice QCD with dynamical fermions at non-zero density versus Matrix Models

Two-colour Lattice QCD with dynamical fermions at non-zero density versus Matrix Models arxiv:hep-lat/596 v1 19 Sep 25 Two-colour Lattice QCD with dynamical fermions at non-zero density versus Matrix Models Department of Mathematical Sciences Brunel University West London Uxbridge UB8 3PH,

More information

QCD phase transition. One of the fundamental challenges in modern physics. Non-perturbative phenomena. No theoretical control at µ > 0 so far...

QCD phase transition. One of the fundamental challenges in modern physics. Non-perturbative phenomena. No theoretical control at µ > 0 so far... QCD phase transition Ø One of the fundamental challenges in modern physics Ø Non-perturbative phenomena Ø No theoretical control at µ > 0 so far... 1 1 Chiral Random Matrix (ChRM) model and U A (1) anomaly

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

The heavy-light sector of N f = twisted mass lattice QCD

The heavy-light sector of N f = twisted mass lattice QCD The heavy-light sector of N f = 2 + 1 + 1 twisted mass lattice QCD Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/ mcwagner/

More information

Probing the mixed regime of ChiPT with mixed actions

Probing the mixed regime of ChiPT with mixed actions Probing the mixed regime of ChiPT with mixed actions I. Introduction and spectral observables Carlos Pena In collaboration with: F Bernardoni E Endreß N Garron P Hernández S Necco G Vulvert Chiral Dynamics

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

Quark Structure of the Pion

Quark Structure of the Pion Quark Structure of the Pion Hyun-Chul Kim RCNP, Osaka University & Department of Physics, Inha University Collaborators: H.D. Son, S.i. Nam Progress of J-PARC Hadron Physics, Nov. 30-Dec. 01, 2014 Interpretation

More information

Statistical QCD with non-positive measure

Statistical QCD with non-positive measure Statistical QCD with non-positive measure Kim Splittorff with: Jac Verbaarschot James Osborne Gernot Akemann Niels Bohr Institute Statistical QCD with non-positive measure p.1/32 What QCD at non zero chemical

More information

arxiv: v1 [hep-lat] 15 Nov 2013

arxiv: v1 [hep-lat] 15 Nov 2013 Investigation of the U A (1) in high temperature QCD on the lattice arxiv:1311.3943v1 [hep-lat] 1 Nov 213 Fakultät für Physik, Universität Bielefeld, D 3361, Germany E-mail: sayantan@physik.uni-bielefeld.de

More information

Gapless Dirac Spectrum at High Temperature

Gapless Dirac Spectrum at High Temperature Department of Physics, University of Pécs H-7624 Pécs, Ifjúság útja 6. E-mail: kgt@fizika.ttk.pte.hu Using the overlap Dirac operator I show that, contrary to some expectations, even well above the critical

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Continuous Insights in the Wilson Dirac Operator

Continuous Insights in the Wilson Dirac Operator Continuous Insights in the Wilson Dirac Operator p. 1/37 Continuous Insights in the Wilson Dirac Operator Jacobus Verbaarschot jacobus.verbaarschot@stonybrook.edu Stony Brook University CAQCD, Minneapolis,

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Fractionized Skyrmions in Dense Compact-Star Matter

Fractionized Skyrmions in Dense Compact-Star Matter Fractionized Skyrmions in Dense Compact-Star Matter Yong-Liang Ma Jilin University Seminar @ USTC. Jan.07, 2016. Summary The hadronic matter described as a skyrmion matter embedded in an FCC crystal is

More information

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer QCD matter with isospin-asymmetry Gergely Endrődi Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer SIGN 2017 22. March 2017 Outline introduction: QCD with isospin

More information

Effective Field Theories for lattice QCD

Effective Field Theories for lattice QCD Effective Field Theories for lattice QCD Stephen R. Sharpe University of Washington S. Sharpe, EFT for LQCD: Lecture 1 3/21/12 @ New horizons in lattice field theory, Natal, Brazil 1 Outline of Lectures

More information

arxiv: v1 [hep-lat] 5 Nov 2018

arxiv: v1 [hep-lat] 5 Nov 2018 Localization in SU(3) gauge theory arxiv:1811.1887v1 [hep-lat] 5 Nov 218 University of Debrecen, Hungary E-mail: vig.reka@atomki.mta.hu Tamás G. Kovács Institute for Nuclear Research, Debrecen, Hungary

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

Mobility edge and locality of the overlap-dirac operator with and without dynamical overlap fermions

Mobility edge and locality of the overlap-dirac operator with and without dynamical overlap fermions Mobility edge and locality of the overlap-dirac operator with and without dynamical overlap fermions JLQCD Collaboration: a,b, S. Aoki c,d, H. Fukaya e, S. Hashimoto a,b, K-I. Ishikawa f, K. Kanaya c,

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

The Polyakov Loop and the Eigenvalues of the Dirac Operator

The Polyakov Loop and the Eigenvalues of the Dirac Operator The Polyakov Loop and the Eigenvalues of the Dirac Operator Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: soeldner@bnl.gov Aiming at the link between confinement and

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD Yasumichi Aoki RIKEN BNL Research Center 9/23/09 LBV09 at Madison Plan low energy matrix elements for N PS,l GUT QCD relation what is exactly needed to calculate

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Localization properties of the topological charge density and the low lying eigenmodes of overlap fermions

Localization properties of the topological charge density and the low lying eigenmodes of overlap fermions DESY 5-1 HU-EP-5/5 arxiv:hep-lat/591v1 Sep 5 Localization properties of the topological charge density and the low lying eigenmodes of overlap fermions a, Ernst-Michael Ilgenfritz b, Karl Koller c, Gerrit

More information

Lattice simulation of 2+1 flavors of overlap light quarks

Lattice simulation of 2+1 flavors of overlap light quarks Lattice simulation of 2+1 flavors of overlap light quarks JLQCD collaboration: S. Hashimoto,a,b,, S. Aoki c, H. Fukaya d, T. Kaneko a,b, H. Matsufuru a, J. Noaki a, T. Onogi e, N. Yamada a,b a High Energy

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

Universality check of the overlap fermions in the Schrödinger functional

Universality check of the overlap fermions in the Schrödinger functional Universality check of the overlap fermions in the Schrödinger functional Humboldt Universitaet zu Berlin Newtonstr. 15, 12489 Berlin, Germany. E-mail: takeda@physik.hu-berlin.de HU-EP-8/29 SFB/CPP-8-57

More information

condensates and topology fixing action

condensates and topology fixing action condensates and topology fixing action Hidenori Fukaya YITP, Kyoto Univ. hep-lat/0403024 Collaboration with T.Onogi (YITP) 1. Introduction Why topology fixing action? An action proposed by Luscher provide

More information

A study of chiral symmetry in quenched QCD using the. Overlap-Dirac operator

A study of chiral symmetry in quenched QCD using the. Overlap-Dirac operator FSU-SCRI-98-128 A study of chiral symmetry in quenched QCD using the Overlap-Dirac operator Robert G. Edwards, Urs M. Heller, Rajamani Narayanan SCRI, Florida State University, Tallahassee, FL 32306-4130,

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

Fermions in higher representations. Some results about SU(2) with adjoint fermions.

Fermions in higher representations. Some results about SU(2) with adjoint fermions. Fermions in higher representations. Some results about SU(2) with adjoint fermions. Agostino Patella Swansea University with L. Del Debbio, C. Pica arxiv:0805.2058 [hep-lat] Lattice08, Williamsburg 18/7/2008

More information

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) is an anti-kaon nucleon molecule Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young The Λ(1405) The Λ(1405) is the lowest-lying odd-parity state of

More information

Spontaneous CP breaking & the axion potential: an effective Lagrangian approach. Gabriele Veneziano

Spontaneous CP breaking & the axion potential: an effective Lagrangian approach. Gabriele Veneziano NP-QCD, Paris, 14.06.18 Spontaneous CP breaking & the axion potential: an effective Lagrangian approach Gabriele Veneziano based on 1709.00731 (with P. Di Vecchia, G.C. Rossi & S. Yankielowicz) Related

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

The Polyakov loop and the Hadron Resonance Gas Model

The Polyakov loop and the Hadron Resonance Gas Model Issues The Polyakov loop and the Hadron Resonance Gas Model 1, E. Ruiz Arriola 2 and L.L. Salcedo 2 1 Grup de Física Teòrica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Spain 2

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

arxiv:hep-th/ v2 23 Jul 2003

arxiv:hep-th/ v2 23 Jul 2003 arxiv:hep-th/03076v2 23 Jul 2003 Equivalence of Matrix Models for Complex QCD Dirac Spectra G. Akemann Service de Physique Théorique CEA/Saclay Unité associée CNRS/SPM/URA 2306 F-99 Gif-sur-Yvette Cedex,

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

The scalar meson puzzle from a linear sigma model perspective

The scalar meson puzzle from a linear sigma model perspective Montpellier, December 009 The scalar meson puzzle from a linear sigma model perspective Renata Jora (Grup de Fisica Teorica and IFAE, Universitat Autonoma de Barcelona) Collaborators: Amir Fariborz(SUNY

More information

Anderson átmenet a kvark-gluon plazmában

Anderson átmenet a kvark-gluon plazmában Anderson átmenet a kvark-gluon plazmában Kovács Tamás György Atomki, Debrecen 25. április 22. Kovács Tamás György Anderson átmenet a kvark-gluon plazmában /9 Együttműködők: Falk Bruckmann (Regensburg U.)

More information

Hierarchy problem. 1 Motivation. extremely-fine tuning needed to account for M H =125GeV. Higgs boson M=125GeV. Top quark m=173gev

Hierarchy problem. 1 Motivation. extremely-fine tuning needed to account for M H =125GeV. Higgs boson M=125GeV. Top quark m=173gev Janossy densities for chiral random matrices and multi ti-flavor 2-color QCD Shinsuke M. Nishigaki Shimane Univ. SMN PoS LATTICE2015, 057 = 1606.00276 [hep-lat] H. Fuji, I. Kanamori, SMN to be submitted

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Poisson statistics in the high temperature QCD Dirac spectrum

Poisson statistics in the high temperature QCD Dirac spectrum statistics in the high temperature QCD Dirac spectrum Department of Physics, University of Pécs H-7624 Pécs, Ifjúság útja 6, Hungary E-mail: kgt@fizika.ttk.pte.hu Ferenc Pittler Department of Physics,

More information

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa)

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa) H-dibaryon in Holographic QCD Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa) 1. Aug. 2016 1 Contents 1. Introduction 2. Chiral Soliton Model 3. Holographic QCD 4. Results

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

Notes on SU(3) and the Quark Model

Notes on SU(3) and the Quark Model Notes on SU() and the Quark Model Contents. SU() and the Quark Model. Raising and Lowering Operators: The Weight Diagram 4.. Triangular Weight Diagrams (I) 6.. Triangular Weight Diagrams (II) 8.. Hexagonal

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

The chiral and the Anderson transition in QCD

The chiral and the Anderson transition in QCD The chiral and the Anderson transition in QCD Tamás G. Kovács Institute for Nuclear Research, Debrecen March 11, 2015 Tamás G. Kovács The chiral and the Anderson transition in QCD 1/20 Collaboration: Falk

More information

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL NUC-MINN-96/3-T February 1996 arxiv:hep-ph/9602400v1 26 Feb 1996 PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL Sangyong Jeon and Joseph Kapusta School of Physics and Astronomy

More information

Walking technicolor on the lattice

Walking technicolor on the lattice Walking technicolor on the lattice Kieran Holland University of the Pacific Lattice Higgs Collaboration Zoltan Fodor (Wuppertal), Julius Kuti (UCSD), Daniel Nogradi (UCSD), Chris Schroeder (UCSD) where

More information

Catalytic effects of monopole in QCD

Catalytic effects of monopole in QCD Catalytic effects of monopole in QCD Masayasu Hasegawa Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research Lattice and Functional Techniques for Exploration of Phase Structure

More information

Lattice Gauge Theory: A Non-Perturbative Approach to QCD

Lattice Gauge Theory: A Non-Perturbative Approach to QCD Lattice Gauge Theory: A Non-Perturbative Approach to QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Non-Perturbative Tools in Quantum Field Theory Limited: 1 Semi-classical

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results E-mail: bijnens@thep.lu.se Niclas Danielsson and Division of Mathematical Physics, LTH, Lund University, Box 118, S 221

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Meson Condensation and Holographic QCD

Meson Condensation and Holographic QCD Meson Condensation and Holographic QCD Kyle Zora April 13, 2012 Abstract Quantum Chromodynamics (QCD), which describes the strong nuclear force, is difficult to solve both analytically and numerically.

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

QCD Vacuum, Centre Vortices and Flux Tubes

QCD Vacuum, Centre Vortices and Flux Tubes QCD Vacuum, Centre Vortices and Flux Tubes Derek Leinweber Centre for the Subatomic Structure of Matter and Department of Physics University of Adelaide QCD Vacuum, Centre Vortices and Flux Tubes p.1/50

More information

When Perturbation Theory Fails...

When Perturbation Theory Fails... When Perturbation Theory Fails... Brian Tiburzi (University of Maryland) When Perturbation Theory Fails... SU(3) chiral perturbation theory? Charm quark in HQET, NRQCD? Extrapolations of lattice QCD data?

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

Chiral perturbation theory with physical-mass ensembles

Chiral perturbation theory with physical-mass ensembles Chiral perturbation theory with physical-mass ensembles Steve Sharpe University of Washington S. Sharpe, Future of ChPT for LQCD 5/19/16 @ TUM-IAS EFT workshop 1 /35 ChPT for LQCD: Does it have a future?

More information

Dual and dressed quantities in QCD

Dual and dressed quantities in QCD Dual and dressed quantities in QCD Falk Bruckmann (Univ. Regensburg) Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar, March 2011 Falk Bruckmann Dual and dressed quantities in QCD

More information

in Lattice QCD Abstract

in Lattice QCD Abstract FERMILAB-PUB-96/016-T January, 1996 Electromagnetic Splittings and Light Quark Masses arxiv:hep-lat/9602005v1 6 Feb 1996 in Lattice QCD A. Duncan 1, E. Eichten 2 and H. Thacker 3 1 Dept. of Physics and

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY Lattice QCD+QED Towards a Quantitative Understanding of the Stability of Matter G. Schierholz Deutsches Elektronen-Synchrotron DESY The Challenge (Mn Mp)QED [MeV] 0-1 -2 1 2 Helium Stars Exp No Fusion

More information

Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV

Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV M. M. Islam 1, J. Kašpar 2,3, R. J. Luddy 1 1 Department of Physics, University of Connecticut, Storrs, CT 06269

More information

The QCD phase diagram at real and imaginary chemical potential

The QCD phase diagram at real and imaginary chemical potential Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase

More information

Expected precision in future lattice calculations p.1

Expected precision in future lattice calculations p.1 Expected precision in future lattice calculations Shoji Hashimoto (KEK) shoji.hashimoto@kek.jp Super-B Workshop, at University of Hawaii, Jan 19 22, 2004 Expected precision in future lattice calculations

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA with η condensation Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 66-85, Japan E-mail: saoki@yukawa.kyoto-u.ac.jp Michael CREUTZ Physics Department

More information

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1-55 Cracow School of Theoretical Physics 20 28/6/2015, Zakopane, Poland Outline The Lagrangian of QCD and its symmetries

More information

Medium Modifications of Hadrons and Electromagnetic Probe

Medium Modifications of Hadrons and Electromagnetic Probe Medium Modifications of Hadrons and Texas A&M University March 17, 26 Outline QCD and Chiral Symmetry QCD and ( accidental ) Symmetries Theory for strong interactions: QCD L QCD = 1 4 F a µν Fµν a + ψ(i

More information

Pion couplings to the scalar B meson. Antoine Gérardin

Pion couplings to the scalar B meson. Antoine Gérardin Antoine Gérardin 1 Pion couplings to the scalar B meson Pion couplings to the scalar B meson Antoine Gérardin In collaboration with B. Blossier and N. Garron Based on [arxiv:141.349] LPT Orsay January

More information

Development of a hadronic model: general considerations. Francesco Giacosa

Development of a hadronic model: general considerations. Francesco Giacosa Development of a hadronic model: general considerations Objectives Development of a chirallysymmetric model for mesons and baryons including (axial-)vector d.o.f. Extended Linear Sigma Model (elsm) Study

More information