Quiz Number 4 PHYSICS April 17, 2009


 Augustus Armstrong
 11 months ago
 Views:
Transcription
1 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given for wrong answers. Solve each problem on a different sheet of paper. You may write on the back of the problem sheets (please indicate OVER at bottom of the front so that the grader knows to check the back). Solutions to the problems should begin from the following basic physical principles: If r(t) is the position of the object as a function of time than velocity is v(t) = d r dt and acceleration is a(t) = d2 x dt 2. When the acceleration is a constant a then r(t) = r 0 + v 0 t at2. For motion in a circle of radius R, v = Rω, s = Rφ, and the centripetal acceleration is a c = ω 2 R Newton s Laws: F = m a and F 12 = F 21 Common forces include static friction (F µ s F N ), kinetic friction (F = µ k F N ), gravitational force (F = mg), and the spring force (F = kx). Kinetic energy is 1 2 mv2, work is W = R F d x, gravitational potential energy is U g = mgh, and spring potential energy is U s = 1 2 kx2. Rotational physics: K = 1 2 Iω2, τ = Iα = Fr sinθ rf, θ = θ 0 + ω 0 t αt2, L = Iω. Moments of inertia: I = i m i R 2 i. For objects on axes through the center of mass: MR 2 hollow cylinder, 1 2 MR2 solid cylinder, 2 5 MR2 solid sphere, 2 3 MR2 1 hollow sphere, 12 ML 2 thin rod. For parallel axes: I = I c m + Md 2. Show all steps in the derivation of the answers. Make sure you write neatly and orderly. It is YOUR RESPONSIBILITY to make sure that the grader understands your solution. S/he will not give full points if they can not follow the solution, even if the final answer is correct. The acceleration due to gravity on Earth is 9.8 m/s 2. The solutions to the quadratic equation 0 = ax 2 + bx + c are given by x = b± b 2 4ac 2a. You can use a calculator. Page 1
2 Page 2
3 Last name : First name : Student id : TA : Problem 1 (25 points) Because of your physics background, you have been asked to help evaluate the safety preparations for new ethanol factory. Safety requirements stipulate that all fire doors must be able to be closed within 15 seconds of an alarm even without power to the building. The factory has a large loading area which can be closed by a large door 2.5 m high and 4 m wide weighing 2500 kg. You estimate that three loading dock staff could reach the door within 10 seconds, leaving 5 seconds to close the door. You estimate that each staff member can push with a force of 300 N and that they will need 1 m between each of them as they push on the door. The door, which has a moment of inertia of 1/3Mr 2 around its hinges, needs to rotate 120 degrees for it to close completely. Does this arrangement meet the safety requirement if the stafff members position themselves optimally? The torque on the door will be: τ = τ 1 + τ 2 + τ 3 = 4 m 300 N + 3 m 300 N + 2 m 300 N = 2.7 kn m This will generate an angular acceleration by τ = Iα. This torque will allow the door to rotate and we must determine the time for the door to rotate by 120 o. Yes. This design meets the requirement. φ = 1 2 αt2 2φ t = α 2φI = τ 2φMr 2 = 3τ = 4.5 s Page 3
4 Page 4
5 Last name : First name : Student id : TA : Problem 2 (25 points) You have been hired to help set up a tradeshow introduction for a new steamroller. The tradeshow is being held in a hall where the engine cannot be operated, so the artistic designer would like to have the steamroller roll down an incline and then across the stage at a stately 0.5 m/s and finally be stopped by large spring while having the rollers make a last quarterrotation for dramatic effect. The steamroller consists of two thin steel cylinders rollers of radius 80 cm and mass 5000 kg (each) which function as the front and rear tires and a body containing the engine and cab which has a mass of 3000 kg. Your role is to determine the necessary height of the incline and the spring constant of the necessary stopping spring. You decide to neglect any effects of rolling friction in solving the problem the axles on this new steamroller are very well made and the rollers will turn easily. This is an energy problem. As the steamroller crosses the stage, it will have a kinetic energy : K = 1 2 mv Iω2 = 1 2 mv I v2 R 2 I = 2m c R 2 K = 1 2 (m b + 2m c )v 2 + m c v 2 This energy must be provided by the incline: = 1 2 (m b + 4m c )v 2 = 2875 J K = mgh = (m b + 2m c )gh h = 2.25 cm At the end of the process, the full energy will be absorbed by the spring while the wheels make a quarter turn. U s = 1 2 kx2 x = 1 2πR = 1.26 m 4 k = 2K = 3640 N/m x2 Page 5
6 Page 6
7 Multiple Choice Questions (5 points each) Question 1 : A playground merrygoround with a radius of 2.0 m and a rotational inertia of 100 kgm 2 is rotating at 3.0 rad/s. A child with a mass of 22 kg jumps onto the edge of the merrygoround, traveling radially inward. What is the new angular speed of the merrygoround? A) 1.6 rad/s B) 1.2 rad/s C) 2.4 rad/s D) 2.0 rad/s E) 3.4 rad/s The correct answer is A. Question 2 : A 620g object traveling at 2.1 m/s collides headon with a 320g object traveling in the opposite direction at 3.8 m/s. If the collision is perfectly elastic, what is the change in the kinetic energy of the 620g object? A) It gains 0.69 J. B) It loses 0.23 J. C) It loses 0.47 J. D) It loses 1.4 J. E) The energy of the object is unchanged. The correct answer is B. Question 3 : A car is traveling at 20.0 m/s on tires with a diameter of 70.0 cm. The car slows to a rest after traveling for a half a minute. If the tires rolled without slipping, what was the magnitude of the average angular acceleration of the tires during the time the car slowed to a rest? A) rad/s 2 B) 1.33 rad/s 2 C) rad/s 2 D) 1.67 rad/s 2 E) 1.90 rad/s 2 The correct answer is E. Page 7 (OVER)
8 Question 4 : A spherical water droplet of radius cm is spinning uniformly with an angular velocity (10.0 rad/sˆk). A second spherical water droplet of radius cm is spinning uniformly with angular velocity (20.0 rad/sî). The two water droplets collide and form a new spherical water droplet. If the new droplet spins uniformly, what is its angular velocity? A) (0.818 rad/s)î + (6.67 rad/s)ˆk B) (0.514 rad/s)î + (8.22 rad/s)ˆk C) (0.441 rad/s)î + (9.81 rad/s)ˆk D) (0.725 rad/s)î + (7.92 rad/s)ˆk E) (0.697 rad/s)î + (7.51 rad/s)ˆk The correct answer is B. Question 5 : A 2.00m rod of negligible mass connects two small objects. The mass of one object is 1.00 kg and the mass of the other is unknown. The center of mass of this system is on the rod a distance 1.60 m from the 1.00kg mass object. What is the mass of the other object? A) 4.11 kg B) 3.22 kg C) 4.00 kg D) kg E) kg The correct answer is C. Page 8
Exam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationPhysics 106 Common Exam 2: March 5, 2004
Physics 106 Common Exam 2: March 5, 2004 Signature Name (Print): 4 Digit ID: Section: Instructions: nswer all questions. Questions 1 through 10 are multiple choice questions worth 5 points each. You may
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003
FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is
More informationTranslational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work
Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationRotational Motion Test
Rotational Motion Test Multiple Choice: Write the letter that best answers the question. Each question is worth 2pts. 1. Angular momentum is: A.) The sum of moment of inertia and angular velocity B.) The
More information4) Vector = and vector = What is vector = +? A) B) C) D) E)
1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In
More informationLecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli
Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is
More informationSlide 1 / 37. Rotational Motion
Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.
More informationTO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK.
Signature: I.D. number: Name: 1 You must do the first problem which consists of five multiple choice questions. Then you must do three of the four long problems numbered 25. Clearly cross out the page
More informationChapter 8. Rotational Motion
Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy
More informationAfternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1.
Name Physics 1210 Exam 2 November 8, 2012 Afternoon Section Please write directly on the exam and attach other sheets of work if necessary. Calculators are allowed. No notes or books may be used. Multiplechoice
More informationP211 Spring 2004 Form A
1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More informationPhysics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating
Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N
More informationFall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton
Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton 3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.
More informationAdvanced Higher Physics. Rotational motion
Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More informationSCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2012/2013 XE121. ENGINEERING CONCEPTS (Test)
s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER EXAMINATIONS 202/203 XE2 ENGINEERING CONCEPTS (Test) Time allowed: TWO hours Answer: Attempt FOUR questions only, a maximum of TWO questions
More informationPractice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.
Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During
More informationAAPT UNITED STATES PHYSICS TEAM AIP 2016
216 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 216 216 F = ma Contest 25 QUESTIONS  75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 1 N/kg throughout this contest.
More informationTO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK.
Signature: I.D. number: Name: 1 You must do the first problem which consists of five multiple choice questions. Then you must do three of the four long problems numbered 25. Clearly cross out the page
More informationUNIVERSITY OF TORONTO Faculty of Arts and Science
UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER 2013 EXAMINATIONS PHY 151H1F Duration  3 hours Attempt all questions. Each question is worth 10 points. Points for each partquestion are shown
More informationVersion A (01) Question. Points
Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4
More information1.1. Rotational Kinematics Description Of Motion Of A Rotating Body
PHY 19 PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description
More information= 2 5 MR2. I sphere = MR 2. I hoop = 1 2 MR2. I disk
A sphere (green), a disk (blue), and a hoop (red0, each with mass M and radius R, all start from rest at the top of an inclined plane and roll to the bottom. Which object reaches the bottom first? (Use
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationPh1a: Solution to the Final Exam Alejandro Jenkins, Fall 2004
Ph1a: Solution to the Final Exam Alejandro Jenkins, Fall 2004 Problem 1 (10 points)  The Delivery A crate of mass M, which contains an expensive piece of scientific equipment, is being delivered to Caltech.
More informationPhys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationChapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.
Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 101 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 101 Angular Position, Velocity,
More informationPES Physics 1 Practice Questions Exam 2. Name: Score: /...
Practice Questions Exam /page PES 0 003  Physics Practice Questions Exam Name: Score: /... Instructions Time allowed for this is exam is hour 5 minutes... multiple choice (... points)... written problems
More informationPhysics 2210 Homework 18 Spring 2015
Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle
More informationDynamics of Rotational Motion: Rotational Inertia
Connexions module: m42179 1 Dynamics of Rotational Motion: Rotational Inertia OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License
More informationSYSTEM OF PARTICLES AND ROTATIONAL MOTION
Chapter Seven SYSTEM OF PARTICLES AND ROTATIONAL MOTION MCQ I 7.1 For which of the following does the centre of mass lie outside the body? (a) A pencil (b) A shotput (c) A dice (d) A bangle 7. Which of
More informationRotational Motion. Rotational Motion. Rotational Motion
I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =
More informationChapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.
Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra
More informationMoment of Inertia: Rotational Energy
Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Moment of Inertia: Rotational Energy Name Partners PreLab You are required to finish this section before coming to the lab; it will
More informationChap. 10: Rotational Motion
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N
More informationPractice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010
Practice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label freebody diagrams showing the forces
More informationTranslational Motion Rotational Motion Equations Sheet
PHYSICS 01 Translational Motion Rotational Motion Equations Sheet LINEAR ANGULAR Time t t Displacement x; (x = rθ) θ Velocity v = Δx/Δt; (v = rω) ω = Δθ/Δt Acceleration a = Δv/Δt; (a = rα) α = Δω/Δt (
More informationAngular Speed and Angular Acceleration Relations between Angular and Linear Quantities
Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationEXAMPLE 2: CLASSICAL MECHANICS: Worked examples. b) Position and velocity as integrals. Michaelmas Term Lectures Prof M.
CLASSICAL MECHANICS: Worked examples Michaelmas Term 2006 4 Lectures Prof M. Brouard EXAMPLE 2: b) Position and velocity as integrals Calculate the position of a particle given its time dependent acceleration:
More informationInstructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 3, 120 minutes December 12, 2009
77777 77777 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 3, 120 minutes December 12, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized
More informationPS 11 GeneralPhysics I for the Life Sciences
PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4 Questions and Problems
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationt = g = 10 m/s 2 = 2 s T = 2π g
Annotated Answers to the 1984 AP Physics C Mechanics Multiple Choice 1. D. Torque is the rotational analogue of force; F net = ma corresponds to τ net = Iα. 2. C. The horizontal speed does not affect the
More informationPractice Problems for Exam 2 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A springloaded toy dart gun
More informationName Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?
NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass
More information1 Forces. 2 Energy & Work. GS 104, Exam II Review
1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who
More informationPhysics 1401V October 28, 2016 Prof. James Kakalios Quiz No. 2
This is a closed book, closed notes, quiz. Only simple (nonprogrammable, nongraphing) calculators are permitted. Define all symbols and justify all mathematical expressions used. Make sure to state all
More informationUniform Circular Motion:Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant.
Circular Motion: Uniform Circular Motion:Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Angular Displacement: Scalar form:?s = r?θ Vector
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationWork and kinetic Energy
Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More informationConcepTest PowerPoints
ConcepTest PowerPoints Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for
More informationPractice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationExam 2PHYS 101Fall 2009
ame: Class: Date: Exam 2PHYS 101Fall 2009 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this figure of a roller coaster: At which of these
More informationCircular motion, Center of Gravity, and Rotational Mechanics
Circular motion, Center of Gravity, and Rotational Mechanics Rotation and Revolution Every object moving in a circle turns around an axis. If the axis is internal to the object (inside) then it is called
More informationPhys 270 Final Exam. Figure 1: Question 1
Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating
More informationPreparing for Six Flags Physics Concepts
Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given
More informationPhysics 218 Exam III
Physics 218 Exam III Fall 2017 (all sections) November 15 th, 2017 Please fill out the information and read the instructions below, but do not open the exam until told to do so. Rules of the exam: 1. You
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 3035,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor
More informationPhysics 4A Solutions to Chapter 11 Homework
Physics 4A Solutions to Chapter 11 Homework Chapter 11 Questions:, 8, 10 Exercises & Problems: 1, 14, 4, 7, 37, 53, 66, 81, 83 Answers to Questions: Q 11 (a) 5 and 6 (b) 1 and 4 tie, then the rest tie
More informationPhysics Fall 2006 Laboratory 5: Rotational Dynamics
1 of 7 Physics 2010  Fall 2006 Laboratory 5: Rotational Dynamics NAME Section Day (circle): M Tu W Th F Section Time: 8a 10a 12p 2p 4p TA Name: This lab will cover the concepts of moment of inertia and
More informationA uniform rod of length L and Mass M is attached at one end to a frictionless pivot. If the rod is released from rest from the horizontal position,
A dentist s drill starts from rest. After 3.20 s of constant angular acceleration, it turns at a rate of 2.51 10 4 rev/min. (a) Find the drill s angular acceleration. (b) Determine the angle (in radians)
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationTest Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:
Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 4 Newton s Three Laws, Free Body Diagrams, Friction Chapter 5 (except
More informationMomentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics
Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum
More informationFriction is always opposite to the direction of motion.
6. Forces and MotionII Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:
More informationCircular Motion and Universal Law of Gravitation. 8.01t Oct 4, 2004
Circular Motion and Universal Law of Gravitation 8.01t Oct 4, 2004 Summary: Circular Motion arc length s= Rθ tangential velocity ds v = = dt dθ R = Rω dt 2 d θ 2 dt tangential acceleration a θ = dv θ =
More informationAAPT UNITED STATES PHYSICS TEAM AIP 2008
8 F = ma Exam AAPT UNITED STATES PHYSICS TEAM AIP 8 8 F = ma Contest 5 QUESTIONS  75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = N/kg throughout this contest. You may
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More informationRevolve, Rotate & Roll:
I. WarmUP. Revolve, Rotate & Roll: Physics 203, Yaverbaum John Jay College of Criminal Justice, the CUNY Given g, the rate of freefall acceleration near Earth s surface, and r, the radius of a VERTICAL
More information= y(x, t) =A cos (!t + kx)
A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8
More informationMultiple Choice  TEST III
Multiple Choice Test IIIClassical Mechanics Multiple Choice  TEST III 1) n atomic particle whose mass is 210 atomic mass units collides with a stationary atomic particle B whose mass is 12 atomic mass
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationPRACTICE TEST for Midterm Exam
South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos
More informationExercise Torque Magnitude Ranking Task. Part A
Exercise 10.2 Calculate the net torque about point O for the two forces applied as in the figure. The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise. τ 28.0
More informationGeneral Physics (PHY 2130)
General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:
More information= constant of gravitation is G = N m 2 kg 2. Your goal is to find the radius of the orbit of a geostationary satellite.
Problem 1 Earth and a Geostationary Satellite (10 points) The earth is spinning about its axis with a period of 3 hours 56 minutes and 4 seconds. The equatorial radius of the earth is 6.38 10 6 m. The
More informationPhysics 23 Exam 3 April 2, 2009
1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)
More informationDynamics Review Checklist
Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)
More informationPage 1. Chapters 2, 3 (linear) 9 (rotational) Final Exam: Wednesday, May 11, 10:05 am  12:05 pm, BASCOM 272
Final Exam: Wednesday, May 11, 10:05 am  12:05 pm, BASCOM 272 The exam will cover chapters 1 14 The exam will have about 30 multiple choice questions Consultations hours the same as before. Another review
More informationThe Arctic is Melting
The Arctic is Melting 1 Arctic sea has shown a large drop in area over the last thirty years. Japanese and US satellite data Jerry Gilfoyle The Arctic and the Length of Day 1 / 42 The Arctic is Melting
More informationChapter 12. Rotation of a Rigid Body
Chapter 12. Rotation of a Rigid Body Not all motion can be described as that of a particle. Rotation requires the idea of an extended object. This diver is moving toward the water along a parabolic trajectory,
More information61. Conservation law of mechanical energy
61. Conservation law of mechanical energy 1. Purpose Investigate the mechanical energy conservation law and energy loss, by studying the kinetic and rotational energy of a marble wheel that is moving
More informationFIGURE 2. Total Acceleration The direction of the total acceleration of a rotating object can be found using the inverse tangent function.
Take it Further Demonstration Versus Angular Speed Purpose Show that tangential speed depends on radius. Materials two tennis balls attached to different lengths of string (approx. 1.0 m and 1.5 m) Procedure
More informationPhysics 2210 Fall 2011 David Ailion EXAM 4
Dd Physics 2210 Fall 2011 David Ailion EXAM 4 PLEASE FILL IN THE INFORMATION BELOW: Name (printed): Name (signed): Student ID Number (unid): u Discussion Instructor: Marc Lindley Jon Paul Lundquist Peter
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 November 2, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam Section 1 Version 1 November, 005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
More informationUNIVERSITY OF TORONTO Faculty of Arts and Science
UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER 2016 EXAMINATIONS PHY 151H1F Duration  3 hours Attempt all 10 questions. All questions are worth 5 points. Write your name and student number
More informationBumper Cars. Question
Bumper Cars 1 You are riding on the edge of a spinning playground merrygoround. If you pull yourself to the center of the merrygoround, what will happen to its rotation? A. It will spin faster. B. It
More informationRotation Work and Power of Rotation Rolling Motion Examples and Review
Rotation Work and Power of Rotation Rolling Motion Examples and Review Lana Sheridan De Anza College Nov 22, 2017 Last time applications of moments of inertia Atwood machine with massive pulley kinetic
More informationDynamics II Motion in a Plane. Review Problems
Dynamics II Motion in a Plane Review Problems Problem 1 A 500 g model rocket is on a cart that is rolling to the right at a speed of 3.0 m/s. The rocket engine, when it is fired, exerts an 8.0 N thrust
More informationRotational & RigidBody Mechanics. Lectures 3+4
Rotational & RigidBody Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion  Definitions
More information