When Perturbation Theory Fails...

Size: px
Start display at page:

Download "When Perturbation Theory Fails..."

Transcription

1 When Perturbation Theory Fails... Brian Tiburzi (University of Maryland)

2 When Perturbation Theory Fails... SU(3) chiral perturbation theory? Charm quark in HQET, NRQCD? Extrapolations of lattice QCD data? Solution? Not this talk... Literal interpretation of title Non-Perturbative Examples Toy model Hadrons in uniform electromagnetic fields Hyperons in SU(2) chiral perturbation theory

3 Toy model: 0 <x 1 F (x) = 0 e s 1+sx ds Cannot series expand about 0

4 Toy model: 0 <x 1 F (x) = 0 e s 1+sx ds Cannot series expand about 0 F (x) = ds e s ( sx) j =! 0 j=0 ( ( x) j j=0 0 ds s j e s ) Do it anyway (Physicist) Suggests approximation F N (x) = N ( ) j j! x j j=0

5 Toy model: 0 <x 1 F (x) = 0 e s 1+sx ds Cannot series expand about 0 F (x) = ds e s ( sx) j =! 0 j=0 ( ( x) j j=0 0 ds s j e s ) Do it anyway (Physicist) Suggests approximation F N (x) = N ( ) j j! x j j=0 F (x) F N (x) = x N+1 0 x N+1 (N + 1)! s N+1 e s ds 1+sx

6 Toy model: F (x) = F N (x) = 0 0 <x 1 e s 1+sx ds N ( ) j j! x j j=0 Minimize error for large N F (x) F N (x) x N+1 (N + 1)! 2πN(xN) N e N Do it anyway (Physicist) 2π x e 1 x x 1/N Include more terms: limits to smaller x Make better for larger x: dropping terms Asymptotic expansions: intuitively opposite

7 Toy model: F (x) = F N (x) = 0 0 <x 1 e s 1+sx ds N ( ) j j! x j j=0 N=1 x 1/N

8 Toy model: F (x) = F N (x) = 0 0 <x 1 e s 1+sx ds N ( ) j j! x j j=0 N=2 N=1 x 1/N

9 Toy model: 0 <x 1 F (x) = F N (x) = 0 e s 1+sx ds N ( ) j j! x j j=0 N=3 N=2 N=1 x 1/N

10 Toy model: 0 <x 1 F (x) = F N (x) = 0 e s 1+sx ds N ( ) j j! x j j=0 N=12 N=3 N=2 N=1 x 1/N Asymptotic expansions: zero radius of convergence = intuitively opposite

11 Where have I seen this behavior? N=2 N=1

12 Where have I seen this behavior? N=2 N=1 When Perturbation Theory Fails...

13 Hadrons in uniform electromagnetic fields Green s functions exist in closed form for uniform EM fields Use to study non-perturbative effects Scalar case Schwinger (1951),..., Tiburzi (2008) Magnetic field: Solution Harmonic oscillator propagator

14 Hadrons in uniform electromagnetic fields Chiral perturbation theory in strong QED Scalar case Power counting eb/m 2 π 1 Calculate the neutral pion energy in magnetic field

15 Hadrons in uniform electromagnetic fields Chiral perturbation theory in strong QED Neutral pion energy eb/m 2 π 1 Closed form Why? Background field lattice QCD computations in this regime Closed torus can leak no flux exp(ieba) eb = 2πn L 2

16 Hadrons in uniform electromagnetic fields Chiral perturbation theory in strong QED Neutral pion energy eb m 2 π Do it anyway (Physicist)

17 Hadrons in uniform electromagnetic fields Chiral perturbation theory in strong QED Neutral pion energy intuitively obvious asymptotically opposite When Perturbation Theory Fails...

18 Hadrons in uniform electromagnetic fields Chiral perturbation theory in strong QED Neutral pion energy When Perturbation Theory Fails...

19 Hadrons in uniform electromagnetic fields Chiral perturbation theory in strong QED IDLE AMUSEMENT Gell-Mann / Oaks / Renner Relation Electric Field: analytic continuation Schwinger mechanism Charged pions Nucleon In strong magnetic fields, proton beta decays to neutron

20 Hyperons in SU(2) Chiral Perturbation Theory Tiburzi and Walker-Loud (2008) Jiang, Tiburzi, and Walker-Loud (2009) Do it anyway (Physicist) Motivation SU(3) Heavy baryon chiral perturbation theory m η /M B 1/2 δm N (µ = Λ χ )/M N = 39% δm Λ (µ = Λ χ )/M Λ = 67% δm Σ (µ = Λ χ )/M Σ = 89% δm Ξ (µ = Λ χ )/M Ξ = 98% Kaon, eta contributions large & increase with strangeness m s Λ QCD? SU(3) expansion precarious

21 Hyperons in SU(2) Chiral Perturbation Theory Schematic SU(3) Expansion of Sigma Mass: M Σ = M SU(3) + am 2 K + bm 3 K +... Large Kaon contributions m 2 K = 1 2 m2 π m2 η s m ηs = 672 MeV Reorganize! m 2 π/m 2 η s = M Σ = M SU(3) + a m 2 η s + a m 2 π + b m 3 η s + b m ηs m 2 π + b m 3 π ( mπ m ηs ) +. M Σ = M SU(2) Σ + αm 2 π + βm 3 π +... Expansion of Sigma Mass about the SU(2) chiral limit m u,m d m s Λ QCD

22 Hyperons in SU(2) Chiral Perturbation Theory M = M SU(2) + αm 2 π +βm 3 π + β F (m π, δ) Trend opposite SU(3): greater strangeness, better convergence m π /Λ χ m π /M S g A =1.25, g ΣΣ =0.78, g ΞΞ =0.24 g N =1.48, g Σ Σ =0.76, g Ξ Ξ =0.69

23 Hyperons in SU(2) Chiral Perturbation Theory SU(2) Perturbative Expansion can FAIL! I) Perturbative expansion about SU(2) limit Duh! (Maryland Colleague) m π /Λ χ need lattice QCD II) Perturbative SU(2) expansion of SU(3)! Kaon thresholds... can study non-perturbatively

24 Hyperons in SU(2) Chiral Perturbation Theory 250 MeV K N Σ π Σ SU(2) Perturbative Expansion can FAIL! Kaon production cannot be described in SU(2) m u,m d m s Λ QCD II) Perturbative SU(2) expansion of SU(3)! Exact Solution SU(3) is theory SU(2) is asymptotically describing

25 Hyperons in SU(2) Chiral Perturbation Theory Do SU(2) expansions of hyperon masses break down because of KN thresholds? Σ, Σ K N Only virtual, but analyticities near threshold

26 Hyperons in SU(2) Chiral Perturbation Theory Do SU(2) expansions of hyperon masses break down because of KN thresholds? Σ, Σ K N Only virtual, but analyticities near threshold m 2 K = 1 2 m2 π m2 η s Do it anyway (Physicist)

27 Hyperons in SU(2) Chiral Perturbation Theory Do SU(2) expansions of hyperon masses break down because of KN thresholds? Σ, Σ K N Do it anyway (Physicist)

28 Hyperons in SU(2) Chiral Perturbation Theory N=2 Include more terms: limits to smaller pion mass Make better for larger pion mass: dropping terms Asymptotic expansions: intuitively opposite

29 Hyperons in SU(2) Chiral Perturbation Theory N=2 N=4 Include more terms: limits to smaller pion mass Make better for larger pion mass: dropping terms Asymptotic expansions: intuitively opposite

30 Hyperons in SU(2) Chiral Perturbation Theory N=2 N=6 N=4 Include more terms: limits to smaller pion mass Make better for larger pion mass: dropping terms Asymptotic expansions: intuitively opposite

31 Hyperons in SU(2) Chiral Perturbation Theory N=2 N=6 N=4 Include more terms: limits to smaller pion mass Make better for larger pion mass: dropping terms Asymptotic expansions: intuitively opposite

32 Hyperons in SU(2) Chiral Perturbation Theory N=24 N=2 N=6 N=4 Include more terms: limits to smaller pion mass Make better for larger pion mass: dropping terms Asymptotic expansions: intuitively opposite

33 When perturbation theory fails, we probably try to use it anyway Asymptotic expansions: intuitively opposite Including more terms limits to smaller range Make better for parameters by dropping terms (limited control) eb/m 2 π 1

34 Neutral pion in electric field: B -> ie

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & QCD Part 1: First Encounter With Hadrons: Introduction to Mesons & Baryons, The Quark

More information

DAMTP, University of Cambridge HPQCD

DAMTP, University of Cambridge HPQCD Outline of Talk Phenomenological Motivation Overview of lattice methodology Results Future work -Motivation The CKM Matrix After EW symmetry breaking the standard model in the mass basis contains the flavour

More information

Quark Physics from Lattice QCD

Quark Physics from Lattice QCD Quark Physics from Lattice QCD K. Szabo published in NIC Symposium 2018 K. Binder, M. Müller, A. Trautmann (Editors) Forschungszentrum Jülich GmbH, John von Neumann Institute for Computing (NIC), Schriften

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Symposium in honor of Keh-Fei Liu on the occasion of his 60th Birthday

Symposium in honor of Keh-Fei Liu on the occasion of his 60th Birthday Symposium in honor of Keh-Fei Liu on the occasion of his 60th Birthday A good physicist wide knowledge, deep intuition, full of innovative ideas, up-todate in theory and experiment Visionary For example:

More information

Clebsch-Gordan Coefficients

Clebsch-Gordan Coefficients Phy489 Lecture 7 Clebsch-Gordan Coefficients 2 j j j2 m m m 2 j= j j2 j + j j m > j m > = C jm > m = m + m 2 2 2 Two systems with spin j and j 2 and z components m and m 2 can combine to give a system

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

arxiv:hep-ph/ v2 15 Oct 2001

arxiv:hep-ph/ v2 15 Oct 2001 THE EIGHTFOLD WAY 1 Jonathan L. Rosner arxiv:hep-ph/0109241v2 15 Oct 2001 The Eightfold Way is the name coined by Murray Gell-Mann (1961) to describe a classification scheme of the elementary particles

More information

Electromagnetic and spin polarisabilities from lattice QCD

Electromagnetic and spin polarisabilities from lattice QCD Lattice Hadron Physics 2006 Electromagnetic and spin polarisabilities from lattice QCD William Detmold [ WD, BC Tiburzi and A Walker-Loud, PRD73, 114505] I: How to extract EM and spin polarisabilities

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses January 3, 08 PHY357 Lecture 8 Quark composition of hadrons Hadron magnetic moments Hadron masses January 3, 08 Quark rules for building Hadrons! Three types of stable quark configurations established!

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

arxiv: v1 [hep-ph] 13 Nov 2013

arxiv: v1 [hep-ph] 13 Nov 2013 euniversityofmanchester November 14, 2013 arxiv:1311.3203v1 [hep-ph] 13 Nov 2013 Odd- and even-parity charmed mesons revisited in heavy hadron chiral perturbation theory Mohammad Alhakami 1 School of Physics

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. (a) The K meson has strangeness 1. State the quark composition of a meson... State the baryon number of the K meson... (iii) What is the quark composition of the K meson?.... The figure below shows

More information

Restless pions,, nuclear forces and statistical noise in lattice QCD. Paulo Bedaque U. of Maryland, College Park

Restless pions,, nuclear forces and statistical noise in lattice QCD. Paulo Bedaque U. of Maryland, College Park Restless pions,, nuclear forces and statistical noise in lattice QCD Paulo Bedaque U. of Maryland, College Park What do we know? 1) NN phase shifts 1 S 0 neutron-proton What do we know? 2) Several potentials

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young Chiral extrapolation of nucleon form factors from lattice data P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young 1. Introduction CHPT Finite-Range- Regularization 2. Magnetic form factors 3. Extrapolation

More information

M. Cobal, PIF 2006/7. Quarks

M. Cobal, PIF 2006/7. Quarks M. Cobal, PIF 2006/7 Quarks Quarks Quarks are s = ½ fermions, subject to all kind of interactions. They have fractional electric charges Quarks and their bound states are the only particles which interact

More information

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University Spin Structure Functions of the Deuteron from CLAS/EGB Data Nevzat Guler (for the CLAS Collaboration) Old Dominion University OULINE Formalism Experimental setup Data analysis Results and Conclusion Motivation

More information

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis Hyperons and charmed baryons axial charges from lattice QCD Christos Kallidonis Computation-based Science and Technology Research Center The Cyprus Institute with C. Alexandrou and K. Hadjiyiannakou Electromagnetic

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data

The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data L. Alvarez-Ruso 1, T. Ledwig 1, J. Martin-Camalich, M. J. Vicente-Vacas 1 1 Departamento de Física Teórica

More information

LOW-ENERGY QCD and STRANGENESS in the NUCLEON

LOW-ENERGY QCD and STRANGENESS in the NUCLEON PAVI 09 Bar Harbor, Maine, June 009 LOW-ENERGY QCD and STRANGENESS in the NUCLEON Wolfram Weise Strategies in Low-Energy QCD: Lattice QCD and Chiral Effective Field Theory Scalar Sector: Nucleon Mass and

More information

Meson Baryon Scattering

Meson Baryon Scattering Meson Baryon Scattering Aaron Torok Department of Physics, Indiana University May 31, 2010 Meson Baryon Scattering in Lattice QCD Calculation of the π + Σ +, and π + Ξ 0 scattering lengths Aaron Torok

More information

At this time the quark model consisted of three particles, the properties of which are given in the table.

At this time the quark model consisted of three particles, the properties of which are given in the table. *1 In 1961 Murray Gell-Mann predicted the existence of a new particle called an omega (Ω) minus. It was subsequently discovered in 1964. At this time the quark model consisted of three particles, the properties

More information

Discovery of Pions and Kaons in Cosmic Rays in 1947

Discovery of Pions and Kaons in Cosmic Rays in 1947 Discovery of Pions and Kaons in Cosmic Rays in 947 π + µ + e + (cosmic rays) Points to note: de/dx Bragg Peak Low de/dx for fast e + Constant range (~600µm) (i.e. -body decay) small angle scattering Strange

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group) Daisuke Jido (Nuclear physics group) Hadrons (particles interacting with strong interactions) are composite objects of quarks and gluons. It has been recently suggested that the structures of some hadrons

More information

Quark Model History and current status

Quark Model History and current status Quark Model History and current status Manon Bischoff Heavy-Ion Seminar 2013 October 31, 2013 Manon Bischoff Quark Model 1 Outline Introduction Motivation and historical development Group theory and the

More information

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner Lecture 3 Pions as Goldstone Bosons of Chiral Symmetry Breaking Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and

More information

M. Cobal, PIF 2006/7. Quarks

M. Cobal, PIF 2006/7. Quarks Quarks Quarks Quarks are s = ½ fermions, subject to all kind of interactions. They have fractional electric charges Quarks and their bound states are the only particles which interact strongly Like leptons,

More information

PION PHYSICS FROM LATTICE QCD

PION PHYSICS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PION PHYSICS FROM LATTICE QCD Jie Hu,1, Fu-Jiun

More information

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell Click on the SUBATOMIC roadmap button on the left. Explore the Subatomic Universe Roadmap to answer the following questions. Matter 1. What 3 atoms is a water molecule made of? Two Hydrogen atoms and one

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Name The Standard Model of Particle Physics Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Just like there is good and evil, matter must have something like

More information

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University Chiral Dynamics with Pions, Nucleons, and Deltas Daniel Phillips Ohio University Connecting lattice and laboratory EFT Picture credits: C. Davies, Jefferson Lab. What is an Effective Field Theory? M=f(p/Λ)

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY Lattice QCD+QED Towards a Quantitative Understanding of the Stability of Matter G. Schierholz Deutsches Elektronen-Synchrotron DESY The Challenge (Mn Mp)QED [MeV] 0-1 -2 1 2 Helium Stars Exp No Fusion

More information

Charged Pion Polarizability & Muon g-2

Charged Pion Polarizability & Muon g-2 Charged Pion Polarizability & Muon g-2 M.J. Ramsey-Musolf U Mass Amherst Amherst Center for Fundamental Interactions http://www.physics.umass.edu/acfi/ ACFI-J Lab Workshop! March 2014! 1 Outline I. Intro

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

arxiv: v1 [hep-ph] 14 Sep 2017

arxiv: v1 [hep-ph] 14 Sep 2017 Octet Baryons in Large Magnetic Fields arxiv:709.04997v [hep-ph] 4 Sep 207 Amol Deshmukh, 2,, 2, and Brian C. Tiburzi Department of Physics, The City College of New York, New York, NY 003, USA 2 Graduate

More information

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical Mixed-Action Lattice QCD

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical Mixed-Action Lattice QCD NT@UW-06-08 JLAB-THY-06-484 UNH-06-02 arxiv:hep-lat/0604013v1 16 Apr 2006 The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical Mixed-Action Lattice QCD Silas R. Beane, 1,2 Kostas Orginos,

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Charm baryon spectroscopy from heavy quark symmetry

Charm baryon spectroscopy from heavy quark symmetry Charm baryon spectroscopy from heavy quark symmetry Phys. Rev. D91, 014031 (2015) Tokyo Institute of Technology Shigehiro YASUI Hadrons and Hadron Interaction in QCD (HHIQCD 2015)@YITP, 16 Feb. 20 Mar.

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Lecture 12 Weak Decays of Hadrons

Lecture 12 Weak Decays of Hadrons Lecture 12 Weak Decays of Hadrons π + and K + decays Semileptonic decays Hyperon decays Heavy quark decays Rare decays The Cabibbo-Kobayashi-Maskawa Matrix 1 Charged Pion Decay π + decay by annihilation

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Looking for strange particles in ALICE. 1. Overview

Looking for strange particles in ALICE. 1. Overview Looking for strange particles in ALICE 1. Overview The exercise proposed here consists of a search for strange particles, produced from collisions at LHC and recorded by the ALICE experiment. It is based

More information

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Particle physics today. Giulia Zanderighi (CERN & University of Oxford) Particle physics today Giulia Zanderighi (CERN & University of Oxford) Particle Physics Particle Physics is fundamental research, as opposed to many applied sciences (medicine, biology, chemistry, nano-science,

More information

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD NT@UW-06-08 JLAB-xxxx UNH-06-02 The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD Silas R. Beane, 1, 2 Kostas Orginos, 3, 2 and Martin J. Savage 4 (NPLQCD Collaboration)

More information

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab N and (1232) masses and the γn transition Marc Vanderhaeghen College of William & Mary / Jefferson Lab Hadron Structure using lattice QCD, INT, April 4, 2006 Outline 1) N and masses : relativistic chiral

More information

Hadron structure from lattice QCD

Hadron structure from lattice QCD Hadron structure from lattice QCD Giannis Koutsou Computation-based Science and Technology Research Centre () The Cyprus Institute EINN2015, 5th Nov. 2015, Pafos Outline Short introduction to lattice calculations

More information

Particle Discovery at the LHC. Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting

Particle Discovery at the LHC. Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting Particle Discovery at the LHC Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting 1 The LHC experiments have announced the discovery of several new particle states - in addition

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) Carlos Hidalgo, J. Nieves and M. Pavón-Valderrama Hypernuclear and Strange Particle Physics 2012 IFIC (CSIC - Universitat de València)

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto Univ. 2015, May 26th 1 Contents Contents Introduction: compositeness of hadrons Near-threshold

More information

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster The Lattice QCD Program at Jefferson Lab Huey-Wen Lin JLab 7n cluster 1 Theoretical Support for Our Experimental Agenda 2 Theoretical Support for Our Experimental Agenda JLab Staff Joint appointments and

More information

Mesonic and nucleon fluctuation effects at finite baryon density

Mesonic and nucleon fluctuation effects at finite baryon density Mesonic and nucleon fluctuation effects at finite baryon density Research Center for Nuclear Physics Osaka University Workshop on Strangeness and charm in hadrons and dense matter Yukawa Institute for

More information

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV Mass and Charge Patterns in Hadrons To tame the particle zoo, patterns in the masses and charges can be found that will help lead to an explanation of the large number of particles in terms of just a few

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

The Beam-Helicity Asymmetry for γp pk + K and

The Beam-Helicity Asymmetry for γp pk + K and The Beam-Helicity Asymmetry for γp pk + K and γp pπ + π Rafael A. Badui Jason Bono Lei Guo Brian Raue Florida nternational University Thomas Jefferson National Accelerator Facility CLAS Collaboration September

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

2/11/13 STRUCTURING THE NEW PROTON A Sub-nuclear Shell Model ABSTRACT

2/11/13 STRUCTURING THE NEW PROTON A Sub-nuclear Shell Model ABSTRACT 2/11/13 STRUCTURING THE NEW PROTON A Sub-nuclear Shell Model John R. Springer email: springerphysics@gmail.com ABSTRACT Experiments performed at the HERA Ring Accelerator, Hamburg, Germany have provided

More information

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Gell- Mann- Nishijima formula FK

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Gell- Mann- Nishijima formula FK Lecture 6 Isospin What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Gell- Mann- Nishijima formula FK7003 08 SU() Isospin Isospin introduced based on the observa4on that: m p =

More information

Chiral Model in Nuclear Medium and Hypernuclear Production

Chiral Model in Nuclear Medium and Hypernuclear Production WDS'10 Proceedings of ontributed Papers, Part III, 2 6, 2010. ISBN 978-80-7378-141-5 MATFYZPRESS hiral Model in Nuclear Medium and Hypernuclear Production V. Krejčiřík harles University, Faculty of Mathematics

More information

Lecture 9. Isospin The quark model

Lecture 9. Isospin The quark model Lecture 9 Isospin The quark model There is one more symmetry that applies to strong interactions. isospin or isotopic spin It was useful in formulation of the quark picture of known particles. We can consider

More information

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer QCD matter with isospin-asymmetry Gergely Endrődi Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer SIGN 2017 22. March 2017 Outline introduction: QCD with isospin

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

Visit for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics Particles (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. This question explores

More information

.! " # e " + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions).

.!  # e  + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions). Conservation Laws For every conservation of some quantity, this is equivalent to an invariance under some transformation. Invariance under space displacement leads to (and from) conservation of linear

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

The Positron Fraction in Primary Cosmic Rays and New Cosmological Problems

The Positron Fraction in Primary Cosmic Rays and New Cosmological Problems Copyright 2016 by Sylwester Kornowski All rights reserved The Positron Fraction in Primary Cosmic Rays and New Cosmological Problems Sylwester Kornowski Abstract: Here, within the Scale-Symmetric Theory

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Previous lecture New unstable particles discovered in 40s-50s. First hyperons (particles

More information

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL Towards Exploring Parity Violation with Lattice QCD Brian Tiburzi 30 July 2014 RIKEN BNL Research Center Towards Exploring Parity Violation with Lattice QCD Towards Exploring Parity Violation with Lattice

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Quark model. Jan 30, 2006 Lecture 8 1

Quark model. Jan 30, 2006 Lecture 8 1 Quark model Jan 30, 2006 Lecture 8 1 Quark model of hadrons!!!! Developed long before QCD was recognized as the appropriate quantum field theory of the strong interactions Postulate that 1.! All baryons

More information

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Heavier quarks FK

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Heavier quarks FK Lecture 6 Isospin What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Heavier quarks FK7003 33 SU() Isospin Isospin introduced based on the observa4on that: m p = 0.9383 GeV and

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter

Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter G Schierholz Deutsches Elektronen-Synchrotron DESY The Challenge (Mn Mp)QED [MeV] 0-1 -2 1 2 Helium Stars Exp No Fusion

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

A short overview on strong interaction and quantum chromodynamics

A short overview on strong interaction and quantum chromodynamics A short overview on strong interaction and quantum chromodynamics Christoph Klein Universität Siegen Doktorandenseminar 08.10.2008 Christoph Klein (Universität Siegen) QCD and strong interaction Doktorandenseminar

More information

Heavy Quark Spectroscopy at LHCb

Heavy Quark Spectroscopy at LHCb Heavy Quark Spectroscopy at LHCb Tomasz Skwarnicki On behalf of the LHCb Collaboration Moriond QCD, LaThuile, 2015 Heavy Quark Spectroscopy at LHCb; Moriond QCD 2015 T.Skwarnicki 2 Outline of the talk

More information

Flavour physics Lecture 1

Flavour physics Lecture 1 Flavour physics Lecture 1 Jim Libby (IITM) XI th SERC school on EHEP NISER Bhubaneswar November 2017 Lecture 1 1 Outline What is flavour physics? Some theory and history CKM matrix Lecture 1 2 What is

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

THE PION-NUCLEON SIGMA TERM: an introduction

THE PION-NUCLEON SIGMA TERM: an introduction THE PION-NUCLEON SIGMA TERM: an introduction Marc Knecht Centre de Physique Théorique CNRS Luminy Case 907 13288 Marseille cedex 09 - France knecht@cpt.univ-mrs.fr (Member of the EEC Network FLAVIAnet)

More information