x 1 To help us here we invoke MacLaurin, 1 + t = 1 + t/2 + O(t 2 ) for small t, and write

Size: px
Start display at page:

Download "x 1 To help us here we invoke MacLaurin, 1 + t = 1 + t/2 + O(t 2 ) for small t, and write"

Transcription

1 On the Deormation o an Elastic Fiber We consider the case illustrated in Figure. The bold solid line is a iber in its reerence state. When we subject its two ends to the two orces, (, ) and (, ) the respective ends are displaced by (, ) and (, ). Figure. The reerence (solid) and deormed (dashed) iber. Our goal is to build a theory that predicts rom knowledge o. The irst step is to quantiy the associated elongation, e l L, where L is the undeormed length and l is the deormed length. With respect to Figure, we suppose that the lower let node o the undeormed iber sits at (0, 0) in the Cartesian plane, while its upper right node resides at (L cos, L sin ). Following Euclid, we write l = (L cos + ) + (L sin + ) = L + L{( ) cos + ( ) sin} + ( ) + ( ) = L + {( ) cos + ( ) sin}/l + {( ) + ( ) }/L. To help us here we invoke MacLaurin, + t = + t/ + O(t ) or small t, and write l = L + ( ) cos + ( ) sin + O(( j j+ ) /L). Hence, assuming that ( j j+ ) is small (or both j = and ) compared with L, we ind e ( ) cos + ( ) sin. () In the uture we shall write = instead o. It will be understood that we are working under the hypothesis that the end displacements are small in comparison to the undeormed length.

2 We assume that our iber is Hookean, in the sense that its restoring orce, y, is proportional to its elongation. More precisely, we presume that y = Ea L e () where E denotes the iber s Young s modulus, a denotes its cross sectional area, and L denotes its reerence length. This y, positive when the bar is stretched and negative when compressed, acts along the reerence direction,, in balance with the applied load. More precisely, at the lower node and at the upper node y cos + = 0 and y sin + = 0 () y cos(π + ) + = 0 and y sin(π + ) + = 0 or y cos() + = 0 and y sin() + = 0 () Finally, we need only substitute our epression or y in terms o e and e in terms o and recognize that the equations in () and () (hopeully) determine rom. More precisely, with k Ea/L, we ind k{( ) cos + ( ) sin} cos = k{( ) cos + ( ) sin} sin = k{( ) cos + ( ) sin} cos = k{( ) cos + ( ) sin} sin = Let us consider a ew concrete eamples. I k =, = 0, = = 0 and = the above system o our equations delates to = which indeed determines and up to an arbitrary rigid motion, stemming rom the act that our iber is a loater.

3 We nail things to a oundation and add a iber. Figure. We irst compute the two elongations e = cos( ) + sin( ) e = cos( ) + sin( ) we suppose the ibers have stinesses k and k and so y = k e y = k e while orce balance at the only ree node yields y cos( ) y cos( ) + = 0 y sin( ) y sin( ) + = 0 Assuming = π/ and = π/, we ind e = ( + )/ e = ( )/ and (y y )/ = (y + y )/ = and so must obey (k + k ) / + (k k ) / = (k k ) / + (k + k ) / = In the case o bars o equal stiness we ind the simple answer that = /k and = /k.

4 For unequal stinesses we must solve our linear equations simultaneously. Matlab knows Gaussian Elimination. We are interested in understanding big nets (say m ibers meeting at n joints) and so we step back and realize that our model was constructed in three easy pieces. [] The iber elongations are linear combinations o their end displacements, e = A, where A is m-by-n, is called the node-edge adjacency matri, and encodes the geometry o the iber net. [] Each iber restoring orce is proportional to its elongation, y = Ke, where K is m-by-m and diagonal and encodes the physics o the iber net. [] The restoring orces balance the applied orces at each node, A T y = where A T is the transpose (echange rows or columns) o A. When these steps are combined, we arrive at the linear system A T KA =. For the net o Figure, we have cos sin A = cos sin k 0 K = 0 k A T cos cos = sin sin Please return to the course page or eample demo code. And then continue here with a bigger eample.

5 We now build the adjacency matri or the net below Figure. We have numbered the 7 ibers and the nodes. We shall adopt the convention that the horizontal and vertical displacements o node j are j and j respectively. With the iber angles, = = 7 = π/, = 5 = π/, and = 6 = 0, the associated elongations are e = e = ( + )/ e = e = e 5 = ( )/ e 6 = 5 e 7 = 6. which we translate, row, i.e., one iber, at a time s s A = s s s = / Please return to the lecture page or the associated static and dynamic demo code. 5

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

More information

PHYS 1441 Section 002 Lecture #23

PHYS 1441 Section 002 Lecture #23 PHYS 1441 Section 002 Lecture #23 Monday, April 29, 2013 Conditions for Equilibrium Elastic Properties of Solids Young s Modulus Bulk Modulus Density and Specific Gravity luid and Pressure Today s homework

More information

two structural analysis (statics & mechanics) Structural Requirements Structure Requirements Structure Requirements serviceability efficiency

two structural analysis (statics & mechanics) Structural Requirements Structure Requirements Structure Requirements serviceability efficiency LIED RCHITECTURL STRUCTURES: STRUCTURL NLYSIS ND SYSTEMS DR. NNE NICHOLS SRING 018 lecture two structural analysis (statics & mechanics) nalysis 1 pplied rchitectural Structures 009abn Structural Requirements

More information

CAAM 335 Matrix Analysis Planar Trusses

CAAM 335 Matrix Analysis Planar Trusses CAAM 5 Matrix Analysis Planar Trusses September 1, 010 1 The Equations for the Truss We consider trusses with m bars and n nodes. Each node can be displaced in horizontal and vertical direction. If the

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 06 In the last lecture, we have seen a boundary value problem, using the formal

More information

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

More information

Lecture 8: Flexibility Method. Example

Lecture 8: Flexibility Method. Example ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

More information

Static Equilibrium. University of Arizona J. H. Burge

Static Equilibrium. University of Arizona J. H. Burge Static Equilibrium Static Equilibrium Definition: When forces acting on an object which is at rest are balanced, then the object is in a state of static equilibrium. - No translations - No rotations In

More information

Introduction to Simulation - Lecture 2. Equation Formulation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Introduction to Simulation - Lecture 2. Equation Formulation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introduction to Simulation - Lecture Equation Formulation Methods Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Formulating Equations rom Schematics Struts and Joints

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich

LECTURE 9 FRICTION & SPRINGS. Instructor: Kazumi Tolich LECTURE 9 FRICTION & SPRINGS Instructor: Kazumi Tolich Lecture 9 2 Reading chapter 6-1 to 6-2 Friction n Static friction n Kinetic friction Springs Static friction 3 Static friction is the frictional force

More information

2/28/2006 Statics ( F.Robilliard) 1

2/28/2006 Statics ( F.Robilliard) 1 2/28/2006 Statics (.Robilliard) 1 Extended Bodies: In our discussion so far, we have considered essentially only point masses, under the action of forces. We now broaden our considerations to extended

More information

dw 2 3(w) x 4 x 4 =L x 3 x 1 =0 x 2 El #1 El #2 El #3 Potential energy of element 3: Total potential energy Potential energy of element 1:

dw 2 3(w) x 4 x 4 =L x 3 x 1 =0 x 2 El #1 El #2 El #3 Potential energy of element 3: Total potential energy Potential energy of element 1: MAE 44 & CIV 44 Introduction to Finite Elements Reading assignment: ecture notes, ogan. Summary: Pro. Suvranu De Finite element ormulation or D elasticity using the Rayleigh-Ritz Principle Stiness matri

More information

Chapter 12 Static Equilibrium; Elasticity and Fracture

Chapter 12 Static Equilibrium; Elasticity and Fracture 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 4.3 Lecture - 24 Matrix Analysis of Structures with Axial Elements (Refer

More information

Design criteria for Fiber Reinforced Rubber Bearings

Design criteria for Fiber Reinforced Rubber Bearings Design criteria or Fiber Reinorced Rubber Bearings J. M. Kelly Earthquake Engineering Research Center University o Caliornia, Berkeley A. Calabrese & G. Serino Department o Structural Engineering University

More information

GLY Geomorphology Notes

GLY Geomorphology Notes GLY 5705 - Geomorphology Notes Dr. Peter N. Adams Revised: Sept. 2012 10 Flexure of the Lithosphere Associated Readings: Anderson and Anderson (2010), pp. 86-92 Here we ask the question: What is the response

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

6.1 The Linear Elastic Model

6.1 The Linear Elastic Model Linear lasticit The simplest constitutive law or solid materials is the linear elastic law, which assumes a linear relationship between stress and engineering strain. This assumption turns out to be an

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 13

ENGR-1100 Introduction to Engineering Analysis. Lecture 13 ENGR-1100 Introduction to Engineering Analysis Lecture 13 EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Today s Objectives: Students will be able to: a) Identify support reactions, and, b) Draw a free-body

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 6.2 Lecture - 34 Matrix Analysis of Plane and Space Frames Good morning.

More information

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer PC11 Fundamentals o Physics I Lectures 13 and 14 Energy and Energy Transer A/Pro Tay Seng Chuan 1 Ground Rules Switch o your handphone and pager Switch o your laptop computer and keep it No talking while

More information

Chapter 2 Examples of Optimization of Discrete Parameter Systems

Chapter 2 Examples of Optimization of Discrete Parameter Systems Chapter Examples of Optimization of Discrete Parameter Systems The following chapter gives some examples of the general optimization problem (SO) introduced in the previous chapter. They all concern the

More information

Development of Truss Equations

Development of Truss Equations CIVL 7/87 Chapter 3 - Truss Equations - Part /53 Chapter 3a Development of Truss Equations Learning Objectives To derive the stiffness matri for a bar element. To illustrate how to solve a bar assemblage

More information

3D problem: Fx Fy Fz. Forces act parallel to the members (2 5 ) / 29 (2 5 ) / 29

3D problem: Fx Fy Fz. Forces act parallel to the members (2 5 ) / 29 (2 5 ) / 29 problem: x y z 0 t each joint a a a a 5a j i W k y z x x y z Equations:S x =S y =S z =0 at each joint () Unknowns: Total of : Member forces,,, () Reactions : x, y, z, x, y, z, x, y, z (9) y z x W orces

More information

Solutions for Homework #8. Landing gear

Solutions for Homework #8. Landing gear Solutions or Homewor #8 PROBEM. (P. 9 on page 78 in the note) An airplane is modeled as a beam with masses as shown below: m m m m π [rad/sec] anding gear m m.5 Find the stiness and mass matrices. Find

More information

Fig. 1. Loading of load-carrying rib

Fig. 1. Loading of load-carrying rib Plan: 1. Calculation o load-carrying ribs. Standard (normal) ribs calculation 3. Frames calculation. Lecture # 5(13). Frames and ribs strength analysis. 1. Calculation o load-carrying ribs On load-carrying

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. In-Class

More information

Introduction to Finite Element Analysis Using Pro/MECHANICA Wildfire 5.0

Introduction to Finite Element Analysis Using Pro/MECHANICA Wildfire 5.0 Introduction to Finite Element Analysis Using Pro/MECHANICA Wildfire 5.0 Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS Schroff Development Corporation www.schroff.com Better Textbooks.

More information

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural

More information

Beams on elastic foundation

Beams on elastic foundation Beams on elastic foundation I Basic concepts The beam lies on elastic foundation when under the applied eternal loads, the reaction forces of the foundation are proportional at every point to the deflection

More information

1 HOMOGENEOUS TRANSFORMATIONS

1 HOMOGENEOUS TRANSFORMATIONS HOMOGENEOUS TRANSFORMATIONS Purpose: The purpose of this chapter is to introduce ou to the Homogeneous Transformation. This simple 4 4 transformation is used in the geometr engines of CAD sstems and in

More information

CHAPTER 2: EQUILIBRIUM OF RIGID BODIES

CHAPTER 2: EQUILIBRIUM OF RIGID BODIES For a rigid body to be in equilibrium, the net force as well as the net moment about any arbitrary point O must be zero Summation of all external forces. Equilibrium: Sum of moments of all external forces.

More information

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

More information

2: Distributions of Several Variables, Error Propagation

2: Distributions of Several Variables, Error Propagation : Distributions of Several Variables, Error Propagation Distribution of several variables. variables The joint probabilit distribution function of two variables and can be genericall written f(, with the

More information

two forces and moments Structural Math Physics for Structures Structural Math

two forces and moments Structural Math Physics for Structures Structural Math RHITETURL STRUTURES: ORM, EHVIOR, ND DESIGN DR. NNE NIHOLS SUMMER 05 lecture two forces and moments orces & Moments rchitectural Structures 009abn Structural Math quantify environmental loads how big is

More information

Energy Considerations

Energy Considerations Physics 42200 Waves & Oscillations Lecture 4 French, Chapter 3 Spring 2016 Semester Matthew Jones Energy Considerations The force in Hooke s law is = Potential energy can be used to describe conservative

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer PC1221 Fundamentals o Physics I Lectures 13 and 14 Energy and Energy Transer Dr Tay Seng Chuan 1 Ground Rules Switch o your handphone and pager Switch o your laptop computer and keep it No talking while

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5.

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5. Phys101 Lectures 19,20 Statics Key points: The Conditions for static equilibrium Solving statics problems Stress and strain Ref: 9-1,2,3,4,5. Page 1 The Conditions for Static Equilibrium An object in static

More information

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES EWTOS LAWS O OTIO AD RICTIOS STRAIGHT LIES ITRODUCTIO In this chapter, we shall study the motion o bodies along with the causes o their motion assuming that mass is constant. In addition, we are going

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and b) Recognize two-force members. In-Class

More information

MITOCW MITRES2_002S10nonlinear_lec15_300k-mp4

MITOCW MITRES2_002S10nonlinear_lec15_300k-mp4 MITOCW MITRES2_002S10nonlinear_lec15_300k-mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

More information

Manufacturing Remaining Stresses in Truck Frame Rail's Fatigue Life Prediction

Manufacturing Remaining Stresses in Truck Frame Rail's Fatigue Life Prediction Manuacturing Remaining Stresses in Truck Frame Rail's Fatigue Lie Prediction Claudiomar C. Cunha & Carlos A. N. Dias MSX International & Department o Naval Engineering EPUSP/USP/Brazil Department o Mechanical

More information

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar NDT&E International 33 (2000) 401 407 www.elsevier.com/locate/ndteint On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar T.-T. Wu*, J.-H. Sun, J.-H.

More information

PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES. 1º Máster Ingeniería de Caminos. E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016

PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES. 1º Máster Ingeniería de Caminos. E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016 PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES 1º Máster Ingeniería de Caminos E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016 AUTHOR: CONTENT 1. INTRODUCTION... 3 2. BRIDGE GEOMETRY AND MATERIAL...

More information

PHYS120 Lecture 19 - Friction 19-1

PHYS120 Lecture 19 - Friction 19-1 PHYS120 Lecture 19 - riction 19-1 Demonstrations: blocks on planes, scales, to ind coeicients o static and kinetic riction Text: ishbane 5-1, 5-2 Problems: 18, 21, 28, 30, 34 rom Ch. 5 What s important:

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

MITOCW MITRES2_002S10linear_lec07_300k-mp4

MITOCW MITRES2_002S10linear_lec07_300k-mp4 MITOCW MITRES2_002S10linear_lec07_300k-mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Buckling of Double-walled Carbon Nanotubes

Buckling of Double-walled Carbon Nanotubes Buckling o Double-walled Carbon anotubes Y. H. Teo Engineering Science Programme ational University o Singapore Kent idge Singapore 960 Abstract This paper is concerned with the buckling o double-walled

More information

Parametric study on the transverse and longitudinal moments of trough type folded plate roofs using ANSYS

Parametric study on the transverse and longitudinal moments of trough type folded plate roofs using ANSYS American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-4 pp-22-28 www.ajer.org Research Paper Open Access Parametric study on the transverse and longitudinal moments

More information

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium:

4/14/11. Chapter 12 Static equilibrium and Elasticity Lecture 2. Condition for static equilibrium. Stability An object is in equilibrium: About Midterm Exam 3 When and where Thurs April 21 th, 5:45-7:00 pm Rooms: Same as Exam I and II, See course webpage. Your TA will give a brief review during the discussion session. Coverage: Chapts 9

More information

F = m a. t 2. stress = k(x) strain

F = m a. t 2. stress = k(x) strain The Wave Equation Consider a bar made of an elastic material. The bar hangs down vertically from an attachment point = and can vibrate vertically but not horizontally. Since chapter 5 is the chapter on

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

Chapter 4-b Axially Loaded Members

Chapter 4-b Axially Loaded Members CIVL 222 STRENGTH OF MATERIALS Chapter 4-b Axially Loaded Members AXIAL LOADED MEMBERS Today s Objectives: Students will be able to: a) Determine the elastic deformation of axially loaded member b) Apply

More information

Advanced Higher Grade

Advanced Higher Grade Prelim Eamination / 5 (Assessing Units & ) MATHEMATICS Advanced Higher Grade Time allowed - hours Read Carefully. Full credit will be given only where the solution contains appropriate woring.. Calculators

More information

Lecture 20: Isoparametric Formulations.

Lecture 20: Isoparametric Formulations. Chapter #0 Isoparametric Formulation. Isoparametric formulations help us solve two problems. Help simplify the definition of the approimate displacement field for more comple planar elements (4-sided elements,

More information

Due Monday, September 14 th, 12:00 midnight

Due Monday, September 14 th, 12:00 midnight Due Monday, September 14 th, 1: midnight This homework is considering the analysis of plane and space (3D) trusses as discussed in class. A list of MatLab programs that were discussed in class is provided

More information

LAB 9: EQUILIBRIUM OF NON-PARALLEL FORCES

LAB 9: EQUILIBRIUM OF NON-PARALLEL FORCES Name Date artners LAB 9: EQUILIBRIUM O NON-ARALLEL ORCES 145 OBJECTIVES OVERVIEW To study the components of forces To examine forces in static equilibrium To examine torques To study the conditions for

More information

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

four mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS EEMENTS OF RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SRING 2016 Mechanics o Materials MECHNICS MTERIS lecture our mechanics o materials www.carttalk.com Mechanics o Materials 1 S2009abn

More information

Elimination Method Streamlined

Elimination Method Streamlined Elimination Method Streamlined There is a more streamlined version of elimination method where we do not have to write all of the steps in such an elaborate way. We use matrices. The system of n equations

More information

Lecture Presentation Chapter 8 Equilibrium and Elasticity

Lecture Presentation Chapter 8 Equilibrium and Elasticity Lecture Presentation Chapter 8 Equilibrium and Elasticity Suggested Videos for Chapter 8 Prelecture Videos Static Equilibrium Elasticity Video Tutor Solutions Equilibrium and Elasticity Class Videos Center

More information

Methods of Analysis. Force or Flexibility Method

Methods of Analysis. Force or Flexibility Method INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

More information

Computer Graphics: 2D Transformations. Course Website:

Computer Graphics: 2D Transformations. Course Website: Computer Graphics: D Transformations Course Website: http://www.comp.dit.ie/bmacnamee 5 Contents Wh transformations Transformations Translation Scaling Rotation Homogeneous coordinates Matri multiplications

More information

Probabilistic Analysis of Multi-layered Soil Effects on Shallow Foundation Settlement

Probabilistic Analysis of Multi-layered Soil Effects on Shallow Foundation Settlement Probabilistic Analysis o Multi-layered Soil ects on Shallow Foundation Settlement 54 Y L Kuo B Postgraduate Student, School o Civil and nvironmental ngineering, University o Adelaide, Australia M B Jaksa

More information

Multimedia : Podcast : Sacrificial Bonds in Biological Materials; Fantner, et al. Biophys. J , 1411

Multimedia : Podcast : Sacrificial Bonds in Biological Materials; Fantner, et al. Biophys. J , 1411 3.52 Nanomechanics o Materials and Biomaterials Tuesday 5/1/7 Pro. C. Ortiz, MIT-DMSE I LECTURE 2: THEORETICAL ASPECTS O SINGLE MOLECULE ORCE SPECTROSCOPY 2 : EXTENSIBILITY AND THE WORM LIKE CHAIN (WLC)

More information

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M.

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Elasticity A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Lepore Elasticity Photo Vol. 10 PhotoDisk/Getty BUNGEE jumping utilizes

More information

Computational Stiffness Method

Computational Stiffness Method Computational Stiffness Method Hand calculations are central in the classical stiffness method. In that approach, the stiffness matrix is established column-by-column by setting the degrees of freedom

More information

Functions 3: Compositions of Functions

Functions 3: Compositions of Functions Functions : Compositions of Functions 7 Functions : Compositions of Functions Model : Word Machines SIGN SIGNS ONK KNO COW COWS RT TR HI HIS KYK KYK Construct Your Understanding Questions (to do in class).

More information

C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21

C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21 C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21 1 Readings Benenti et al, Ch 310 Stolze and Suter, Quantum Computing, Ch 84 ielsen and Chuang, Quantum Computation and Quantum

More information

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. CE 60: Numerical Methods Lecture 7 Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. Drawback in Elimination Methods There are various drawbacks

More information

Trigonometry. Pythagorean Theorem. Force Components. Components of Force. hypotenuse. hypotenuse

Trigonometry. Pythagorean Theorem. Force Components. Components of Force. hypotenuse. hypotenuse Pthagorean Theorem Trigonometr B C α A c α b a + b c a opposite side sin sinα hpotenuse adjacent side cos cosα hpotenuse opposite side tan tanα adjacent side AB CB CA CB AB AC orce Components Components

More information

Engineering Mechanics Statics

Engineering Mechanics Statics Mechanical Systems Engineering _ 2016 Engineering Mechanics Statics 7. Equilibrium of a Rigid Body Dr. Rami Zakaria Conditions for Rigid-Body Equilibrium Forces on a particle Forces on a rigid body The

More information

Beam Stresses Bending and Shear

Beam Stresses Bending and Shear Beam Stresses Bending and Shear Notation: A = name or area A web = area o the web o a wide lange setion b = width o a retangle = total width o material at a horizontal setion = largest distane rom the

More information

Stress-strain relations

Stress-strain relations SICLLY INDRMIN SRSS SYSMS staticall determinate stress sstem simple eample of this is a bar loaded b a weight, hanging in tension. he solution for the stress is simpl W/ where is the cross sectional area.

More information

Acoustic forcing of flexural waves and acoustic fields for a thin plate in a fluid

Acoustic forcing of flexural waves and acoustic fields for a thin plate in a fluid Acoustic orcing o leural waves and acoustic ields or a thin plate in a luid Darryl MCMAHON Maritime Division, Deence Science and Technology Organisation, HMAS Stirling, WA Australia ABSTACT Consistency

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

3.1 Functions. We will deal with functions for which both domain and the range are the set (or subset) of real numbers

3.1 Functions. We will deal with functions for which both domain and the range are the set (or subset) of real numbers 3.1 Functions A relation is a set of ordered pairs (, y). Eample: The set {(1,a), (1, b), (,b), (3,c), (3, a), (4,a)} is a relation A function is a relation (so, it is the set of ordered pairs) that does

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

More information

Ground Rules. PC1221 Fundamentals of Physics I. Lectures 13 and 14. Energy and Energy Transfer. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Lectures 13 and 14. Energy and Energy Transfer. Dr Tay Seng Chuan PC1221 Fundamentals o Physics I Lectures 13 and 14 Energy and Energy Transer Dr Tay Seng Chuan 1 Ground Rules Switch o your handphone and pager Switch o your laptop computer and keep it No talking while

More information

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Name (Print) (Last) (First) Instructions: ME 323 - Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Circle your lecturer s name and your class meeting time. Gonzalez Krousgrill

More information

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b)

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b) . Sole Problem.-(c). Sole Problem.-(b). A two dimensional trss shown in the figre is made of alminm with Yong s modls E = 8 GPa and failre stress Y = 5 MPa. Determine the minimm cross-sectional area of

More information

Exam paper: Biomechanics

Exam paper: Biomechanics Exam paper: Biomechanics Tuesday August 10th 2010; 9.00-12.00 AM Code: 8W020 Biomedical Engineering Department, Eindhoven University of Technology The exam comprises 10 problems. Every problem has a maximum

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

More information

A Total Lagrangian Based Method for Recovering the Undeformed Configuration in Finite Elasticity

A Total Lagrangian Based Method for Recovering the Undeformed Configuration in Finite Elasticity A Total Lagrangian Based Method or Recovering the Undeormed Coniguration in Finite Elasticity Grand Roman Joldes*, Adam Wittek and Karol Miller Intelligent Systems or Medicine Laboratory, School o Mechanical

More information

Lecture notes Models of Mechanics

Lecture notes Models of Mechanics Lecture notes Models of Mechanics Anders Klarbring Division of Mechanics, Linköping University, Sweden Lecture 7: Small deformation theories Klarbring (Mechanics, LiU) Lecture notes Linköping 2012 1 /

More information

(Refer Slide Time: 00:55) (Refer Slide Time: 01:02)

(Refer Slide Time: 00:55) (Refer Slide Time: 01:02) Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module No. # 5.6 Lecture No. # 32 Matrix Analysis of Beams and Grids Good morning.

More information

Static Equilibrium; Elasticity & Fracture

Static Equilibrium; Elasticity & Fracture Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

EQUILIBRIUM OF A RIGID BODY

EQUILIBRIUM OF A RIGID BODY EQUILIBRIUM OF A RIGID BODY Today s Objectives: Students will be able to a) Identify support reactions, and, b) Draw a free diagram. APPLICATIONS A 200 kg platform is suspended off an oil rig. How do we

More information

Professor Terje Haukaas University of British Columbia, Vancouver Notation

Professor Terje Haukaas University of British Columbia, Vancouver  Notation Notation This document establishes the notation that is employed throughout these notes. It is intended as a look-up source during the study of other documents and software on this website. As a general

More information

Lecture 2 - Force Analysis

Lecture 2 - Force Analysis Lecture 2 - orce Analysis A Puzzle... Triangle or quadrilateral? 4 distinct points in a plane can either be arrange as a triangle with a point inside or as a quadrilateral. Extra Brownie Points: Use the

More information

Chapter 14 Truss Analysis Using the Stiffness Method

Chapter 14 Truss Analysis Using the Stiffness Method Chapter 14 Truss Analsis Using the Stiffness Method Structural Mechanics 2 ept of Arch Eng, Ajou Univ Outline undamentals of the stiffness method Member stiffness matri isplacement and force transformation

More information

Advanced Strength of Materials Prof. S. K. Maiti Department of Mechanical Engineering Indian Institute of Technology, Bombay.

Advanced Strength of Materials Prof. S. K. Maiti Department of Mechanical Engineering Indian Institute of Technology, Bombay. Advanced Strength of Materials Prof. S. K. Maiti Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture 32 Today we will talk about un symmetric bending. We have already studied

More information