Physics 218: Final. Class of 2:20pm. May 7th, You have the full class period to complete the exam.

Size: px
Start display at page:

Download "Physics 218: Final. Class of 2:20pm. May 7th, You have the full class period to complete the exam."

Transcription

1 Physics 218: Final Class of 2:20pm May 7th, ules of the exam: 1. You have the full class period to complete the exam. 2. Formulae will be displayed in the big screen. You may NOT use any other formula sheet. 3. When calculating numerical values, be sure to keep track of units. 4. You may use this exam or come up front for scratch paper. 5. Be sure to put a box around your final answers and clearly indicate your work to your grader. 6. Clearly erase any unwanted marks. No credit will be given if we cant figure out which answer you are choosing, or which answer you want us to consider. 7. Partial credit can be given only if your work is clearly explained and labeled. 8. All work must be shown to get credit for the answer marked. If the answer marked does not obviously follow from the shown work, even if the answer is correct, you will not get credit for the answer. Sign below to indicate your understanding of the above rules. SOLUTIONS Name : Student ID : Signature :

2 Part 1: Invasion Question Points Score Invasion 34 Merry-go-round 32 Dragging a suitcase 32 Beam of Photons 32 Trying to escape gravitation 38 Disks 32 Total: 200 (34 points) An alien spacecraft hovering at a height H over a military facility releases a bomb with zero initial velocity. Exactly at the same time the military facility launches a projectile straight up with acceleration a p towards the spacecraft. (a) (12 points) Find the time at the which the missile impacts the bomb. Using a coordinate system with ŷ going up and starting at the ground we get: y b (t) = H g 2 t2 y p (t) = a p 2 t2 At the moment of the collision the heights are the same and so we get y b (t c ) = y p (t c ) H g 2 t2 c = a p 2 t2 c t2 c 2 (a p + g) t 2 c = 2H a p + g

3 (b) (12 points) Find the height at the which the missile impacts the spacecraft. y p (t c ) = a p 2 t2 c y p (t c ) = H a p a p + g (c) (10 points) Find the velocities of the spacecraft and missile at the moment of the collision. v b (t) = gt v p (t) = a p t At the moment of the collision we get v b (t c ) = g 2Ha p + g v p (t c ) = a p 2Hap + g Page 2

4 Part 2: Merry-go-round (32 points) A merry-go-round is spinning with an angular velocity ω 0 = π/4 rad when s it starts malfunctioning and develops a constant angular acceleration of α = π/2 rad in the direction of the angular velocity. s 2 (a) (10 points) Find the linear velocity of an object at radius = 2m from the center at t = 2s. v (t = 2s) = ω(t = 2s) ω(t) = ω 0 + αt = π 4 + π 2 t ω(t = 2s) = π 4 + π = 5 4 πs 1 v(t = 2s) = 5 4 π2m s = 7.85m s (b) (10 points) For an object at radius = 2m find a (magnitude of linear acceleration in the direction of linear velocity) at t = 2s. a = α = π 2 2ms 1 = a = π m s 2 (c) (12 points) At t=2s find the ratio a a where a is the magnitude of the linear acceleration in the direction perpendicular to the linear velocity. a = v2 = ω2 = 25π2 16 2ms 1 = a = 25 8 π2 m s 2 a a = 8 25 Page 3

5 Part 3: Dragging a suitcase (32 points) A tourist drags his suitcase, which weights 130N, a distance of 250m at a constant speed to catch his flight. He exerts a 60N force at an angle 40 degrees above the horizontal. The coefficient of kinetic friction µ k between the suitcase and the floor is unknown. (a) (10 points) What works does the tourist do? W = F S = 60N cos(40)250m W = 11490J (b) (8 points) Find the work done by friction. Explain your reasoning. Because the suitcase is moving with constant velocity in the ˆx direction we know that F x f x = 0, where f x represents the friction force. Therefore the work is just minus the work of the tourist. W = 11490J (c) (14 points) Find the coefficient of kinetic friction µ k. ŷ : N + F sin(40) W = 0 N = W F sin(40) = N = 91.4N ˆx : µ k N + F cos(40) = 0 µ k = F cos(40) N = µ k = 0.5 Page 4

6 Part 4: Beam of Photons (32 points) A uniform spherical ball of mass M and radius is at rest in deep space when a pulse of light from a nearby laser hits the sphere at a distance h from the center. The pulse of light has momentum P γ and is completely absorbed by the sphere. P γ } h M (a) (8 points) Is the linear momentum of the pulse+sphere conserved? Explain why or why not. Yes, because the sum of the external forces in the system is zero. (b) (8 points) Is the angular momentum of the pulse+sphere conserved? Explain why or why not. Yes, because the sum of the external torques in the system is zero. (c) (8 points) Compute the linear velocity of the center of mass of the sphere after it has absorbed the pulse of light. P i = P γ P f = Mv cm v cm = P M (d) (8 points) Compute the angular velocity of the sphere around its center of mass after it has absorbed the pulse of light. L i = P γ h L f = I sphere ω ω = P γh I sphere Page 5

7 Part 5: Trying to escape gravitation (38 points) A scientific satellite of mass m is moving radially away from a spherical planet of radius and mass M. When the satellite is at a distance of d = 5 the propulsion system stops and the satellite is found to have a velocity square of v0 2 = GM. 5 M m v 0 { d = 5 (a) (14 points) Will the satellite break free of the planet? or will it eventually fall back to it? Explain your reasoning. The satellite will break free only of it s mechanical energy is greater than zero, or will fall back if the energy is negative. E i = 1 2 mv2 0 GMm d E i = GMm 10 = 1 GMm 2 5 GMm 5 So the satellite will fall back to the planet. (b) (14 points) Using conservation of energy, if the satellite breaks free compute its velocity when it is very very far away from the planet. If it falls back to the planet compute the velocity it will have when reaching its surface. Ignore air resistance. Using conservation of energy we get E i = E f GMm 10 = 1 2 mv2 f GMm vf 2 = GM ( ) v GM f = 5 Page 6

8 (c) (10 points) Find the work done by gravity in moving the satellite from the initial position to the final position. Explain your reasoning. The only force acting on the satellite is that of gravity. Therefore the Work of gravity is just the change in kinetic energy. W grav = K f K i = 1 2 m9 GM 5 W grav = GMm mgm 5 = GMm ( ) Page 7

9 Part 6: Disks (32 points) In the picture below each disk have radius = 0.10 m, mass M = 50 kg and moment of inertia of a solid disk. Assume the acceleration of gravity is simply g = 10 m. All answers must be a number with proper units. s 2 M ŷ M ẑ ˆx F = 500N 50 kg (a) (15 points) Find the angular acceleration of the disk on the left. F = Iα α = F I = 50Nm kg m = α = 200rads 2 s 2 (b) (17 points) Find the angular acceleration of the disk on the right. First we write all the equations that allow us to completely solve the problem according to our coordinate system above. T mg = ma y (1) a y = α (2) T = Iα (3) Then we solve the system: replacing the second into the first one we get T mg = mα T = mg mα and replacing T into the third we get mg m 2 α = Iα α = mg I + m = mg 2g 2 3 = m2 3 α = 20 m s m = α = 66.6rads s 2 2 Page 8

10 Formulae General math: log (x/y) = log (x) log (y) log (xy) = log (x) + log (y) log (x n ) = n log (x) h h a h o A = A x î + A y ĵ + A zˆk ln x log e x x = 10 (log 10 x) (ln x) x = e h a = h cos = h sin h o = h sin = h cos h 2 = h 2 a + h 2 o tan = h o h a ax 2 + bx + c = 0 x = b ± b 2 4ac 2a + = = 90 A B = A x B x + A y B y + A z B z = AB cos A B = (A y B z A z B y )î + (A z B x A x B z )ĵ + (A x B y A y B x )ˆk = AB sin = A B = AB df dt = natn 1 If f(t) = at n, then t 2 t 1 f(t)dt = a n+1 ( t n+1 2 t n+1 ) 1 Translational otational constant (linear/angular) acceleration only: r(t) = r + v t at2 v(t) = v + at v 2 f = v 2 + 2a(r r ) r(t) = r ( v i + v f )t v = r2 r1 t 2 t 1 a = v2 v1 t 2 t 1 v = d r dt a= d v dt = d2 r dt 2 r(t) = r + t v(t) dt 0 v(t) = v + t a(t) dt 0 W = F r = F d r P = dw dt = F v p cm = m 1 v 1 + m 2 v = M v cm J = F dt = p K trans = 1 2 Mv2 cm Fext = M a cm = d pcm dt Fint = 0 Work-Energy: always true: W = K (t) = + ω t αt2 ω(t) = ω + αt ω 2 f = ω 2 + 2α( ) (t) = (ω i + ω f )t ω = 2 1 t 2 t 1 α = ω2 ω1 t 2 t 1 ω = d dt α= dω dt = d2 dt 2 (t) = + t ω(t) dt 0 ω(t) = ω + t α(t) dt 0 τ = r F and τ = F r W = τ = τd P = dw dt = τ ω L = I 1 ω 1 + I 2 ω = I tot ω K rot = 1 2 I totω 2 τext = I tot α = d L dt τint = 0 U grav = Mgy cm U elas = 1 2 k(x x equilib) 2 E tot,f = E tot,i + W other K f + U grav,f + U elas,f = K i + U grav,i + U elas,i + W other [ F x (x) = du(x)/dx F = U = U x î + U y ĵ + U ˆk ] z Circular motion: s = v tan = ω a tan = α elative velocity: a rad = v2 Constants/Conversions: T = 2π v v A/C = v A/B + v B/C g = 9.80 m/s 2 = ft/s 2 (on Earth s surface) G = N m 2 /kg 2 = m M = kg 1 km = mi 1mi = km 1 ft = m 1 m = ft 1 hr = 3600 s 1 s = hr 1 kg m s 2 = 1 N = lb 1 lb = N 1 J = 1 N m 1 W = 1 J/s 1 rev = 360 = 2π radians 1 hp = W 10 9 nano- n 10 6 micro- µ 10 3 milli- m 10 2 centi- c 10 3 kilo- k 10 6 mega- M 10 9 giga- G Newton s Laws: F = m a FB on A = F A on B w = mgĵ Fspring = k r f s µ s n f k = µ k n Centre-of-mass: Gravity: r cm = m 1 r 1 + m 2 r m n r n m 1 + m m n (and similarly for v and a) F grav = G M 1M U grav = G M 1M 2 12 T = 2πa3/2 GM

11 I = 1 12 ML2 I = 1 3 ML2 I = 1 12 M(a2 + b 2 ) I = 1 3 Ma2 L L b b a a slender rod, axis through centre slender rod, axis through one end rectangular plate, axis through centre thin rectangular plate, axis along edge I = 1 2 M( ) I = 1 2 M2 I = M 2 I = 2 5 M2 I = 2 3 M2 1 2 hollow cylinder solid cylinder thin-walled hollow cylinder solid sphere thin-walled hollow sphere SHM: Waves: For a point-like particle of mass M a distance from the axis of rotation, I = M 2 Parallel axis theorem: I p = I cm + Md 2 standing wave ω = 2πf = 2π/T T pend = 2π L/g = 2π I/mgd T spring = 2π m/k T torsion = 2π I/κ k = 2π/λ v = ±λf v 2 string = F T /µ µ = M/L y(x, t) = A SW sin (kx) sin (ωt) λn = 2L n f n = n v, n=1, 2, 3,... 2L x(t) = A cos (ωt + ) v(t) = ωa sin (ωt + ) a(t) = ω 2 A cos (ωt + ) Damped/forced: x(t) = A cos (ω t)e (b/2m)t ω = k/m b 2 /4m 2 A = F max / (k mωd 2)2 + b 2 ωd 2 [ ( travelling x wave : y(x, t) = A cos 2π λ t )] T = A cos (kx ωt) P = µf T ω 2 A 2 sin 2 (kx ωt), P = 1 µft ω 2 A 2 ( 2 power I(r) = = P ) for 3D sphere surf area at r 4πr2

PHYSICS 218 Exam 3 Fall, 2013

PHYSICS 218 Exam 3 Fall, 2013 PHYSICS 218 Exam 3 Fall, 2013 Wednesday, November 20, 2013 Please read the information on the cover page BUT DO NOT OPEN the exam until instructed to do so! Name: Signature: Student ID: E-mail: Section

More information

PHYSICS 218 Exam 3 Spring, 2014

PHYSICS 218 Exam 3 Spring, 2014 PHYSICS 218 Exam 3 Spring, 2014 Wednesday, April 16, 2014 Please read the information on the cover page BUT DO NOT OPEN the exam until instructed to do so! Name: Signature: Student ID: E-mail: Section

More information

Physics 218 Exam 3 Spring 2010, Sections

Physics 218 Exam 3 Spring 2010, Sections Physics 8 Exam 3 Spring 00, Sections 5-55 Do not fill out the information below until instructed to do so! Name Signature Student ID E-mail Section # Rules of the exam:. You have the full class period

More information

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

Final Exam Spring 2014 May 05, 2014

Final Exam Spring 2014 May 05, 2014 95.141 Final Exam Spring 2014 May 05, 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided.

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

King Fahd University of Petroleum and Minerals Physics Department Physics 101 Recitation Term 131 Fall 013 Quiz # 4 Section 10 A 1.50-kg block slides down a frictionless 30.0 incline, starting from rest.

More information

Quiz Number 4 PHYSICS April 17, 2009

Quiz Number 4 PHYSICS April 17, 2009 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given

More information

Physics Final Exam Formulas

Physics Final Exam Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), Background

More information

Final Exam. June 10, 2008, 1:00pm

Final Exam. June 10, 2008, 1:00pm PHYSICS 101: Fundamentals of Physics Final Exam Final Exam Name TA/ Section # June 10, 2008, 1:00pm Recitation Time You have 2 hour to complete the exam. Please answer all questions clearly and completely,

More information

PHY2053 General Physics I

PHY2053 General Physics I PHY2053 General Physics I Section 584771 Prof. Douglas H. Laurence Final Exam May 3, 2018 Name: 1 Instructions: This final exam is a take home exam. It will be posted online sometime around noon of the

More information

Department of Physics

Department of Physics Department of Physics PHYS101-051 FINAL EXAM Test Code: 100 Tuesday, 4 January 006 in Building 54 Exam Duration: 3 hrs (from 1:30pm to 3:30pm) Name: Student Number: Section Number: Page 1 1. A car starts

More information

Physics Exam 1 Formulas

Physics Exam 1 Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

PHY 141 Midterm 1 Oct 2, 2014 Version A

PHY 141 Midterm 1 Oct 2, 2014 Version A PHY 141 Midterm 1 Oct 2, 2014 Version A Put FULL NAME, ID#, and EXAM VERSION on the front cover of the BLUE BOOKLET! To avoid problems in grading: do all problems in order, write legibly, and show all

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER 2013 EXAMINATIONS PHY 151H1F Duration - 3 hours Attempt all questions. Each question is worth 10 points. Points for each part-question are shown

More information

Physics 8, Fall 2011, equation sheet work in progress

Physics 8, Fall 2011, equation sheet work in progress 1 year 3.16 10 7 s Physics 8, Fall 2011, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic mass unit ) = 1 1.66

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

Physics 218: Exam 2. Sections 501 to 506, 522, 524, and 526. March 8th, You have the full class period to complete the exam.

Physics 218: Exam 2. Sections 501 to 506, 522, 524, and 526. March 8th, You have the full class period to complete the exam. Physics 18: Exam Sections 501 to 506, 5, 54, and 56. March 8th, 013. ules of the exam: 1. You have the full class period to complete the exam.. Formulae are provided on the last page. You may NOT use any

More information

PHYS 111 HOMEWORK #11

PHYS 111 HOMEWORK #11 PHYS 111 HOMEWORK #11 Due date: You have a choice here. You can submit this assignment on Tuesday, December and receive a 0 % bonus, or you can submit this for normal credit on Thursday, 4 December. If

More information

. d. v A v B. e. none of these.

. d. v A v B. e. none of these. General Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibrium Oct. 28, 2009 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show the formulas you use, the essential

More information

Physics 218: Midterm#1

Physics 218: Midterm#1 Physics 218: Midterm#1 February 25 th, 2015 Please read the instructions below, but do not open the exam until told to do so. Rules of the Exam: 1. You have 75 minutes to complete the exam. 2. Formulae

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

PHYSICS 218 Final Exam Fall, 2017

PHYSICS 218 Final Exam Fall, 2017 PHYSICS 18 Final Exam Fall, 017 Last Name: First Name: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly indicate your work to your grader.

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1.

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1. Name Physics 1210 Exam 2 November 8, 2012 Afternoon Section Please write directly on the exam and attach other sheets of work if necessary. Calculators are allowed. No notes or books may be used. Multiple-choice

More information

PHYSICS 218 FINAL EXAM Fall, 2005 Sections

PHYSICS 218 FINAL EXAM Fall, 2005 Sections PHYSICS 218 FINAL EXAM Fall, 2005 Sections 807-809 Name: Signature: Student ID: E-mail: Section Number: You have the full class period to complete the exam. Formulae are provided on the last page. You

More information

PHYSICS 218 Final Exam Fall, 2014

PHYSICS 218 Final Exam Fall, 2014 PHYSICS 18 Final Exam Fall, 014 Name: Signature: E-mail: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly indicate your work to your grader.

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

Physics 218 Exam I *

Physics 218 Exam I * Physics 218 Exam I * Fall 2013 501 533, 558 566, 573 584 Name (printed): Section Number: Signature: Instructor: You may use any type of handheld calculator, however you are not allowed to storeinformationonthecalculatorinadvanceoftheexam.

More information

Dr. Gundersen Phy 205DJ Test 2 22 March 2010

Dr. Gundersen Phy 205DJ Test 2 22 March 2010 Signature: Idnumber: Name: Do only four out of the five problems. The first problem consists of five multiple choice questions. If you do more only your FIRST four answered problems will be graded. Clearly

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Physics I (Navitas) FINAL EXAM Fall 2015

Physics I (Navitas) FINAL EXAM Fall 2015 95.141 Physics I (Navitas) FINAL EXAM Fall 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Queen s University at Kingston. Faculty of Arts and Science. Department of Physics PHYSICS 106. Final Examination.

Queen s University at Kingston. Faculty of Arts and Science. Department of Physics PHYSICS 106. Final Examination. Page 1 of 5 Queen s University at Kingston Faculty of Arts and Science Department of Physics PHYSICS 106 Final Examination April 16th, 2009 Professor: A. B. McLean Time allowed: 3 HOURS Instructions This

More information

Physics 8, Fall 2013, equation sheet work in progress

Physics 8, Fall 2013, equation sheet work in progress (Chapter 1: foundations) 1 year 3.16 10 7 s Physics 8, Fall 2013, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic

More information

Name (please print): UW ID# score last first

Name (please print): UW ID# score last first Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100

More information

PHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm

PHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm PHYSICS 221 SPRING 2017 EXAM 2: March 30, 2017; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # Student ID# INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit

More information

PH1104/PH114S MECHANICS

PH1104/PH114S MECHANICS PH04/PH4S MECHANICS SEMESTER I EXAMINATION 06-07 SOLUTION MULTIPLE-CHOICE QUESTIONS. (B) For freely falling bodies, the equation v = gh holds. v is proportional to h, therefore v v = h h = h h =.. (B).5i

More information

Exam 2. May 21, 2008, 8:00am

Exam 2. May 21, 2008, 8:00am PHYSICS 101: Fundamentals of Physics Exam 2 Exam 2 Name TA/ Section # May 21, 2008, 8:00am Recitation Time You have 1 hour to complete the exam. Please answer all questions clearly and completely, and

More information

Static Equilibrium, Gravitation, Periodic Motion

Static Equilibrium, Gravitation, Periodic Motion This test covers static equilibrium, universal gravitation, and simple harmonic motion, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. 60 A B 10 kg A mass of 10

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

Rotational motion problems

Rotational motion problems Rotational motion problems. (Massive pulley) Masses m and m 2 are connected by a string that runs over a pulley of radius R and moment of inertia I. Find the acceleration of the two masses, as well as

More information

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C 1. Four identical 0.18 kg masses are placed at the corners of a 4.0 x 3.0 m rectangle, and are held there by very light connecting rods which form the sides of the rectangle. What is the moment of inertia

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

FOUNDATION STUDIES EXAMINATIONS September 2009

FOUNDATION STUDIES EXAMINATIONS September 2009 1 FOUNDATION STUDIES EXAINATIONS September 2009 PHYSICS First Paper July Fast Track Time allowed 1.5 hour for writing 10 minutes for reading This paper consists of 4 questions printed on 7 pages. PLEASE

More information

E = K + U. p mv. p i = p f. F dt = p. J t 1. a r = v2. F c = m v2. s = rθ. a t = rα. r 2 dm i. m i r 2 i. I ring = MR 2.

E = K + U. p mv. p i = p f. F dt = p. J t 1. a r = v2. F c = m v2. s = rθ. a t = rα. r 2 dm i. m i r 2 i. I ring = MR 2. v = v i + at x = x i + v i t + 1 2 at2 E = K + U p mv p i = p f L r p = Iω τ r F = rf sin θ v 2 = v 2 i + 2a x F = ma = dp dt = U v dx dt a dv dt = d2 x dt 2 A circle = πr 2 A sphere = 4πr 2 V sphere =

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Physics 6A Winter 2006 FINAL

Physics 6A Winter 2006 FINAL Physics 6A Winter 2006 FINAL The test has 16 multiple choice questions and 3 problems. Scoring: Question 1-16 Problem 1 Problem 2 Problem 3 55 points total 20 points 15 points 10 points Enter the solution

More information

Solution to phys101-t112-final Exam

Solution to phys101-t112-final Exam Solution to phys101-t112-final Exam Q1. An 800-N man stands halfway up a 5.0-m long ladder of negligible weight. The base of the ladder is.0m from the wall as shown in Figure 1. Assuming that the wall-ladder

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2013 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 4 questions printed on 10 pages. PLEASE CHECK

More information

EF 151 Final Exam, Fall, 2011 Page 1 of 11

EF 151 Final Exam, Fall, 2011 Page 1 of 11 EF 5 Final Exam, Fall, 0 Page of Instructions Do not open or turn over the exam until instructed to do so. Name, and section will be written on the st page of the exam after time starts. Do not leave your

More information

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2 PHYS 2211 A, B, & C Final Exam Formulæ & Constants Spring 2017 Unless otherwise directed, drag is to be neglected and all problems take place on Earth, use the gravitational definition of weight, and all

More information

Physics UCSB TR 2:00-3:15 lecture Final Exam Wednesday 3/17/2010

Physics UCSB TR 2:00-3:15 lecture Final Exam Wednesday 3/17/2010 Physics @ UCSB TR :00-3:5 lecture Final Eam Wednesday 3/7/00 Print your last name: Print your first name: Print your perm no.: INSTRUCTIONS: DO NOT START THE EXAM until you are given instructions to do

More information

AP Physics 1: Algebra-Based

AP Physics 1: Algebra-Based 08 AP Physics : Algebra-Based Free-Response Questions 08 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board.

More information

Version A (01) Question. Points

Version A (01) Question. Points Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4

More information

Physics P201 D. Baxter/R. Heinz. EXAM #2 October 18, :00 9:00 PM INSTRUCTIONS

Physics P201 D. Baxter/R. Heinz. EXAM #2 October 18, :00 9:00 PM INSTRUCTIONS Seat # Physics P201 D. Baxter/R. Heinz EXAM #2 October 18, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010 PHYSICS 1, FALL 010 EXAM 1 Solutions WEDNESDAY, SEPTEMBER 9, 010 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In

More information

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for

More information

Classical Mechanics Comprehensive Exam Solution

Classical Mechanics Comprehensive Exam Solution Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Is it possible for a system to have negative potential energy? A)

More information

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2 Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2008

AAPT UNITED STATES PHYSICS TEAM AIP 2008 8 F = ma Exam AAPT UNITED STATES PHYSICS TEAM AIP 8 8 F = ma Contest 5 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = N/kg throughout this contest. You may

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION B Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A boy throws a rock with an initial velocity of 2.15 m/s at 30.0 above

More information

Write your name legibly on the top right hand corner of this paper

Write your name legibly on the top right hand corner of this paper NAME Phys 631 Summer 2007 Quiz 2 Tuesday July 24, 2007 Instructor R. A. Lindgren 9:00 am 12:00 am Write your name legibly on the top right hand corner of this paper No Books or Notes allowed Calculator

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

Physics 53 Summer Final Exam. Solutions

Physics 53 Summer Final Exam. Solutions Final Exam Solutions In questions or problems not requiring numerical answers, express the answers in terms of the symbols given, and standard constants such as g. If numbers are required, use g = 10 m/s

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

Dr. Galeazzi PHY205 Final Exam December 12, I.D. number:

Dr. Galeazzi PHY205 Final Exam December 12, I.D. number: Signature: I.D. number: Name: 1 You must do the first two problems which consists of five multiple choice questions each. Then you must do four of the five long problems numbered 3-7. Clearly cross out

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Essential Physics I. Lecture 9:

Essential Physics I. Lecture 9: Essential Physics I E I Lecture 9: 15-06-15 Last lecture: review Conservation of momentum: p = m v p before = p after m 1 v 1,i + m 2 v 2,i = m 1 v 1,f + m 2 v 2,f m 1 m 1 m 2 m 2 Elastic collision: +

More information

Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam. Figure 1: Question 1 Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at Force System

Get Discount Coupons for your Coaching institute and FREE Study Material at   Force System Get Discount Coupons for your Coaching institute and FEE Study Material at www.pickmycoaching.com Mechanics Force System When a member of forces simultaneously acting on the body, it is known as force

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2 PHY 302 K. Solutions for problem set #9. Textbook problem 7.10: For linear motion at constant acceleration a, average velocity during some time interval from t 1 to t 2 is the average of the velocities

More information

Score on each problem:

Score on each problem: 95.141 Exam 1 Spring 2013 Section Number Section Instructor Name (last name first) Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Practice Problems for Exam 2 Solutions

Practice Problems for Exam 2 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A spring-loaded toy dart gun

More information

161 Spring 2018 Exam 1 Version A Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = =

161 Spring 2018 Exam 1 Version A Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = = 161 Spring 2018 Exam 1 Version A Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = = = 4 = h h = = ± 4 2 = 2 = = 2 1609 m = 1 mi 12 in = 1 ft 60 s = 1 min 1000 g = 1

More information

Problem 1 Problem 2 Problem 3 Problem 4 Total

Problem 1 Problem 2 Problem 3 Problem 4 Total Name Section THE PENNSYLVANIA STATE UNIVERSITY Department of Engineering Science and Mechanics Engineering Mechanics 12 Final Exam May 5, 2003 8:00 9:50 am (110 minutes) Problem 1 Problem 2 Problem 3 Problem

More information

PHY2020 Test 2 November 5, Name:

PHY2020 Test 2 November 5, Name: 1 PHY2020 Test 2 November 5, 2014 Name: sin(30) = 1/2 cos(30) = 3/2 tan(30) = 3/3 sin(60) = 3/2 cos(60) = 1/2 tan(60) = 3 sin(45) = cos(45) = 2/2 tan(45) = 1 sin(37) = cos(53) = 0.6 cos(37) = sin(53) =

More information

PC 1141 : AY 2012 /13

PC 1141 : AY 2012 /13 NUS Physics Society Past Year Paper Solutions PC 1141 : AY 2012 /13 Compiled by: NUS Physics Society Past Year Solution Team Yeo Zhen Yuan Ryan Goh Published on: November 17, 2015 1. An egg of mass 0.050

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2015 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 6 questions printed on 10 pages. PLEASE CHECK

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here.

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here. Physics 07: Lecture 4 Announcements No labs next week, May 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here Today s Agenda ecap: otational dynamics and torque Work and energy with example Many

More information

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2

ω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2 PHYS 2211 M Formulæ & Constants Summer 2017 Unless otherwise directed, drag is to be neglected and all problems take place on Earth, use the gravitational definition of weight, and all springs, ropes and

More information

Physics 1 Second Midterm Exam (AM) 2/25/2010

Physics 1 Second Midterm Exam (AM) 2/25/2010 Physics Second Midterm Eam (AM) /5/00. (This problem is worth 40 points.) A roller coaster car of m travels around a vertical loop of radius R. There is no friction and no air resistance. At the top of

More information

Exam 2 Fall 2013

Exam 2 Fall 2013 95.141 Exam 2 Fall 2013 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all work. Show

More information

Physics 201 Midterm Exam 3

Physics 201 Midterm Exam 3 Name: Date: _ Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above Please write and bubble your Name and Student

More information

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

Description: Using conservation of energy, find the final velocity of a yo yo as it unwinds under the influence of gravity. Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for

More information

a) Calculate the moment of inertia of the half disk about the z-axis. (The moment of inertia of a full disk

a) Calculate the moment of inertia of the half disk about the z-axis. (The moment of inertia of a full disk 4-[5 pts.] A thin uniform half disk having mass m, radius R is in the x-y plane and it can rotate about the z-axis as shown in the figure (z-axis is out of page). Initially, the half disk is positioned

More information

PHYSICS 221 SPRING 2015

PHYSICS 221 SPRING 2015 PHYSICS 221 SPRING 2015 EXAM 2: April 2, 2015 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information