Fermions in higher representations. Some results about SU(2) with adjoint fermions.

Size: px
Start display at page:

Download "Fermions in higher representations. Some results about SU(2) with adjoint fermions."

Transcription

1 Fermions in higher representations. Some results about SU(2) with adjoint fermions. Agostino Patella Swansea University with L. Del Debbio, C. Pica arxiv: [hep-lat] Lattice08, Williamsburg 18/7/2008

2 Outline 1 Motivations Why higher representations? 2 The HiRep code The HiRep code 3 SU(2) with n f = 2 adjoint Conformal point? The parameters The chiral limit Troubles at small m at fixed lattice spacing Extracting the masses from correlators Results 4 Conclusions

3 Outline 1 Motivations Why higher representations? 2 The HiRep code The HiRep code 3 SU(2) with n f = 2 adjoint Conformal point? The parameters The chiral limit Troubles at small m at fixed lattice spacing Extracting the masses from correlators Results 4 Conclusions

4 Motivations: Why higher representations? Technicolor models. SU(2) gauge theories + fermions in the symmetric two-index representation Orientifold planar equivalence. SU(3) + fund. fermions SU(N) + 2AS fermions SU( ) + Adj fermions Softly-broken SYM. SU(N) gauge theories + one Majorana fermion in the adjoint representation

5 Outline 1 Motivations Why higher representations? 2 The HiRep code The HiRep code 3 SU(2) with n f = 2 adjoint Conformal point? The parameters The chiral limit Troubles at small m at fixed lattice spacing Extracting the masses from correlators Results 4 Conclusions

6 The HiRep code Wilson action + Wilson fermions. Standard HMC/RHMC algorithm. Second order Omelyan integrator for the molecular dynamics evolution, with different time steps for the gauge and fermion actions. Link update implemeted by left multiplication of a unitary matrix that is a second-order approximation for exp (iπ t). Even/odd preconditiong for the Dirac operator. Fermions in the representation R (fund, 2AS, 2S, Adj). Dψ(x) = ψ(x) 1 κ X µ n o (1 γ µ)u R (x, µ)ψ(x + µ) + (1 + γ µ)u R (x µ, µ) ψ(x µ) d dτ U(x, µ) = iπa (x, µ)tf a U(x, µ) H = 1 X π a (x, µ) 2 β X P µν(x) + X φ (x)[d R 4 N D R s] 1 φ(x) x,µ x,µ<ν x dh f dτ = i X π a (x, µ)tr R {TR a F f [U R ](x, µ)} a,x,µ 1 d 2 dτ πa (x, µ) + tr F [itf a Fg(x, µ)] + tr R[iTR a F f (x, µ)] = 0

7 Outline 1 Motivations Why higher representations? 2 The HiRep code The HiRep code 3 SU(2) with n f = 2 adjoint Conformal point? The parameters The chiral limit Troubles at small m at fixed lattice spacing Extracting the masses from correlators Results 4 Conclusions

8 Conformal point? m Conf ChSB ChS beta Catteral, Giedt, Sannino, Schneible, hep-lat/ next talk by Hietanen

9 The parameters β = 2.0 lattice V κ am 0 N traj P τ T2-A (14) 2.9(0.4) T2-A (16) 3.1(0.5) T2-A (18) 3.1(0.5) T2-A (20) 6.0(1.2) T2-A (37) 12.0(3.6) T2-A (50) 22.3(9.3) T2-A (55) 48.3(23.3) T2-A (58) 40.7(16.3) T2-A (45) 2.7(1.2) T2-B (42) 5.8(3.6) T2-B (56) 9.0(9.6) T2-B (53) 4.2(2.6) T2-B (73) 2.6(1.8) T2-B (58) 13.6(11.5)

10 The chiral limit Wilson fermions explictly break the chiral symmetry for each value of κ. The chiral point is fine-tuned by requiring that the Ward identities for the chiral symmetry are recovered. ψγ 5 ψ(x) µ ψγµγ 5 ψ(y) = 2m ψγ 5 ψ(x) ψγ 5 ψ(y) 1 am A κ 1 «κ c In the chiral point m = 0 and in the continuum limit, we assume that the chiral symmetry is spontaneously broken. Then the lightest PS meson is massless and for small values of m PS, the χpt is valid. M PS 4πF PS 1 am PS B am F PS F PS (0) + Cm M V M V (0) + Dm We want to check this assumption. We need to go to small PCAC masses but we need to be careful in this region.

11 Troubles at small m at fixed lattice spacing SU(4) broken by m, a sp. broken in Aoki phase SO(4) U(1) U(1) In the Aoki phase, flavour is spontaneously broken. Four Goldstone bosons are expected in this case. The transition to the Aoki phase is expected around the chiral limit in a width a m (aλ) 3. In the Aoki phase, exact zero modes of the Dirac operator (and instability of the algorithm) are expected. At finite volume, the phase transition becomes a wide cross-over. Thus, we can have a region of stability of the algorithm in which the measured observables are highly sensitive to lattice artifacts. Safe chiral limit We need to check the stability of our results close to the chiral point, by increasing the volume and reducing the lattice spacing (the width of the distribution of the lowest Dirac eigenvalue shrinks as a/ V and the Aoki phase width shrinks as a 3 ).

12 Extracting the masses from correlators γ 0 γ 5 γ am PS t/a h(t + 1, M) h(t, M) = Cγ 5,γ 5 (t + 1) C γ5,γ 5 (t) h(t, M) = e Mt + e M(T t)

13 The PCAC mass and the chiral limit (a m) (1/κ) m eff (t) = Cγ 0γ 5,γ 5 (t + 1) C γ0 γ 5,γ 5 (t 1) C γ5,γ 5 (t) 1 am = A κ 1 «κ c = (7) κ c

14 The PS mass 7 6 a M 2 PS /m am a 2 M 2 PS = Bam

15 The V mass am V am M V = M V (0) + Dm

16 The PS decay constant af PS am C γ5,γ 5 (t) G2 PS exp{ M PS t} M PS F PS = m MPS 2 G PS F PS = F PS (0) + Cm

17 Validity region of χpt 0.25 M PS /(4 π F PS ) am M PS 4πF PS 0.2 We are at the superior corner of the region of applicability of χpt. So far data are compatible with the standard scenario of chiral symmetry breaking at the chiral point. Anyway more exotic scenarios (like the presence of a conformal chiral point) cannot be excluded. We need to go closer to the chiral point in a safe way (increasing the volume and reducing the lattice spacing).

18 Outline 1 Motivations Why higher representations? 2 The HiRep code The HiRep code 3 SU(2) with n f = 2 adjoint Conformal point? The parameters The chiral limit Troubles at small m at fixed lattice spacing Extracting the masses from correlators Results 4 Conclusions

19 Conclusions SU(N) gauge theories with fermions in two-index representations are relevant for the physics beyond SM. We have implemented and tested the HMC/RHMC algorithm for fermions in the generic representation of SU(N). We have produced some preliminary phenomenological results for SU(2) with n f = 2 adjoint fermions at fixed lattice spacing. Our results are affected by systematic errors, due to both finite lattice spacing and finite volume. In particular the chiral limit and the scaling region require deeper investigation. Our results are compatible with the standard scenario of chiral symmetry breaking in the chiral point and χpt. However more exotic scenarios cannot be excluded. Lighest quarks are necessary.

20 Behaviour of the HMC/RHMC algorithm If H is the difference of the value of the Hamiltonian at the beginning and at the end of the MD evolution, we expect If t is the MD step size, we expect exp( H) = 1 H t 4 If P acc is the acceptance probability, we expect P acc = erfc( p H /2) The average of the plaquette is independent of t. Violation of reversibility. Fix a starting configuration, evolve for τ = 1, flip the momenta and evolve back for τ = 1. The starting and ending configurations should be the same. We get δh 10 7

21 Test of the group structure SU(3) + n f = 2 in the fundamental representation, checked against: M. Luscher, Comput. Phys. Commun. 165, 199 (2005) [arxiv:hep-lat/ ] SU(3) + n f = 2 in the fundamental representation = = SU(3) + n f = 2 in the antisymmetric two-index representation SU(2) + n f = 2 in the adjoint representation, checked against: S. Catteral and F. Sannino, Phys. Rev. D 76, (2007) [arxiv:hep-lat/ ] SU(2) + n f = 2 in the adjoint representation = = SU(2) + n f = 2 in the symmetric two-index representation

22 The lowest eigenvalue of D κ= κ= κ= κ= κ= aλ

23 Failure of the naive TC scaling lattice 4 3 lattice m V / F PS am From the naive TC scaling: M V F PS = Mρ F π 8.4

24 The PS mass ours Catteral et al. 1 am PS /k

25 The V mass ours Catteral et al am V /k

26 Compatibility with exotic scenarios ours Catterall et al. M V = b M PS am V = c (am PS ) 2 am V am PS

Lattice QCD with Eight Degenerate Quark Flavors

Lattice QCD with Eight Degenerate Quark Flavors Lattice QCD with Eight Degenerate Quark Flavors Xiao-Yong Jin, Robert D. Mawhinney Columbia University Lattice 2008 Outline Introduction Simulations and results Preparations Results Conclusion and outlook

More information

The Sextet Model Conformal Symmetry vs. Chiral Symmetry Breaking. Martin Hansen Claudio Pica, Vincent Drach, Ari Hietanen, Francesco Sannino

The Sextet Model Conformal Symmetry vs. Chiral Symmetry Breaking. Martin Hansen Claudio Pica, Vincent Drach, Ari Hietanen, Francesco Sannino The Sextet Model Conformal Symmetry vs. Chiral Symmetry Breaking Martin Hansen Claudio Pica, Vincent Drach, Ari Hietanen, Francesco Sannino Outline Motivation Simulations Spectrum Mesons and baryons Chiral

More information

arxiv: v1 [hep-lat] 5 Nov 2018

arxiv: v1 [hep-lat] 5 Nov 2018 on the lattice: from super Yang-Mills towards super QCD arxiv:1811.01797v1 [hep-lat] 5 Nov 2018 Friedrich-Schiller-University Jena, Institute of Theoretical Physics, Max-Wien-Platz 1, D-07743 Jena, Germany

More information

Lattice studies of the conformal window

Lattice studies of the conformal window Lattice studies of the conformal window Luigi Del Debbio University of Edinburgh Zeuthen - November 2010 T H E U N I V E R S I T Y O F E D I N B U R G H Luigi Del Debbio (University of Edinburgh) Lattice

More information

Orientifold planar equivalence.

Orientifold planar equivalence. Orientifold planar equivalence. An overview and some hints from the lattice**. Agostino Patella* Scuola Normale Superiore, Pisa INFN, Pisa 21/3/2007 * PhD advisor: Adriano Di Giacomo ** Based on: - A.

More information

arxiv: v1 [hep-lat] 2 Nov 2010

arxiv: v1 [hep-lat] 2 Nov 2010 Improved Lattice Spectroscopy of Minimal Walking Technicolor, Luigi Del Debbio School of Physics & Astronomy, University of Edinburgh, EH9 3JZ, Edinburgh, UK E-mail: eoin.kerrane@ed.ac.uk, luigi.del.debbio@ed.ac.uk

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

Large-volume results in SU(2) with adjoint fermions

Large-volume results in SU(2) with adjoint fermions Large-volume results in SU(2) with adjoint fermions The Higgs Centre for Theoretical Physics The University of Edinburgh, Edinburgh, UK E-mail: Luigi.Del.Debbio@ed.ac.uk B. Lucini College of Science Swansea

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

Strong Interactions for the LHC

Strong Interactions for the LHC Strong Interactions for the LHC George T. Fleming Yale University Lattice 2008 Williamsburg, VA 19 Jul 2008 Outline Dynamical Electroweak Symmetry Breaking (DEWSB) Wasn t technicolor ruled out more than

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

Realization of Center Symmetry in Two Adjoint Flavor Large-N Yang-Mills

Realization of Center Symmetry in Two Adjoint Flavor Large-N Yang-Mills Syracuse University SURFACE Physics College of Arts and Sciences 6-12-2010 Realization of Center Symmetry in Two Adjoint Flavor Large-N Yang-Mills Simon Catterall Syracuse University Richard Galvez Syracuse

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Fun with the S parameter on the lattice

Fun with the S parameter on the lattice Fun with the S parameter on the lattice David Schaich (Boston Colorado Syracuse) from work with the LSD Collaboration and USQCD BSM community arxiv:1009.5967 & arxiv:1111.4993 Origin of Mass 2013 Lattice

More information

The Conformal Window in SU(3) Yang-Mills

The Conformal Window in SU(3) Yang-Mills The Conformal Window in SU(3) Yang-Mills Ethan T. Neil ethan.neil@yale.edu Department of Physics Yale University Lattice 2008 Williamsburg, VA July 15, 2008 Ethan Neil (Yale) Conformal Window in Yang-Mills

More information

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA with η condensation Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 66-85, Japan E-mail: saoki@yukawa.kyoto-u.ac.jp Michael CREUTZ Physics Department

More information

Minimal Walking Technicolor: Phenomenology and Lattice Studies. 1 Introduction and a concrete model

Minimal Walking Technicolor: Phenomenology and Lattice Studies. 1 Introduction and a concrete model Minimal Walking Technicolor: Phenomenology and Lattice Studies Kimmo Tuominen Department of Physics, University of Jyväskylä, Finland Helsinki Institute of Physics, University of Helsinki, Finland 1 Introduction

More information

Infrared conformal gauge theory and composite Higgs

Infrared conformal gauge theory and composite Higgs Infrared conformal gauge theory and composite Higgs Kari Rummukainen University of Helsinki and Helsinki Institute of Physics Work done in collaboration with: Ari Hietanen, Tuomas Karavirta, Viljami Leino,

More information

Wilson Fermions with Four Fermion Interactions

Wilson Fermions with Four Fermion Interactions Wilson Fermions with Four Fermion Interactions E-mail: rantaharju@cp.dias.sdu.dk Vincent Drach E-mail: drach@cp.dias.sdu.dk Ari Hietanen E-mail: hietanen@cp.dias.sdu.dk Claudio Pica E-mail: pica@cp.dias.sdu.dk

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

(Im)possible emergent symmetry and conformal bootstrap

(Im)possible emergent symmetry and conformal bootstrap (Im)possible emergent symmetry and conformal bootstrap Yu Nakayama earlier results are based on collaboration with Tomoki Ohtsuki Phys.Rev.Lett. 117 (2016) Symmetries in nature The great lesson from string

More information

Large-N c universality of phases in QCD and QCD-like theories

Large-N c universality of phases in QCD and QCD-like theories Large-N c universality of phases in QCD and QCD-like theories Masanori Hanada Department of Physics University of Washington Seattle, WA 98195-1560, USA 1 Introduction QCD with a finite baryon chemical

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Polynomial Filtered Hybrid Monte Carlo

Polynomial Filtered Hybrid Monte Carlo Polynomial Filtered Hybrid Monte Carlo Waseem Kamleh and Michael J. Peardon CSSM & U NIVERSITY OF A DELAIDE QCDNA VII, July 4th 6th, 2012 Introduction Generating large, light quark dynamical gauge field

More information

arxiv: v1 [hep-lat] 6 Sep 2013

arxiv: v1 [hep-lat] 6 Sep 2013 CERN-PH-TH/2013-215, Edinburgh 2013/12 Infrared conformality and bulk critical points: SU(2) with heavy adjoint quarks arxiv:1309.1614v1 [hep-lat] 6 Sep 2013 Biagio Lucini a Agostino Patella b,c Antonio

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

openq*d simulation code for QCD+QED

openq*d simulation code for QCD+QED LATTICE 2017 Granada openq*d simulation code for QCD+QED Agostino Patella CERN & Plymouth University on behalf of the software-development team of the RC collaboration: Isabel Campos (IFCA, IFT), Patrick

More information

IR fixed points in SU(3) Gauge Theories

IR fixed points in SU(3) Gauge Theories 205/03/03 SCGT5 IR fixed points in SU(3) Gauge Theories Y. Iwasaki U.Tsukuba and KEK In Collaboration with K.-I. Ishikawa(U. Horoshima) Yu Nakayama(Caltech & IPMU) T. Yoshie(U. Tsukuba) Plan of Talk Introduction

More information

Nonperturbative infrared fixed point in sextet QCD

Nonperturbative infrared fixed point in sextet QCD and Yigal Shamir Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel E-mail: bqs@julian.tau.ac.il, shamir@post.tau.ac.il Thomas DeGrand Department of

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

The heavy-light sector of N f = twisted mass lattice QCD

The heavy-light sector of N f = twisted mass lattice QCD The heavy-light sector of N f = 2 + 1 + 1 twisted mass lattice QCD Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/ mcwagner/

More information

Partial compositeness on the lattice:

Partial compositeness on the lattice: Partial compositeness on the lattice: SU(4) gauge theory with fermions in multiple representations Presented by Daniel Hackett April 5, 2018 Lattice for BSM Physics 2018 The TACoS Collaboration University

More information

IMPROVED LATTICE ACTIONS FOR BEYOND THE STANDARD MODEL PHYSICS BY TUOMAS KARAVIRTA

IMPROVED LATTICE ACTIONS FOR BEYOND THE STANDARD MODEL PHYSICS BY TUOMAS KARAVIRTA DEPARTMENT OF PHYSICS UNIVERSITY OF JYVÄSKYLÄ RESEARCH REPORT No. /203 IMPROVED LATTICE ACTIONS FOR BEYOND THE STANDARD MODEL PHYSICS BY TUOMAS KARAVIRTA Academic Dissertation for the Degree of Doctor

More information

arxiv: v1 [hep-lat] 8 Oct 2007

arxiv: v1 [hep-lat] 8 Oct 2007 arxiv:71.1517v1 [hep-lat] 8 Oct 27 Lattice QCD with two light Wilson quarks and maximally twisted mass Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool

More information

Graphene and chiral fermions

Graphene and chiral fermions Graphene and chiral fermions Michael Creutz BNL & U. Mainz Extending graphene structure to four dimensions gives a two-flavor lattice fermion action one exact chiral symmetry protects mass renormalization

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

arxiv: v1 [hep-lat] 1 Oct 2007

arxiv: v1 [hep-lat] 1 Oct 2007 in the C-broen phase of QCD arxiv:0710.0264v1 [hep-lat] 1 Oct 2007 Biagio Lucini Physics Department, Swansea University, Singleton Par, Swansea SA2 8PP, UK E-mail: b.lucini@swansea.ac.u Scuola Normale

More information

Pion couplings to the scalar B meson. Antoine Gérardin

Pion couplings to the scalar B meson. Antoine Gérardin Antoine Gérardin 1 Pion couplings to the scalar B meson Pion couplings to the scalar B meson Antoine Gérardin In collaboration with B. Blossier and N. Garron Based on [arxiv:141.349] LPT Orsay January

More information

T -Parity in Little Higgs Models a

T -Parity in Little Higgs Models a T -Parity in Little Higgs Models a David Krohn a Based on arxiv:0803.4202 [hep-ph] with Itay Yavin, and work in progress with I.Y., Lian-Tao Wang, and Hsin-Chia Cheng Outline Review of little Higgs models

More information

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD Yasumichi Aoki RIKEN BNL Research Center 9/23/09 LBV09 at Madison Plan low energy matrix elements for N PS,l GUT QCD relation what is exactly needed to calculate

More information

Gradient flow running coupling in SU(2) with N f = 6 flavors

Gradient flow running coupling in SU(2) with N f = 6 flavors Gradient flow running coupling in SU(2) with N f = 6 flavors E-mail: viljami.leino@helsinki.fi Teemu Rantalaiho E-mail: teemu.rantalaiho@helsinki.fi Kari Rummukainen E-mail: kari.rummukainen@helsinki.fi

More information

Mixed action simulations: approaching physical quark masses

Mixed action simulations: approaching physical quark masses Mixed action simulations: approaching physical quark masses Stefan Krieg NIC Forschungszentrum Jülich, Wuppertal University in collaboration with S. Durr, Z. Fodor, C. Hoelbling, S. Katz, T. Kurth, L.

More information

arxiv:hep-lat/ v3 8 Dec 2001

arxiv:hep-lat/ v3 8 Dec 2001 Understanding CP violation in lattice QCD arxiv:hep-lat/0102008v3 8 Dec 2001 P. Mitra Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064, India hep-lat/0102008 Abstract It is pointed

More information

The kaon B-parameter from unquenched mixed action lattice QCD

The kaon B-parameter from unquenched mixed action lattice QCD The kaon B-parameter from unquenched mixed action lattice QCD Christopher Aubin Department of Physics, Columbia University, New York, NY, USA Department of Physics, College of William and Mary, Williamsburg,

More information

Symmetries in Effective Field Theory

Symmetries in Effective Field Theory Symmetries in Effective Field Theory Sourendu Gupta Mini School 2016, IACS Kolkata, India Effective Field Theories 29 February 4 March, 2016 Outline Outline Symmetries in EFTs Softly broken symmetries

More information

arxiv: v1 [hep-lat] 30 Dec 2010

arxiv: v1 [hep-lat] 30 Dec 2010 Preprint typeset in JHEP style - HYPER VERSION Nonperturbative improvement of SU(2) lattice gauge theory with adjoint or fundamental flavors arxiv:1101.0154v1 [hep-lat] 30 Dec 2010 Tuomas Karavirta Department

More information

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results E-mail: bijnens@thep.lu.se Niclas Danielsson and Division of Mathematical Physics, LTH, Lund University, Box 118, S 221

More information

Effective Field Theories for lattice QCD

Effective Field Theories for lattice QCD Effective Field Theories for lattice QCD Stephen R. Sharpe University of Washington S. Sharpe, EFT for LQCD: Lecture 1 3/21/12 @ New horizons in lattice field theory, Natal, Brazil 1 Outline of Lectures

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Strongly coupled gauge theories: What can lattice calculations teach us?

Strongly coupled gauge theories: What can lattice calculations teach us? Strongly coupled gauge theories: What can lattice calculations teach us? Anna Hasenfratz University of Colorado Boulder Rencontres de Moriond, March 21 216 Higgs era of particle physics The 212 discovery

More information

Strong coupling study of Aoki phase in Staggered-Wilson fermion

Strong coupling study of Aoki phase in Staggered-Wilson fermion Strong coupling study of Aoki phase in Staggered-Wilson fermion T. Z. Nakano (YITP/Kyoto Univ.) Collaborators: T. Misumi (YITP), T. Kimura (Univ. of Tokyo/RIKEN), A. Ohnishi (YITP), M. Creutz (BNL) PoS

More information

Exploring composite Higgs scenarios with mass-split models

Exploring composite Higgs scenarios with mass-split models Exploring composite Higgs scenarios with mass-split models Oliver Witzel Lattice for BSM Physics 2018 Boulder, CO, USA, April 05, 2018 1 / 22 motivation Experimental observations Discovery of the Higgs

More information

arxiv: v1 [hep-lat] 5 Nov 2018

arxiv: v1 [hep-lat] 5 Nov 2018 Localization in SU(3) gauge theory arxiv:1811.1887v1 [hep-lat] 5 Nov 218 University of Debrecen, Hungary E-mail: vig.reka@atomki.mta.hu Tamás G. Kovács Institute for Nuclear Research, Debrecen, Hungary

More information

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles Technicolor Dark Matter Chris Kouvaris Université Libre de Bruxelles Dynamical Symmetry breaking: The motivation for Technicolor Long time before QCD BCS showed that the Fermi surfaces are unstable to

More information

Gapless Dirac Spectrum at High Temperature

Gapless Dirac Spectrum at High Temperature Department of Physics, University of Pécs H-7624 Pécs, Ifjúság útja 6. E-mail: kgt@fizika.ttk.pte.hu Using the overlap Dirac operator I show that, contrary to some expectations, even well above the critical

More information

Chiral symmetry breaking, instantons, and monopoles

Chiral symmetry breaking, instantons, and monopoles Chiral symmetry breaking, instantons, and monopoles Adriano Di Giacomo 1 and Masayasu Hasegawa 2 1 University of Pisa, Department of Physics and INFN 2 Joint Institute for Nuclear Research, Bogoliubov

More information

Sextet QCD: slow running and the mass anomalous dimension

Sextet QCD: slow running and the mass anomalous dimension Lattice 2010, Sardinia Sextet QCD: slow running and the mass anomalous dimension B. Svetitsky Tel Aviv University with Y. Shamir and T. DeGrand SU(3) gauge theory with N f = 2 fermions in the 6 rep Wilson

More information

Running coupling measurements in Technicolor models

Running coupling measurements in Technicolor models measurements in Technicolor models University of the Pacific August 26 2009 Lattice Higgs Collaboration Zoltan Fodor, Julius Kuti, Daniel Nogradi, Chris Schroeder outline context: technicolor running coupling

More information

Symmetries in Effective Field Theory

Symmetries in Effective Field Theory Symmetries in Effective Field Theory Sourendu Gupta SERC Main School 2014, BITS Pilani Goa, India Effective Field Theories December, 2014 Outline Outline Symmetries in EFTs Softly broken symmetries in

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Hadron Spectrum of QCD with one Quark Flavour

Hadron Spectrum of QCD with one Quark Flavour John von Neumann Institute for Computing Hadron Spectrum of QCD with one Quark Flavour F. Farchioni, I. Montvay, G. Münster, E. E. Scholz, T. Sudmann, J. Wuilloud published in NIC Symposium 2008, G. Münster,

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

arxiv: v2 [hep-lat] 14 Aug 2016

arxiv: v2 [hep-lat] 14 Aug 2016 Radiative contribution to the effective potential in composite Higgs models from lattice gauge theory arxiv:1606.02695v2 [hep-lat] 14 Aug 2016 Thomas DeGrand, 1 Maarten Golterman, 2 William I. Jay, 1 Ethan

More information

Viability of strongly coupled scenarios with a light Higgs like boson

Viability of strongly coupled scenarios with a light Higgs like boson Beijing IHEP, January 8 th 2013 Viability of strongly coupled scenarios with a light Higgs like boson J.J. Sanz Cillero (PKU visitor) A. Pich, I. Rosell and JJ SC [arxiv:1212.6769 [hep ph]] OUTLINE 1)

More information

The Polyakov Loop and the Eigenvalues of the Dirac Operator

The Polyakov Loop and the Eigenvalues of the Dirac Operator The Polyakov Loop and the Eigenvalues of the Dirac Operator Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: soeldner@bnl.gov Aiming at the link between confinement and

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Locality and Scaling of Quenched Overlap Fermions

Locality and Scaling of Quenched Overlap Fermions χqcd Collaboration: a, Nilmani Mathur a,b, Jianbo Zhang c, Andrei Alexandru a, Ying Chen d, Shao-Jing Dong a, Ivan Horváth a, Frank Lee e, and Sonali Tamhankar a, f a Department of Physics and Astronomy,

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy? will touch only lightly on precision spectroscopy - masses of (QCD)-stable hadrons

More information

Finite Chemical Potential in N t = 6 QCD

Finite Chemical Potential in N t = 6 QCD Finite Chemical Potential in N t = 6 QCD Rajiv Gavai and Sourendu Gupta ILGTI: TIFR Lattice 2008, Williamsburg July 15, 2008 Rajiv Gavai and Sourendu Gupta ILGTI: TIFRLattice Finite Chemical 2008, Williamsburg

More information

Confining strings in representations with common n-ality

Confining strings in representations with common n-ality Confining strings in representations with common n-ality Luigi Del Debbio, a Haralambos Panagopoulos, b Ettore Vicari a a Dipartimento di Fisica dell Università di Pisa, and INFN Pisa, Italy b Department

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Two-Higgs-doublet models with Higgs symmetry

Two-Higgs-doublet models with Higgs symmetry Two-Higgs-doublet models with Higgs symmetry Chaehyun Yu a a School of Physics, KIAS, Seoul 130-722, Korea Abstract We investigate two-higgs-doublet models (2HDMs) with local U(1) H Higgs flavor symmetry

More information

Composite Goldstone Dark Matter: Experimental Predictions from the Lattice Hietanen, Ari; Lewis, Randy; Pica, Claudio; Sannino, Francesco

Composite Goldstone Dark Matter: Experimental Predictions from the Lattice Hietanen, Ari; Lewis, Randy; Pica, Claudio; Sannino, Francesco Syddansk Universitet Composite Goldstone Dark Matter: Experimental Predictions from the Lattice Hietanen, Ari; Lewis, Randy; Pica, Claudio; Sannino, Francesco Published in: Journal of High Energy Physics

More information

Towards Partial Compositeness on the Lattice: Baryons with Fermions in Multiple Representations

Towards Partial Compositeness on the Lattice: Baryons with Fermions in Multiple Representations Towards Partial Compositeness on the Lattice: Baryons with Fermions in Multiple Representations William I. Jay, University of Colorado Boulder! With Tom DeGrand, Ethan Neil, Daniel Hackett (Boulder);!

More information

't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory

't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory 't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory 1 MOHAMED ANBER BASED ON ARXIV:1807.00093, 1811.10642 WITH ERICH POPPITZ (U OF TORONTO) Outline Overview on

More information

Walking technicolor on the lattice

Walking technicolor on the lattice Walking technicolor on the lattice Kieran Holland University of the Pacific Lattice Higgs Collaboration Zoltan Fodor (Wuppertal), Julius Kuti (UCSD), Daniel Nogradi (UCSD), Chris Schroeder (UCSD) where

More information

Lattice simulations and BSM phenomenology

Lattice simulations and BSM phenomenology Lattice simulations and BSM phenomenology L Del Debbio Higgs Centre for Theoretical Physics University of Edinburgh L Del Debbio Lattice BSM Tel Aviv, June 2015 1 / 47 motivations LHC Run-I discovery of

More information

PAPER 305 THE STANDARD MODEL

PAPER 305 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Tuesday, 6 June, 017 9:00 am to 1:00 pm PAPER 305 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Flavor symmetry breaking in mixed-action QCD

Flavor symmetry breaking in mixed-action QCD Flavor symmetry breaking in mixed-action QCD Oliver Bär Institute of Physics Humboldt University, Berlin, Germany E-mail: obaer@physik.hu-berlin.de Department of Physics and Astronomy San Francisco State

More information

Goldstone Bosons and Chiral Symmetry Breaking in QCD

Goldstone Bosons and Chiral Symmetry Breaking in QCD Goldstone Bosons and Chiral Symmetry Breaking in QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Before reading this handout, carefully read Peskin and Schroeder s

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

Department of Physics and Helsinki Institute of Physics, University of Helsinki

Department of Physics and Helsinki Institute of Physics, University of Helsinki Mass anomalous dimension of SU(2) with N f = 8 using the spectral density method, P.O. Box 64, FI-00014 Helsinki, Finland E-mail: joni.suorsa@helsinki.fi Viljami Leino Jarno Rantaharju CP 3 -Origins, IFK

More information

Large scale separation and hadronic resonances from a new strongly interacting sector

Large scale separation and hadronic resonances from a new strongly interacting sector Large scale separation and hadronic resonances from a new strongly interacting sector Oliver Witzel Higgs Centre for Theoretical Physics Boston, MA, April 20, 2017 1 / 20 based on R. Brower, A. Hasenfratz,

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta Yoshifumi Nakamura(NIC/DESY) for the theta collaboration S. Aoki(RBRC/Tsukuba), R. Horsley(Edinburgh), YN, D.

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

Walking step by step on the lattice

Walking step by step on the lattice Walking step by step on the lattice C.-J. David Lin National Chiao-Tung University and National Centre for Theoretical Sciences, Taiwan JLab 15/06/09 Work done in collaboration with Erek Bilgici (University

More information

Wave functions of the Nucleon

Wave functions of the Nucleon Wave functions of the Nucleon Samuel D. Thomas (1) Collaborators: Waseem Kamleh (1), Derek B. Leinweber (1), Dale S. Roberts (1,2) (1) CSSM, University of Adelaide, (2) Australian National University LHPV,

More information

Solutions of the Ginsparg-Wilson equation. Nigel Cundy. arxiv: [hep-lat]

Solutions of the Ginsparg-Wilson equation. Nigel Cundy. arxiv: [hep-lat] Universität Regensburg arxiv:0802.0170[hep-lat] Lattice 2008, Williamsburg, July 14 1/24 Overlap fermions in the continuum Consider the continuum Dirac operator D 0 ψ(x) = P {e i R } x Aµ (w)dw µ γ ν ν

More information

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model Ginsparg-Wilson Fermions and the DESY Zeuthen 14th September 2004 Ginsparg-Wilson Fermions and the QCD predictions Perturbative QCD only applicable at high energy ( 1 GeV) At low energies (100 MeV - 1

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Thermodynamics for SU(2) gauge theory using gradient flow

Thermodynamics for SU(2) gauge theory using gradient flow theory using Takehiro Hirakida, Etsuko Itou,2, Hiroaki Kouno 3 Kyushu U., RCNP, Kochi U. 2, Saga U. 3 NFQCD28, YITP, 5. June, 28 arxiv:85.76 [hep-lat] / 25 2 / 25 3 / 25 SU(2) gauge theory SU(2) gauge

More information

Phenomenology for Higgs Searches at the LHC

Phenomenology for Higgs Searches at the LHC Phenomenology for Higgs Searches at the LHC in Composite Higgs Models Margherita Ghezzi Supervisor: dott. Roberto Contino Roma, 21/02/2012 Introduction Standard Model: SU(2) L U(1) Y U(1) Q Higgs mechanism

More information