Computing the Hausdorff Distance between Two B-Spline Curves. Zachi Shtain

Size: px
Start display at page:

Download "Computing the Hausdorff Distance between Two B-Spline Curves. Zachi Shtain"

Transcription

1 Computing the Hausdorff Distance between Two B-Spline Curves Zachi Shtain Based on the work of: Chen et al. 2010

2 Definition Given two curves C 1, C 2, their Hausdorff distance is defined as: H Where:, max max min,max min D C C p q p q 1 2 max min p q,max min p q are the one-sided pc qc qc Hausdorff distance pc qc qc pc p & q are known as the Hausdorff pair pc 2

3 3 Example

4 Point-Curve Projection Given a point p and a curve C(u), the point projection problem can be described: * min,, p C u p C u u a b If u* a, b condition:, we have the following necessary p C u*, C ' u * 0 4

5 Point-Curve Projection cont. Using the condition the problem turns into a root-finding problem of a polynomial equation Two steps for solving: Removing intervals which contain no solution Compute local extrema in each remaining intervals pc u*, C ' u* 0 5

6 Point-Curve Projection Example Given a Bezier curve defined by the control polygon {(-1, 0), (0, 2), (1, 0)} Find the location(s) on curve which have the minimum distance between the curve and the point (0, 0) 6

7 Point-Curve Projection Example cont. The inner product yields a Bezier curve defined by the control polygon: {-2, 4.667, , 2} pc u*, C ' u* 0 7

8 Point-Curve Projection Example cont. Using a subdivision method, we isolate the roots of the polynomial and get: t X Y

9 Point-Curve Projection Additional Examples 9

10 Locations of Hausdorff Distance The Hausdorff distance can occur at C 1 - discontinuity points (end points) The Hausdorff distance can occur at antipodal points of the two curves The Hausdorff distance can occur when one curve intersects the bisector of the second curve 10

11 Case 1 The Hausdorff distance can occur at two end points (one end point of each of the curves) 11

12 Case 2 The Hausdorff distance can occur at the end point of one the curves and at an inner point of the other curve, C2' v, C2' v 0 C1' v 0 C C v, 1' v 0,1 C 0 C v 0 C 1 C v C C v, 1 C 0 v

13 Case 3 The Hausdorff distance can occur at the two closest inner points C 1 u C2 v, C ' u 0 C u C v, C ' v uv, 0,1 13

14 Case 4 The Hausdorff distance can occur at two inner points 2 2 Ci r C j t Ci r C j s 0 r, s, t 0,1 C s C r C s, ' 0 i, j C i i j r C t, C ' t j i j 0 i 1, 2 j 14

15 Computing the Hausdorff Distance: The Algebraic Root-Finding Method Computing all of the roots of the non-linear equations of cases 2-4 Finding the resulting solution from these roots and the end points as well 15 C i i j r C t, C ' t j i j, C1 u C v 0, C2' v 0 1, C2' v 0 C1 u C2 v ' 0 0, C1' v 0 C 1 C v, 1' v 0 C1 u 2, C 2 ' v 0 0,1 2 2 Ci r C j t Ci r C j s 0 r, s, t 0,1 C r C s, C ' s 0 i, j 1, 2 C C v C C v C C v C v i j uv, 0,1

16 Avoiding Solving Case 4 Case 4 occurs only when the minimum distance occurs at one than more place Subdividing the given curves ensures only one place that the minimum distance will occur at Thus, the trivariate equation system of case 4 can be avoided 16

17 Improving the Computation It can be seen that the Hausdorff distance can be computed by solving the one-sided problem twice The problem turns into a min/max point to curve distance computation problem 17 D C, C max max min p q,max min p q H 1 2 pc qc qc pc

18 Outline of Algorithm First, utilize the elimination criteria in the geometric pruning method to prune the sub-intervals Second, subdivide the given curves in the remaining sub-intervals Termination conditions are also provided to speed up the process 18

19 General Geometric Pruning Method for Computing One-Sided Hausdorff Distnace Given two curves C 1 (u) and C 2 (v), we want to compute the squared one-sided Hausdorff distance from C 1 (u) to C 2 (v): where u 0,1 v 0,1 H C u, C v max min S u, v S u, v C u C v, C u C v

20 Properties used for Geometric Pruning Property #1: S u, v min S u, v v 0,1 S u, v max S u, v u 0,1,, H C u C v S u v The case where the Hausdorff distance occurs at two end points is detected using this property 20

21 Properties used for Geometric Pruning Property #2: cont. Property #3: u u 0,1 : S u, v min S u, v H C u, C v max S u, v v 0,1 0,1 v 0,1 v 0,1 : S u, v max S u, v H C u, C v min S u, v u 0,1 The above properties detect the case where the Hausdorff distance occurs at one end point 21

22 Bounding for the Geometric Pruning The geometric method need upper and lower bounds for elimination The bounds can be set as the minimum distances between the end points u min S u, v H C u, C v max S u, v v 0,1 0,1 22

23 Bounding for the Geometric Pruning Remark We have u min S u v, v H C u, C v max S u, v u v 0,1 0,1 Where u(v) and v(u) are functions in v and u For the case of two Bezier Curves u v v v u u In B-Spline Cases, u(v) and v(u) can be set as piecewise linear functions 23 u min S u, v H C u, C v max S u, v v 0,1 0,1

24 Geometric Pruning Subdivision When all of the properties are not satisfied, the curve C 1 (u) should be divided to obtain: L, C R H C u v max H C u, C, H C u, C For each v, if the Hausdorff distance cannot occur in the interval L i, then it can be eliminated 24

25 Elimination Criteria for the Case of Two B-Splines Curves Given two B-Spline curves i j B u, B v m-th and n-th degree B-spline basis functions over the knot vectors: We obtain: 25 i j C1 u PB u C2 v Q B v u, v 0,1 n i i n j m j m U { 0,...,0, a, a,..., a, 1,...,1 } V { 0,...,0, b, b,..., b, 1,...,1} 2 3 n 2 3 n+1 n+1 m+1 m+1 n m 1 2 S u, v D B u B v r k r0 k0 r, k 2n 2m m

26 Elimination Criteria for the Case of Two B-Splines Curves cont. Suppose the different knots in the knot vector U are u, i 0... l i m The interval [0,1] can be partitioned into l subintervals The function S(u,v) can be represented in Bezier 26 Li u u i l i i1 m, m, form as: 2n m2 S u, v F Bˆ r0 k0 u u t u B v t u u i r k r, k 2n i 2m i i 1 m i m i um

27 Elimination Criteria for the Case of Two B-Splines Curves cont. When the function S(u,v) is in the Bezier form in the sub-interval L i, we subdivide at the middle to obtain two new intervals: u i m, u m u m, u i1 m Theorem: If F i,,, : 0,..., 1 0,..., i r k F r n k m 2nr k 2 the Hausdorff distance occurs in the interval u i m, u m u m, u can be eliminated i1 m and 27

28 Let Termination Conditions for the Subdivision Process Given a value of u, there exist a value of v such that d u min S u, v, u 0,1 v 0,1 d u When C 1 (u) & C 2 (v) are C 1 -continuous B-Spline curves d(u) is also C 1 -continuous except for a finite number of locations S u, v u 28

29 d u S u, v u Termination Conditions for the Subdivision Process cont. C u C v u, C ' v u 0 If the derivative of v(u) exists, then 2 C1u C2 vu, C1 ' u Otherwise: d ' u0 2 C1 u0 C2 v1, C1 ' u0 d ' u 2 C u C v, C ' u Finally, we set: C1 u C2 vu v u d ' u 2 C1 u C2 v u, ' ' ' _ d ' u max d ' u, d ' u v v

30 Termination Conditions for the Subdivision Process cont. From the following approximation formula: d u u d u d ' u u A trivial termination condition for a sub interval u, t ut 0,1 u could be simply set as: u 2 1 t t 2 u d ' 2 u 2 1 t t

31 Termination Conditions for the Subdivision Process cont. When the termination condition is satisfied, the Hausdorff distance can be approximated by the minimum distance between the point and the curve C 2 (v) u C 1 u 1 2 t t 2 31 u u 2 1 t t u d ' 2 u 2 1 t t 2

32 Algorithm Steps 1. Compute S(u,v) in B-Spline Form: 2. Put (S(u,v), L 1, L 2 ) into W 3. If the set W is empty go to step 8 4. Pop one element w = (S 1, w 1, w 2 ) from set W 5. If S 1 satisfies the elimination criteria, then go back to step 3; otherwise go to step 6 6. If the length of w 1 is small enough to satisfy the termination condition, put (S 1, w 1, w 2 ) into y and rerun to step 3. Otherwise go to step 7 32 n m 1 2 r k, S u v D B u B v r0 k0 r, k 2n 2m 7. Subdivide the interval w 1 into two subintervals and put the new pairs (S 11, w 11, w 21 ) & (S 12, w 12, w 22 ) into set W ; return to step 3 8. For each element w of set y, compute the corresponding solution of case 3 in the region w 1 xw 2 using the Newton-Raphson method 9. Put the solution with the maximum distance and the place where the Hausdorff distance occurs as the resulting output, C1 u C v C1 u C2 v ' 0 C u, C ' v uv, 0,1

33 Algorithm Results For two cubic Bezier curves defined by the control polygons: {(193, 226), (227, 230), (297, 134), (421, 135)} {(258, 481), (294, 438), (302, 268), (435, 213)} The Hausdorff distance is The Hausdorff pair (0.0685, 0) 33

SPLINE INTERPOLATION

SPLINE INTERPOLATION Spline Background SPLINE INTERPOLATION Problem: high degree interpolating polynomials often have extra oscillations. Example: Runge function f(x = 1 1+4x 2, x [ 1, 1]. 1 1/(1+4x 2 and P 8 (x and P 16 (x

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information

CONTROL POLYGONS FOR CUBIC CURVES

CONTROL POLYGONS FOR CUBIC CURVES On-Line Geometric Modeling Notes CONTROL POLYGONS FOR CUBIC CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview B-Spline

More information

Interpolation and polynomial approximation Interpolation

Interpolation and polynomial approximation Interpolation Outline Interpolation and polynomial approximation Interpolation Lagrange Cubic Splines Approximation B-Splines 1 Outline Approximation B-Splines We still focus on curves for the moment. 2 3 Pierre Bézier

More information

Interpolation and Deformations A short cookbook

Interpolation and Deformations A short cookbook Interpolation and Deformations A short cookbook 600.445 Fall 2000; Updated: 0 October 2002 Linear Interpolation p ρ 2 2 = [ 40 30 20] = 20 T p ρ = [ 0 5 20] = 5 p 3 = ρ3 =? 0?? T [ 20 20 20] T 2 600.445

More information

On-Line Geometric Modeling Notes

On-Line Geometric Modeling Notes On-Line Geometric Modeling Notes CUBIC BÉZIER CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview The Bézier curve representation

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

Linear Algebra I Lecture 10

Linear Algebra I Lecture 10 Linear Algebra I Lecture 10 Xi Chen 1 1 University of Alberta January 30, 2019 Outline 1 Gauss-Jordan Algorithm ] Let A = [a ij m n be an m n matrix. To reduce A to a reduced row echelon form using elementary

More information

3.1 Interpolation and the Lagrange Polynomial

3.1 Interpolation and the Lagrange Polynomial MATH 4073 Chapter 3 Interpolation and Polynomial Approximation Fall 2003 1 Consider a sample x x 0 x 1 x n y y 0 y 1 y n. Can we get a function out of discrete data above that gives a reasonable estimate

More information

MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines

MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines David L. Finn Yesterday, we introduced the notion of curvature and how it plays a role formally in the description of curves,

More information

MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision

MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision David L. Finn Yesterday, we introduced barycentric coordinates and de Casteljau s algorithm. Today, we want to go

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation Piecewise Polynomial Interpolation 1 Piecewise linear interpolation Suppose we have data point (x k,y k ), k =0, 1,...N. A piecewise linear polynomial that interpolates these points is given by p(x) =p

More information

The Essentials of CAGD

The Essentials of CAGD The Essentials of CAGD Chapter 4: Bézier Curves: Cubic and Beyond Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Interpolation. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Interpolation 1 / 34

Interpolation. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Interpolation 1 / 34 Interpolation Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Interpolation 1 / 34 Outline 1 Introduction 2 Lagrange interpolation 3 Piecewise polynomial

More information

Approximation of Circular Arcs by Parametric Polynomials

Approximation of Circular Arcs by Parametric Polynomials Approximation of Circular Arcs by Parametric Polynomials Emil Žagar Lecture on Geometric Modelling at Charles University in Prague December 6th 2017 1 / 44 Outline Introduction Standard Reprezentations

More information

CS 536 Computer Graphics NURBS Drawing Week 4, Lecture 6

CS 536 Computer Graphics NURBS Drawing Week 4, Lecture 6 CS 536 Computer Graphics NURBS Drawing Week 4, Lecture 6 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Outline Conic Sections via NURBS Knot insertion

More information

Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (1) April 13, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (1) April 13, 2017 Kenshi Takayama Parametric curves X & Y coordinates defined by parameter t ( time) Example: Cycloid x t = t sin t y t = 1 cos t Tangent (aka.

More information

Fitting a Natural Spline to Samples of the Form (t, f(t))

Fitting a Natural Spline to Samples of the Form (t, f(t)) Fitting a Natural Spline to Samples of the Form (t, f(t)) David Eberly, Geometric Tools, Redmond WA 9852 https://wwwgeometrictoolscom/ This work is licensed under the Creative Commons Attribution 4 International

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 7 Interpolation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Pre-Calculus Midterm Practice Test (Units 1 through 3)

Pre-Calculus Midterm Practice Test (Units 1 through 3) Name: Date: Period: Pre-Calculus Midterm Practice Test (Units 1 through 3) Learning Target 1A I can describe a set of numbers in a variety of ways. 1. Write the following inequalities in interval notation.

More information

Bézier Curves and Splines

Bézier Curves and Splines CS-C3100 Computer Graphics Bézier Curves and Splines Majority of slides from Frédo Durand vectorportal.com CS-C3100 Fall 2017 Lehtinen Before We Begin Anything on your mind concerning Assignment 1? CS-C3100

More information

Surface Fitting. Moving Least Squares. Preliminaries (Algebra & Calculus) Preliminaries (Algebra & Calculus) Preliminaries (Algebra & Calculus) ( )(

Surface Fitting. Moving Least Squares. Preliminaries (Algebra & Calculus) Preliminaries (Algebra & Calculus) Preliminaries (Algebra & Calculus) ( )( Preliminaries Algebra Calculus Surface Fitting Moving Least Squares Gradients If F is a function assigning a real value to a D point the gradient of F is the vector: Preliminaries Algebra Calculus Extrema

More information

CHAPTER-II ROOTS OF EQUATIONS

CHAPTER-II ROOTS OF EQUATIONS CHAPTER-II ROOTS OF EQUATIONS 2.1 Introduction The roots or zeros of equations can be simply defined as the values of x that makes f(x) =0. There are many ways to solve for roots of equations. For some

More information

Rational Bézier Patch Differentiation using the. Rational Forward Difference Operator

Rational Bézier Patch Differentiation using the. Rational Forward Difference Operator Rational Bézier Patch Differentiation using the Rational Forward Difference Operator Xianming Chen Richard Riesenfeld Elaine Cohen School of Computing University of Utah CGI 05 p.1/37 Introduction For

More information

Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura

Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura Curves Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Taku Komura How to create a virtual world? To compose scenes We need to define objects

More information

Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES. By Dr. Mohammed Ramidh

Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES. By Dr. Mohammed Ramidh Mathematics Lecture. 6 Chapter. 4 APPLICATIONS OF DERIVATIVES By Dr. Mohammed Ramidh OVERVIEW: This chapter studies some of the important applications of derivatives. We learn how derivatives are used

More information

Numerical Methods I: Interpolation (cont ed)

Numerical Methods I: Interpolation (cont ed) 1/20 Numerical Methods I: Interpolation (cont ed) Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 30, 2017 Interpolation Things you should know 2/20 I Lagrange vs. Hermite interpolation

More information

Prerequisites. Copyright Cengage Learning. All rights reserved.

Prerequisites. Copyright Cengage Learning. All rights reserved. Prerequisites P Copyright Cengage Learning. All rights reserved. P.4 FACTORING POLYNOMIALS Copyright Cengage Learning. All rights reserved. What You Should Learn Remove common factors from polynomials.

More information

Demo 5. 1 Degree Reduction and Raising Matrices for Degree 5

Demo 5. 1 Degree Reduction and Raising Matrices for Degree 5 Demo This demo contains the calculation procedures to generate the results shown in Appendix A of the lab report. Degree Reduction and Raising Matrices for Degree M,4 = 3 4 4 4 3 4 3 4 4 4 3 4 4 M 4, =

More information

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Chapter R Review of basic concepts * R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Ex: Write the set of counting numbers

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

Curve Fitting and Interpolation

Curve Fitting and Interpolation Chapter 5 Curve Fitting and Interpolation 5.1 Basic Concepts Consider a set of (x, y) data pairs (points) collected during an experiment, Curve fitting: is a procedure to develop or evaluate mathematical

More information

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier

CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier CMSC427 Parametric curves: Hermite, Catmull-Rom, Bezier Modeling Creating 3D objects How to construct complicated surfaces? Goal Specify objects with few control points Resulting object should be visually

More information

Bernstein polynomials of degree N are defined by

Bernstein polynomials of degree N are defined by SEC. 5.5 BÉZIER CURVES 309 5.5 Bézier Curves Pierre Bézier at Renault and Paul de Casteljau at Citroën independently developed the Bézier curve for CAD/CAM operations, in the 1970s. These parametrically

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Orthogonal Projections, Gram-Schmidt Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./ Orthonormal Sets A set of vectors {u, u,...,

More information

Final Year M.Sc., Degree Examinations

Final Year M.Sc., Degree Examinations QP CODE 569 Page No Final Year MSc, Degree Examinations September / October 5 (Directorate of Distance Education) MATHEMATICS Paper PM 5: DPB 5: COMPLEX ANALYSIS Time: 3hrs] [Max Marks: 7/8 Instructions

More information

Common Core Algebra 2 Review Session 1

Common Core Algebra 2 Review Session 1 Common Core Algebra 2 Review Session 1 NAME Date 1. Which of the following is algebraically equivalent to the sum of 4x 2 8x + 7 and 3x 2 2x 5? (1) 7x 2 10x + 2 (2) 7x 2 6x 12 (3) 7x 4 10x 2 + 2 (4) 12x

More information

Q 0 x if x 0 x x 1. S 1 x if x 1 x x 2. i 0,1,...,n 1, and L x L n 1 x if x n 1 x x n

Q 0 x if x 0 x x 1. S 1 x if x 1 x x 2. i 0,1,...,n 1, and L x L n 1 x if x n 1 x x n . - Piecewise Linear-Quadratic Interpolation Piecewise-polynomial Approximation: Problem: Givenn pairs of data points x i, y i, i,,...,n, find a piecewise-polynomial Sx S x if x x x Sx S x if x x x 2 :

More information

Additional exercises with Numerieke Analyse

Additional exercises with Numerieke Analyse Additional exercises with Numerieke Analyse March 10, 017 1. (a) Given different points x 0, x 1, x [a, b] and scalars y 0, y 1, y, z 1, show that there exists at most one polynomial p P 3 with p(x i )

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING MA5-NUMERICAL METHODS DEPARTMENT OF MATHEMATICS ACADEMIC YEAR 00-0 / EVEN SEMESTER QUESTION BANK SUBJECT NAME: NUMERICAL METHODS YEAR/SEM: II / IV UNIT - I SOLUTION OF EQUATIONS

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

Lecture 23: Hermite and Bezier Curves

Lecture 23: Hermite and Bezier Curves Lecture 23: Hermite and Bezier Curves November 16, 2017 11/16/17 CSU CS410 Fall 2017, Ross Beveridge & Bruce Draper 1 Representing Curved Objects So far we ve seen Polygonal objects (triangles) and Spheres

More information

7. Piecewise Polynomial (Spline) Interpolation

7. Piecewise Polynomial (Spline) Interpolation - 64-7 Piecewise Polynomial (Spline Interpolation Single polynomial interpolation has two major disadvantages First, it is not computationally efficient when the number of data points is large When the

More information

19.4 Spline Interpolation

19.4 Spline Interpolation c9-b.qxd 9/6/5 6:4 PM Page 8 8 CHAP. 9 Numerics in General 9.4 Spline Interpolation Given data (function values, points in the xy-plane) (x, ƒ ), (x, ƒ ),, (x n, ƒ n ) can be interpolated by a polynomial

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 2 Today Curves Introduction Polynomial curves Bézier curves Drawing Bézier curves Piecewise curves Modeling Creating 3D objects How to construct

More information

Linear Equations and Vectors

Linear Equations and Vectors Chapter Linear Equations and Vectors Linear Algebra, Fall 6 Matrices and Systems of Linear Equations Figure. Linear Algebra, Fall 6 Figure. Linear Algebra, Fall 6 Figure. Linear Algebra, Fall 6 Unique

More information

An O(h 2n ) Hermite approximation for conic sections

An O(h 2n ) Hermite approximation for conic sections An O(h 2n ) Hermite approximation for conic sections Michael Floater SINTEF P.O. Box 124, Blindern 0314 Oslo, NORWAY November 1994, Revised March 1996 Abstract. Given a segment of a conic section in the

More information

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning 76 Chapter 7 Interpolation 7.1 Interpolation Definition 7.1.1. Interpolation of a given function f defined on an interval [a,b] by a polynomial p: Given a set of specified points {(t i,y i } n with {t

More information

Laplace Transform Theory - 1

Laplace Transform Theory - 1 Laplace Transform Theory - 1 Existence of Laplace Transforms Before continuing our use of Laplace transforms for solving DEs, it is worth digressing through a quick investigation of which functions actually

More information

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS chapter MORE MATRIX ALGEBRA GOALS In Chapter we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to elementary algebra. The reader

More information

Cubic Spline. s(x) = s j (x) = a j + b j (x x j ) + c j (x x j ) 2 + d j (x x j ) 3, j = 0,... n 1 (1)

Cubic Spline. s(x) = s j (x) = a j + b j (x x j ) + c j (x x j ) 2 + d j (x x j ) 3, j = 0,... n 1 (1) Cubic Spline Suppose we are given a set of interpolating points (x i, y i ) for i = 0, 1, 2, n We seek to construct a piecewise cubic function s(x) that has the for x [[x j, x j+1 ] we have: s(x) = s j

More information

Application - Ray Tracing and Bézier surfaces. TANA09 Lecture 3. Error Estimate. Application - Ray tracing and Beziér surfaces.

Application - Ray Tracing and Bézier surfaces. TANA09 Lecture 3. Error Estimate. Application - Ray tracing and Beziér surfaces. TANA09 Lecture 3 Application - Ray Tracing and Bézier surfaces Application - Ray tracing and Beziér surfaces. z = B(x, y) q o Error estimate. Cancellation. The Newton-Raphson method. Analysis. Order of

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6. Orthogonal Projections Math 2 Linear Algebra 6. Orthogonal Projections Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2 Jiwen He, University of

More information

Algebra I B Year At A Glance

Algebra I B Year At A Glance Algebra I B Year At A Glance Algebra I B Year-at-a-Glance (36 weeks) FIRST SEMESTER Unit 1 Arithmetic with Polynomials SECOND SEMESTER Unit 2 Rational and Radical Functions 18 weeks - Ends Dec 18 18 weeks

More information

Chapter 1: The Finite Element Method

Chapter 1: The Finite Element Method Chapter 1: The Finite Element Method Michael Hanke Read: Strang, p 428 436 A Model Problem Mathematical Models, Analysis and Simulation, Part Applications: u = fx), < x < 1 u) = u1) = D) axial deformation

More information

An adventitious angle problem concerning

An adventitious angle problem concerning n adventitious angle problem concerning and 7 / Darij Grinberg The purpose of this note is to give two solutions of the following problem (Fig 1): Let be an isosceles triangle with and 1 Let be a point

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

Limit Theorems. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Limit Theorems

Limit Theorems. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Limit Theorems Limit s MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Bounded Functions Definition Let A R, let f : A R, and let c R be a cluster point of A. We say that f is bounded

More information

Numerical Analysis & Computer Programming

Numerical Analysis & Computer Programming ++++++++++ Numerical Analysis & Computer Programming Previous year Questions from 07 to 99 Ramanasri Institute W E B S I T E : M A T H E M A T I C S O P T I O N A L. C O M C O N T A C T : 8 7 5 0 7 0 6

More information

Interpolation and Deformations A short cookbook

Interpolation and Deformations A short cookbook Interpolation and Deformations A short cookbook 600.445 Fall 2000; Updated: 29 September 205 Linear Interpolation p ρ 2 2 = [ 40 30 20] = 20 T p ρ = [ 0 5 20] = 5 p 3 = ρ3 =? 0?? T [ 20 20 20] T 2 600.445

More information

Hybrid Second-Order Iterative Algorithm for Orthogonal Projection onto a Parametric Surface

Hybrid Second-Order Iterative Algorithm for Orthogonal Projection onto a Parametric Surface S S symmetry Article Hybrid Second-Order Iterative Algorithm for Orthogonal Projection onto a Parametric Surface Xiaowu Li 1, ID, Lin Wang 1,, Zhinan Wu,, Linke Hou 3, *,, Juan Liang 4, and Qiaoyang Li

More information

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43 INDEX Abel s identity, 131 Abel s test, 131 132 Abel s theorem, 463 464 absolute convergence, 113 114 implication of conditional convergence, 114 absolute value, 7 reverse triangle inequality, 9 triangle

More information

1 Piecewise Cubic Interpolation

1 Piecewise Cubic Interpolation Piecewise Cubic Interpolation Typically the problem with piecewise linear interpolation is the interpolant is not differentiable as the interpolation points (it has a kinks at every interpolation point)

More information

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

An Introduction to Numerical Methods for Differential Equations. Janet Peterson

An Introduction to Numerical Methods for Differential Equations. Janet Peterson An Introduction to Numerical Methods for Differential Equations Janet Peterson Fall 2015 2 Chapter 1 Introduction Differential equations arise in many disciplines such as engineering, mathematics, sciences

More information

Sample Exam 1 KEY NAME: 1. CS 557 Sample Exam 1 KEY. These are some sample problems taken from exams in previous years. roughly ten questions.

Sample Exam 1 KEY NAME: 1. CS 557 Sample Exam 1 KEY. These are some sample problems taken from exams in previous years. roughly ten questions. Sample Exam 1 KEY NAME: 1 CS 557 Sample Exam 1 KEY These are some sample problems taken from exams in previous years. roughly ten questions. Your exam will have 1. (0 points) Circle T or T T Any curve

More information

Computer Graphics MTAT Raimond Tunnel

Computer Graphics MTAT Raimond Tunnel Computer Graphics MTAT.03.015 Raimond Tunnel Points and Vectors In computer graphics we distinguish: Point a location in space (location vector, kohavektor) Vector a direction in space (direction vector,

More information

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation Piecewise Polynomial Interpolation 1 Piecewise linear interpolation Suppose we have data point (x k,y k ), k =0, 1,...N. A piecewise linear polynomial that interpolates these points is given by p(x) =p

More information

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Integration, differentiation, and root finding. Phys 420/580 Lecture 7 Integration, differentiation, and root finding Phys 420/580 Lecture 7 Numerical integration Compute an approximation to the definite integral I = b Find area under the curve in the interval Trapezoid Rule:

More information

Vector Spaces 4.1 Vectors in n Spaces

Vector Spaces 4.1 Vectors in n Spaces Vector Spaces 4.1 Vectors in n Spaces September 27 Goals Get familar with real n spaces R n, like R 2, R 3. Get familiar with some of the properties of the real n spaces R n. Justify why points in R n

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

Review for Chapter 1. Selected Topics

Review for Chapter 1. Selected Topics Review for Chapter 1 Selected Topics Linear Equations We have four equivalent ways of writing linear systems: 1 As a system of equations: 2x 1 + 3x 2 = 7 x 1 x 2 = 5 2 As an augmented matrix: ( 2 3 ) 7

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

MIDTERM REVIEW. Write an algebraic expression to represent the following verbal expressions. 1) Double the difference of a number and 7.

MIDTERM REVIEW. Write an algebraic expression to represent the following verbal expressions. 1) Double the difference of a number and 7. NAME MIDTERM REVIEW DATE Write an algebraic epression to represent the following verbal epressions. 1) Double the difference of a number and 7. ) Find the value of the epression 0. Solve each equation.

More information

AP Calculus (BC) Summer Assignment (169 points)

AP Calculus (BC) Summer Assignment (169 points) AP Calculus (BC) Summer Assignment (69 points) This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion

More information

X. Numerical Methods

X. Numerical Methods X. Numerical Methods. Taylor Approximation Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has derivatives of all orders near c. In section 5 of chapter 9 we introduced

More information

Pythagorean-hodograph curves

Pythagorean-hodograph curves 1 / 24 Pythagorean-hodograph curves V. Vitrih Raziskovalni matematični seminar 20. 2. 2012 2 / 24 1 2 3 4 5 3 / 24 Let r : [a, b] R 2 be a planar polynomial parametric curve ( ) x(t) r(t) =, y(t) where

More information

Rational Bézier Patch Differentiation using the Rational Forward Difference Operator

Rational Bézier Patch Differentiation using the Rational Forward Difference Operator Rational Bézier Patch Differentiation using the Rational Forward Difference Operator Xianming Chen, Richard F. Riesenfeld, Elaine Cohen School of Computing, University of Utah Abstract This paper introduces

More information

Some notes on Chapter 8: Polynomial and Piecewise-polynomial Interpolation

Some notes on Chapter 8: Polynomial and Piecewise-polynomial Interpolation Some notes on Chapter 8: Polynomial and Piecewise-polynomial Interpolation See your notes. 1. Lagrange Interpolation (8.2) 1 2. Newton Interpolation (8.3) different form of the same polynomial as Lagrange

More information

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs David L. Finn December 9th, 2004 We now start considering the basic curve elements to be used throughout this course; polynomial curves and

More information

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Interpolation and Polynomial Approximation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 10, 2015 2 Contents 1.1 Introduction................................ 3 1.1.1

More information

Planar interpolation with a pair of rational spirals T. N. T. Goodman 1 and D. S. Meek 2

Planar interpolation with a pair of rational spirals T. N. T. Goodman 1 and D. S. Meek 2 Planar interpolation with a pair of rational spirals T N T Goodman and D S Meek Abstract Spirals are curves of one-signed monotone increasing or decreasing curvature Spiral segments are fair curves with

More information

Home Page. Title Page. Contents. Bezier Curves. Milind Sohoni sohoni. Page 1 of 27. Go Back. Full Screen. Close.

Home Page. Title Page. Contents. Bezier Curves. Milind Sohoni  sohoni. Page 1 of 27. Go Back. Full Screen. Close. Bezier Curves Page 1 of 27 Milind Sohoni http://www.cse.iitb.ac.in/ sohoni Recall Lets recall a few things: 1. f : [0, 1] R is a function. 2. f 0,..., f i,..., f n are observations of f with f i = f( i

More information

Geometric Modeling Summer Semester 2010 Mathematical Tools (1)

Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Recap: Linear Algebra Today... Topics: Mathematical Background Linear algebra Analysis & differential geometry Numerical techniques Geometric

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 2: Sets and Events Andrew McGregor University of Massachusetts Last Compiled: January 27, 2017 Outline 1 Recap 2 Experiments and Events 3 Probabilistic Models

More information

Homework 5. Solutions

Homework 5. Solutions Homework 5. Solutions 1. Let (X,T) be a topological space and let A,B be subsets of X. Show that the closure of their union is given by A B = A B. Since A B is a closed set that contains A B and A B is

More information

MATH ASSIGNMENT 07 SOLUTIONS. 8.1 Following is census data showing the population of the US between 1900 and 2000:

MATH ASSIGNMENT 07 SOLUTIONS. 8.1 Following is census data showing the population of the US between 1900 and 2000: MATH4414.01 ASSIGNMENT 07 SOLUTIONS 8.1 Following is census data showing the population of the US between 1900 and 2000: Years after 1900 Population in millions 0 76.0 20 105.7 40 131.7 60 179.3 80 226.5

More information

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St Structured Lower Rank Approximation by Moody T. Chu (NCSU) joint with Robert E. Funderlic (NCSU) and Robert J. Plemmons (Wake Forest) March 5, 1998 Outline Introduction: Problem Description Diculties Algebraic

More information

CHAPTER 4 Knot insertion

CHAPTER 4 Knot insertion CHAPTER 4 Knot insertion In Chapter we were led to B-splines, defined via the recurrence relation, as a convenient way to represent spline functions In Chapters 2 and 3 we then established some of the

More information

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR)

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) Autumn Session UNIT 1 Numerical analysis is the study of algorithms that uses, creates and implements algorithms for obtaining numerical solutions to problems

More information

Integration. Copyright Cengage Learning. All rights reserved.

Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.3 Riemann Sums and Definite Integrals Copyright Cengage Learning. All rights reserved. 2 Objectives Understand the definition of a Riemann

More information

Lectures 9-10: Polynomial and piecewise polynomial interpolation

Lectures 9-10: Polynomial and piecewise polynomial interpolation Lectures 9-1: Polynomial and piecewise polynomial interpolation Let f be a function, which is only known at the nodes x 1, x,, x n, ie, all we know about the function f are its values y j = f(x j ), j

More information

EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE

EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE J. KSIAM Vol.13, No.4, 257 265, 2009 EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE YEON SOO KIM 1 AND YOUNG JOON AHN 2 1 DEPT OF MATHEMATICS, AJOU UNIVERSITY, SUWON, 442 749,

More information

Differential Equations on Cubic Julia Sets

Differential Equations on Cubic Julia Sets University of California Los Angeles June 16, 2014 Julia Sets Given a complex polynomial f, the associated filled-in Julia set is the set of points z such that the sequence z, f (z), f (f (z)),..., f

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

Math 660-Lecture 15: Finite element spaces (I)

Math 660-Lecture 15: Finite element spaces (I) Math 660-Lecture 15: Finite element spaces (I) (Chapter 3, 4.2, 4.3) Before we introduce the concrete spaces, let s first of all introduce the following important lemma. Theorem 1. Let V h consists of

More information

ISOTOPIC CONVERGENCE THEOREM

ISOTOPIC CONVERGENCE THEOREM Journal of Knot Theory and Its Ramifications c World Scientific Publishing Company ISOTOPIC CONVERGENCE THEOREM J. Li Department of Mathematics, University of Connecticut, Storrs, CT 0669, USA. hamlet.j@gmail.com

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information